2 objective mht-cet mathematics 2...

43

Upload: trandang

Post on 10-Feb-2018

286 views

Category:

Documents


11 download

TRANSCRIPT

2 Objective MHT-CET Mathematics

IntroductionLet • y = f (x) be a real valued function, then derivative of the function w.r.t. x is given by

f x dydx

f x h f xhh

′( =+ −

→) lim ( ) ( )or

0

The derivative f x dydx′( ) or is also known as differential

coefficient of f (x). If the derivative of a function at a point exists then

the function is called differentiable or derivable at that point.

Illustration: If f (x) = x sin x, find f ′(p), using first principle.

Soln.: f (x) = x sin x \ f (p) = (p) sin p = 0 f (p + h) = (p + h)sin(p + h) By first principle

f f h f

hh′ =

+ −→

( ) lim ( ) ( )p

p p0

= + + −→

lim ( )sin( )h

h hh0

0p p

= + +→

lim ( )(sin cos cos sin )h

h h hh0

p p p

= − +

→lim ( )sinh

h hh0

p = –(p + 0) × 1 = – p

Illustration: If f (x) = log(3x – 1), find f ′(2), using first principle.

Soln.: Given f (x) = log (3x – 1) \ f (2) = log (6 – 1) = log 5 and f (2 + h) = log [3(2 + h)–1] = log (3h + 5) By first principle

f f h f

hh′( ) =

+ −→

22 2

0lim ( ) ( )

= + −→

lim log( ) logh

hh0

3 5 5

= +

lim logh h

h0

1 3 55 = +

lim logh h

h0

11 3

5

=+

×→

limlog

h

h

h0

1 35

35

35 =

+

35

1 35

35

0lim

log

h

h

h

= ×35

1 h h ttt

→ → + =

0 35

0 1 10

, lim log( )and

= 35

Left Hand DerivativeIf • y = f (x) is a real valued function and a is any real

number, then

lim ( ) ( ) ,h

f a h f ah→ −

+ −0

if it exists, is

called the left hand derivative of f (x) at x = a and is denoted by Lf ′(a) or f ′(a) – or f ′(a–).

Right Hand Derivative If • y = f (x) is a real valued function and a is any real

number, then lim ( ) ( ) ,h

f a h f ah→ +

+ −0

if it exists, is

called the right hand derivative of f (x) at x = a and is denoted by Rf ′(a) or f ′(a)+ or f ′(a+).

Note : If f ′(a+) and f ′(a–) are equal then f (x) is said to be differentiable at x = a.

2.1 Relationship Between Continuity and Differentiability

2.2 Derivative of Composite Functions

2.3 Derivative of Inverse Functions

2.4 Logarithmic Differentiation

2.5 Derivative of Implicit Functions

2.6 Derivative of Parametric Functions

2.7 Higher Order Derivatives

2 Differentiation

3Differentiation

Illustration: Discuss the differentiability of f(x) = x|x| at x = 0.

Soln.: We have, f x x xx x

x x( )

,

,= =

− <

2

2

0

0

Now, ( ) lim ( ) ( )LHD at x f x fxx

= =−−→ −

00

00

⇒ = = − −−→

( ) limLHD at x xxx

0 000

2

⇒ = = − =→

( ) limLHD at x xx

0 00

and, ( ) lim ( ) ( )RHD at x f x fxx

= =−−→ +

00

00

⇒ = = −−→

( ) limRHD at x xxx

0 000

2

⇒ = = =→

( ) limRHD at x xx

0 00

So, f (x) is differentiable at x = 0.

2.1 Relationship Between Continuity and Differentiability

Every differentiable function is continuous but the •converse need not be true.

Illustration: A function is defined by

f x

x

x x( )

,

sin , .=

− < <

+ ≤ <

1 2 0

1 0 2

for

for

p

p

What can you say about right hand derivative and left hand derivative at x = 0?

Is f continuous at x = 0 ? Soln.: Right hand derivative at x = 0 is

f f h fhh

′ =+ −+

→ +( ) lim ( ) ( )0

0 00

=−

→ +lim ( ) ( )

h

f h fh0

0

= + − +→

lim ( sin ) ( sin )h

hh0

1 1 0

[... f (x) = 1 + sinx, 0 ≤ x < p2

]

= + −→

lim sinh

hh0

1 1 = =→

lim sinh

hh0

1

Left hand derivative at x = 0 is

f f h fhh

′(0 ) = + −−

→ −lim ( ) ( )

0

0 0 =−

→ −lim ( ) ( )

h

f h fh0

0

= − +→

lim ( sin )h h0

1 1 0 = − − =

→ →

lim limh hh h0 0

1 1 0 0 = 0

(h → 0, h ≠ 0) Since f ′(0+) ≠ f ′(0 –) \ f is not differentiable at x = 0. Continuity at x = 0

f x x( ) ,= − < <12

0for p

\ = =→ →−lim ( ) lim( )

x xf x

0 01 1

f (x) = 1 + sinx, for 02

≤ <x p

\ f (0) = 1 + sin 0 = 1 and lim ( ) lim( sin )

x xf x x

→ →+= +

0 01 = 1 + sin0 = 1

\ = =→ →− +lim ( ) ( ) lim ( )

x xf x f f x

0 00

\ f is continuous at x = 0.

2.2 Derivative of Composite FunctionsIf • y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f (g(x)) is a

differentiable function of x and dydx

dydu

dudx= ⋅

This is called chain rule.If • y is a differentiable function of u1, ui is a differentiable function of ui + 1, for i = 1, 2, ..... n – 1 and un is a differentiable function of x, then y is a differentiable function of x and

dydx

dydu

dudu

dudu

dudx

n= × × × ×1

1

2

2

3......

Illustration: Differentiate : sin (x2+ 5) w.r.t. x Soln. : Let y = sin (x2 + 5) Also let u = x2

+ 5 …(i) \ y = sinu …(ii)

Then, dydu u= cos (from (ii))

dudx x= 2 (from (i))

By chain rule, dydx

dydu

dudx x x= ⋅ = + ×cos( )2 5 2

= 2x cos (x2 + 5)

Illustration: If findy x x dydx= + +( ) , .7 11 392

32

Soln.: y = (7x2 + 11x + 39)3/2

Let u = 7x2 + 11x + 39 …(i) ⇒ y = u3/2 …(ii)

\ dydu u=

−32

32 1

( ) = 32

12u (from (ii))

dudx x= +14 11 (from (i))

So, by chain rule

dydx

dydu

dudx x x x= × = + + ⋅ +3

27 11 39 14 112 1 2( ) ( )/

= + + +32 14 11 7 11 392( )x x x

4 Objective MHT-CET Mathematics

Derivative of Some Standard Composite Functions

Sr. No. y dydx

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

[ f (x)]n

f x( )

1f x( )

sin[ f (x)]

cos[ f (x)]

sec[ f (x)]

cosec[ f (x)]

tan[ f (x)]

cot[ f (x)]

a f (x)

e f (x)

log[ f (x)]

loga[ f (x)]

n [ f (x)]n–1 × f ′(x)

12 f x

f x( )

)× ′(

− × ′(12[ ( )]

)f x

f x

cos[ f (x)] × f ′(x)

– sin[ f (x)] × f ′(x)

sec[ f (x)] · tan[ f (x)] × f ′(x)

– cosec[ f (x)] · cot[ f (x)] × f ′(x)

sec2[ f (x)] ×f ′(x)

– cosec2[ f (x)] × f ′(x)

a f (x) · log a × f ′(x)

e f (x) × f ′(x)1

f x f x( ) )× ′(

1f x a f x

e( ) log )⋅

× ′(

Illustration: Differentiate : sin[cos (tan x)] w.r.t. x Soln. : Let y = sin[cos (tan x)]

\ =dydx

ddx x{sin[cos(tan )]}

= ⋅cos[cos(tan )] [cos(tan )]x ddx x

= ⋅ − ⋅cos[cos(tan )] [ sin(tan )] (tan )x x ddx x

= – cos[cos(tanx)] · sin(tanx) · sec2x = – sec2x · cos[cos(tanx)] · sin(tan x).

2.3 Derivative of Inverse Functions

If • y = f (x) is a differentiable function of x such that the inverse function x = f –1(y) exists, then x is a differentiable function of y and

dxdy dy

dx

dydx= ≠ 01 , where

2.3.1 Derivative of Inverse Trigonometric Functions

Sr. No. f (x) f ′(x)

1. sin–1x, x ∈[–1, 1] 1

11

2−<

xx,

2. cos–1x, x ∈[–1, 1] −

−<1

11

2xx,

3. tan–1x, x ∈R1

1 2+ x

4. cot–1x, x ∈R−+

11 2x

5. sec–1x,x ∈(– ∞, –1) ∪ (1, ∞)

1

11

2x xx

−>,

6. cosec–1x, x ∈(– ∞, –1) ∪ (1, ∞)

−>1

11

2x xx,

Illustration: Differentiate : cot−1 x w.r.t. x

Soln. : Let y x= −cot 1

dydx

ddx x

xddx x= = −

+⋅−(cot )

( )1

21

1

= −+

⋅ = −+

11

12

12 1x x x x( )

2.3.2 Derivative of Inverse Composite Functions

Function Derivative

sin-1( f (x))1

11

2−⋅ ′( <

( ( ))), ( )

f xf x f x

cos–1( f (x)) −

−⋅ ′( <1

11

2( ( ))), ( )

f xf x f x

tan–1( f (x)) 11 2+

⋅ ′(( ( ))

)f x

f x

cot–1( f (x)) −+

⋅ ′(11 2( ( ))

)f x

f x

sec–1( f (x)) 1

11

2f x f xf x f x

( ) ( ( ))), ( )

−⋅ ′( >

cosec–1( f (x)) −

−⋅ ′( >1

11

2f x f xf x f x

( ) ( ( ))), ( )

5Differentiation

Illustration: Differentiate : sin–1(cos3x) w.r.t. x Soln.: Let y = sin–1(cos3x)

\ = −dydx

ddx x[sin (cos )]1 3

=

−×1

1 33

2(cos )(cos )

x

ddx x

=−

× − ⋅1

1 33 3

2cos( sin ) ( )

xx d

dx x

= × − ×1

33 3

2sin( sin )

xx = × − × = −1

33 3 3sin ( sin )x x

Illustration: Differentiate :

tan sin sin

sin sin− + + −

+ − −

1 1 11 1

x xx x

w.r.t. x

Soln.: Let y x xx x

= + + −+ − −

−tan sin sinsin sin

1 1 11 1

Now, 12 2

22 2

2 2+ = + +sin cos sin sin cosx x x x x

= +cos sinx x2 2

Similarly, 12 2

− = −sin cos sinx x x

\ =+

+ −

+

−yx x x x

x xtan

cos sin cos sin

cos sin cos

1 2 2 2 2

2 2xx x2 2−

sin

=

=

− −tancos

sintan cot1 1

2 2

2 22

x

xx

= −

= −−tan tan1

2 2 2 2p px x

Diff. w.r.t. x, we get dydx = − 1

2

Derivatives of Inverse Trigonometric Functions by Substitution

With proper substitution the given inverse function •can be reduced to a simple form. Then the derivative may be easily obtained.

Standard substitutions are :Sr. No.

Expression involving the term

Substitution

1. a x2 2− x = a sin q or a cos q

2. a x2 2+ x = a tan q or a cot q

3. x a2 2− x = a sec q or a cosec q

4. a x a x− +or x = a cos q or a cos2q

5. 1 – 2x2 x = sin q6. 2x2–1 x = cos q

7. 21

212 2

xx

xx− +

, and

11

2

2−+

xx

x = tanq

Illustration: Differentiate :

tan− + − −+ + −

1 1 11 1

x xx x

w.r.t.x

Soln.: Let y x xx x

= + − −+ + −

−tan 1 1 11 1

Put x x= ⇒ = −cos cos2 12

1q q

\ = + − −+ + −

−y tan cos coscos cos

1 1 2 1 21 2 1 2

q qq q

= −

+

−tan cos sin

cos sin1

2 2

2 2

2 2

2 2

q q

q q

= −+

−tan cos sincos sin

1 q qq q

= −+

= −

− −tan tantan

tan tan1 111 4

qq

p q

= − = − −p q p4 4

12

1cos x

On differentiating w.r.t. x, we get

dydx x x

= −−

=−

12

1

1

1

2 12 2

Illustration: Differentiate : cos−−

−−+

1 a aa a

x x

x x w.r.t.x

Soln.: Let y a aa a

aa

aa

x x

x x

xx

xx

= −+

=−

+

−−

−−cos cos1 1

1

1

= −+

−cos 12

211

aa

x

x

Put ax = tanq ⇒ q = tan–1(ax)

\ = −+

=− −y cos tantan

cos (cos )12

211

12q

qq

= 2 q = 2 tan–1(ax)

\ = −dydx

ddx ax2 1[tan ( )] = ×

+⋅2 1

1 2( )( )

addx ax

x

=+

× = ⋅+

21

212 2a

a a a aax

xx

xlog log

6 Objective MHT-CET Mathematics

2.4 Logarithmic DifferentiationWhen we want to find the derivative of a function •which can be expressed as :

(i) a product of number of functions (ii) a quotient of functions (iii) a function which is of the form [f (x)]g(x),

then it is easy to find the derivative of the logarithm of the function.

This method is known as logarithmic differentiation. Note that by chain rule,

ddx y d

dy y dydx y

dydx(log ) (log ). .= = ⋅1

Illustration: If findx y xx

dydx

= −

−exp tan , .1 2

2

Soln.: x y xx

= −

−exp tan 1 2

2

Taking log on both sides, we get

log tanx y xx

= −

−1 2

2

⇒ − =y xx

x2

2 tan(log ) ⇒ y = x2 tan(logx) + x2

On differentiating w.r.t. x, we get dy

dxx x x x

xx= + +2 22

2tan(log ) sec (log )

⇒ = + +dydx

x x x x x2 22tan(log ) sec (log )

⇒ = + +dydx

x x x x2 1 2[ tan(log )] sec (log )

2.5 Derivative of Implicit Functions • If a relation between x and y is such that y can be expressed in terms of x i.e., y = f (x) then y is called explicit function of x.If a relation between • x and y is such that y cannot be expressed in terms of x, then y is called an implicit function of x. When a given relation expresses • y as an implicit

function of x and we want to find dydx , then we

differentiate every term of the relation w.r.t. x, remembering that a term in y is first differentiated w.r.t. y and then multiplied by dy

dx .

Note : While taking the derivative of implicit function, function of y is considered as composite function of x.

Illustration: If xmyn = (x + y)m + n, then find dydx Soln.: Given xmyn = (x + y)m + n

Taking log on both sides, we get m log x + n log y = (m + n) log(x + y) Differentiating both sides w.r.t. x, we get

⇒ + = ++

× +

mx

ny

dydx

m nx y

dydx1

⇒ − ++

= ++

mx

m nx y

m nx y

ny

dydx

⇒−+

=−+

my nxx x y

my nxy x y

dydx( ) ( )

⇒ =dydx

yx

Illustration: If sec ,x y

x y a−+

= then find dydx .

Soln.: Given sec x yx y a−

+

= ⇒−+

= −x yx y asec 1

Differentiating both sides w.r.t. x, we get

( ) ( )

( )

x y dydx

x y dydx

x y

+ −

− − +

+=

1 102

⇒ + − + − − − − =x y x y dydx x y x y dy

dx( ) ( ) ( ) 0

⇒ = + + − ⇒ =2 2 2y dydx x y x y y x dy

dx( ) ⇒ =dydx

yx

2.6 Derivative of Parametric FunctionsIf • x and y are expressed as functions of the variable t, i.e., x = f (t) and y = g(t), then these equations are called parametric equations and t is called parameter.If • x = f (t) and y = g(t) are differentiable functions of parameter t, then y is a differentiable function of x and

dydx

dydtdxdt

dxdt= ≠ 0,

Illustration: If x tt

= −+

11

2

2 and y tt

=+2

1 2 , then find dydx .

Soln. : x tt

y tt

= −+

=+

11

21

2

2 2and

Put t = tanq in both the equations, we get

x = −+

=11

22

2tantan

cosqq

q …(1)

and y =+

=21

22tantan

sinqq

q …(2)

On differentiating (1) and (2) w.r.t. q, we get

dxd

dydq

qq

q= − =2 2 2 2sin cosand

Therefore, dydx

dyddxd

xy= = − = −q

q

qq

cossin

22

7Differentiation

dydx x x a

ddx x x a=

+ +× + +1

2 22 2( )

=+ +

++

1 1 2

22 2 2 2x x a

x

x a

=+ +

× + +

+

12 2

2 2

2 2x x ax a x

x a

=+

12 2x a

+ =dy

dx x a2

2 2 1.( )

Again, differentiating w.r.t. x, we get

dydx

ddx x a x a d

dxdydx

⋅ + + + ⋅

=

22 2 2 2

20( ) ( )

⋅ + + ×

=dydx x x a dy

dxd ydx

22 2

2

22 2 0( )

⇒ + +

=2 02

22 2dy

dxd ydx

x a x dydx( )

⇒ ( + + =x a d ydx

x dydx

2 22

2 0) [Q y1 ≠ 0]

Illustration: If y = log(1 + cos x), then prove that

d ydx

d ydx

dydx

3

3

2

2 0+ ⋅ =

Soln. : Given, y = log(1 + cos x)

⇒ =+

−dydx x x1

1 cos ( sin ) = −+sincos

xx1

⇒ = −+ ⋅ − −

+

d ydx

x x x x

x

2

2 2

1

1

( cos ) cos sin ( sin )

( cos )

= − + ++

cos cos sin

( cos )x x x

x

2 2

21

= − ++

= −+

cos( cos ) cos

xx x1

11

12

⇒ = − − + −−d ydx

x x3

321 1 1( )( )( cos ) ( sin )

= −+

sin( cos )

xx1 2

Now, d ydx

d ydx

dydx

3

3

2

2+ ⋅

= −+

+ −+

× −

+

sin( cos ) cos

sincos

xx x

xx1

11 12

= − ++

=sin sin( cos )

x xx1

02

Illustration: If x = sin–1(3t – 4t3) and

y = cos–1 ( ),1 2− t then find dydx

.

Soln. : Given that, y t t= − =− −cos sin1 2 11 ... (1) and x = sin–1(3t – 4t3) = 3 sin–1t ... (2) On differentiating (1) and (2) w.r.t. t, we get

dydt t

dxdt t

=−

=−

1

1

3

12 2and

\ = = −

=dydx

dydtdxdt

t

t

1

1

31

1

13

2

2

2.7 Higher Order Derivatives (Second Order Derivatives)

Derivative of • y = f (x) w.r.t. x (if it exists) is denoted by dydx

or f ′(x) and is called the first order derivative of y.

Derivative of dydx or f ′(x) w.r.t. x (if it exists) is denoted

by d ydx

2

2 or f ′′(x) and is called the second order derivative

of y.

Derivative of

d ydx

2

2 or f ′′(x) w.r.t. x (if it exists) is

denoted by d ydx

3

3 or f ′′′(x) and is called the third order

derivative of y.

In general,

d ydx

n

n is the nth order derivative of y w.r.t. x.

Note : These higher order derivatives may also be denoted by y1, y2, y3, ..... yn

Illustration: If y = x3 log x, then find d ydx

2

2 .

Soln. : Let y = x3 log x

\ = ⋅ + ⋅ = +dydx x x x x x x x3 2 2 21 3 3log log

Again differentiating w.r.t. x, we get

d ydx

x x x x x x x x2

222 3 1 6 5 6= + ⋅ + ⋅ = +log log

Illustration: If y x x a= + +log{ },2 2 then prove that

( )x a d ydx

x dydx

2 22

2 0+ + = .

Soln. : We have, y x x a= + +log{ }2 2

On differentiating w.r.t. x, we get

7Differentiation

2.1 Relationship Between Continuity and Differentiability

1. The function f xx x x

x( )

sin( / ),,

,=≠ 0=

10 0

whenwhen

is

(a) continuous but not differentiable at x = 0(b) continuous and differentiable at x = 0(c) neither continuous nor differentiable at x = 0(d) none of these

2. f(x) = x3 is (a) continuous but not differentiable at x = 3(b) continuous and differentiable at x = 3(c) neither continuous nor differentiable at x = 3(d) none of these

3. f(x) = [x] is neither continuous nor differentiable at(a) integral points (b) rational points(c) real points (d) none of these

4. f(x) = |x – 2| is(a) continuous but not differentiable at x = 2(b) continuous and differentiable at x = 2(c) neither continuous nor differentiable at x = 2(d) none of these

5. Let f xx x

x x( )

( ),,

=− ≥ 1

≤ <

20 1

whenwhen

, then f(x) is

(a) continuous but not differentiable at x = 1(b) continuous and differentiable at x = 1(c) neither continuous nor differentiable at x = 1(d) none of these

6. The function f xx x

x x( )

( ),

( ),=

− < 1

− ≥

1

1 12

when

when is

(a) continuous but not differentiable at x = 1(b) continuous and differentiable at x = 1(c) neither continuous nor differentiable at x = 1(d) none of these

7. If f xx xx x

( ),,

,=+ ≤− >

1 25 2

forfor

then

(a) f(x) is continuous and differentiable at x = 2(b) f(x) is continuous but not differentiable at x = 2(c) f(x) is everywhere differentiable(d) f(x) is not continuous at x = 2

8. If f x x x x

x( ) cos ,

,,=

≠ 0

=

1

0 0

for

forthen at x = 0, f(x) is

(a) not continuous(b) continuous and differentiable(c) continuous but not differentiable(d) none of these

9. If f xx xx x

( ),,

,=− <− ≥

1 22 3 2

forfor

then at x = 2, f(x) is

(a) continuous but not differentiable(b) continuous and differentiable(c) neither differentiable nor continuous(d) none of these

10. Let f x x x x

x

p( ) sin ,

,,=

=

1 0

0 0

for

for then f(x) is

continuous but not differentiable at x = 0, if(a) 1 ≤ p < ∞ (b) 0 < p ≤ 1(c) – ∞ < p < 0 (d) p = 0

11. If f(x) = [x], – 2 ≤ x ≤ 2, then at x = 1(a) f(x) is continuous and differentiable(b) f(x) is neither continuous nor differentiable(c) f(x) is continuous but not differentiable(d) none of these

12. If f xx x

x( )

,,

,=≤>

forfor

00 0

then at x = 0

(a) f(x) is differentiable and continuous(b) f(x) is neither continuous nor differentiable(c) f(x) is continuous but not differentiable(d) none of these

13. Which of the following is not always true?(a) If f(x) is continuous at x = a, then it is

differentiable at x = a(b) If f(x) is not continuous at x = a, then it is not

differentiable at x = a(c) If f(x) and g(x) are differentiable at x = a, then

f(x) + g(x) is also differentiable at x = a(d) If f(x) is continuous at x = a, then lim ( )

x af x

exists.

Multiple Choice QuestionsLEVEL - 1

8 Objective MHT-CET Mathematics

14. If f(x) = | x – 1|, x ∈R, then at x = 1(a) f(x) is not continuous(b) f(x) is continuous but not differentiable(c) f(x) is continuous and differentiable(d) none of these

15. If f xx xx x

( ),

,,=

≤ ≤− <

forfor

then0 1

2 1 1(a) f(x) is discontinuous at x = 1(b) f(x) is differentiable at x = 1(c) f(x) is continuous but not differentiable at x= 1(d) none of these

16. Let f x x a x a( ) ( )cos= − −

1 for x ≠ a and let f(a) = 0.

Then f(x) at x = a is(a) continuous but not differentiable(b) continuous and differentiable(c) neither continuous nor differentiable(d) none of these

17. f xx xx x

x( ),,

=+ ≥− <

=1 01 0

0at is

(a) discontinuous(b) continuous but not differentiable(c) differentiable(d) none of these

18. Find the values of a, b respectively if

f xx x a x

bx x( )

,,

=+ + ≤

+ >

2 3 12 1

is differentiable at every x.

(a) 3, 2 (b) 2, 4(c) 3, 5 (d) 5, 3

19. Let f(x) = x + |x|. Then f at x = 0 is (a) continuous and differentiable(b) continuous but not differentiable(c) neither continuous nor differentiable(d) none of these

20. Examine the differentiability of the function f defined

by f xx xx xx x

( ),

,,

=+ − ≤ < −+ − ≤ <+ ≤ ≤

2 3 3 21 2 02 0 1

ififif

(a) differentiable at all x ∈ R –{0, – 2}.(b) continuous only(c) discontinuous everywhere(d) differentiable at all x ∈ R

21. The function f xx x

x x x( )

| |,

,=

− ≥

− + <

3 1

432

134

12 is

(a) continuous and differentiable at x = 1

(b) continuous but not differentiable at x = 1(c) discontinuous at x = 1(d) none of these

22. f(x) = e|x| is(a) discontinuous everywhere(b) differentiable at x = 0(c) continuous at x = 0 only(d) not differentiable at x = 0

23. The function f(x) = e– |x| is(a) continuous everywhere but not differentiable at

x = 0(b) continuous and differentiable everywhere(c) not continuous at x = 0(d) none of these

24. Let f(x) = |sin x|. Then,(a) f(x) is everywhere differentiable(b) f(x) is everywhere continuous but not

differentiable at x = n p, n ∈ Z(c) f(x) is everywhere continuous but not

differentiable at x n n Z= + ∈( ) ,2 1 2p

(d) none of these

25. The function f(x) = |cos x| is(a) differentiable at x = (2n + 1) p/2, n ∈ Z(b) continuous everywhere but not differentiable at

x = (2n + 1) p/2, n ∈ Z(c) neither differentiable nor continuous at x = np,

n ∈ Z(d) none of these

26. If f (x) =|3 – x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f(x) is(a) continuous and differentiable at x = 3(b) continuous but not differentiable at x = 3(c) neither differentiable nor continuous at x = 3(d) none of these

27. Let f xx

x xx

( ),

| |,,

=≤ −

− < <≥ 1

1 11 1

0. Then, f is

(a) continuous at x = –1(b) differentiable at x = – 1(c) everywhere differentiable(d) none of these

28. f(x) = |x3| at x = 0 is(a) continuous and differentiable(b) continuous but not differentiable(c) discontinuous(d) none of these

9Differentiation

29. If

f xx x xax b x

( ),

,,=

+ ≤+ >

2 2 00

then value of a and b such

that f(x) is continuous and differentiable at x = 0 are(a) a = 1, b = 0 (b) a = 2, b = 0(c) a = 0, b = 2 (d) a = 0, b = 1

30. If

f xx x

x x( )

,

,=

+ − ≤ <

− ≤ ≤

3 2 32 0

3 2 0 32

, then f(x) at x = 0 is

(a) discontinuous(b) differentiable(c) continuous but not differentiable(d) none of these

31. Values of a and b such that the function

f x

x xax b x

( ) =≤ 1

+ >

2

2 1ifif

is derivable at x = 1 are

respectively(a) 1, –1 (b) –1, 1(c) 1, 1 (d) –1, –1

32. If f(x)= [x], where [x] denotes the greatest integer less than or equal to x. Then, f(x) at x = 0 is(a) neither continuous nor differentiable(b) continuous only(c) differentiable(d) none of these

33. If f(x) = 12x – 13, if x ≤ 3 = 2x2 + 5, if x > 3is differentiable at x = 3. Then, f ′(3) is equal to (a) –12 (b) 12(c) 23 (d) –23

34. Value of a so that the functionf(x) = x2 + 3x + a, if x ≤ 1 = 6x + 2, if x > 1is differentiable at x = 1, is(a) –3 (b) 6(c) 3 (d) 4

35. f(x) =1 + x, if x ≤ 2 = 5 – x, if x > 2, is

(a) discontinuous at x = 2(b) continuous but not differentiable at x = 2(c) continuous and differentiable at x = 2(d) none of these

2.2 Derivative of Composite Functions

Direction (36 to 97) : Differentiate w.r.t. x.

36. (5x3 – 4x2 – 8x)9

(a) 9(5x3 – 4x2 – 8x)8 · (15x2 – 8x – 8)(b) 9(5x3 – 4x2 – 8x)8 · (15x2 + 8x + 8)(c) 9(5x3 + 4x2 + 8x)8 · (15x2 – 8x – 8)(d) 9(5x3 + 4x2 + 8x)8 · (15x2 + 8x + 8)

37. log (3x2 + 2x + 1)

(a) 2 3 1

3 2 12( )x

x x+

− − (b) 2 3 1

3 2 12( )x

x x+

+ +

(c) 2 3 13 2 12

( )xx x

−+ +

(d) ( )3 1

3 2 12x

x x+

+ +38. sin(x2

+ x) (a) (2x + 1)cos(x2 + x) (b) (2x –1)cos(x2 + x)(c) –(2x + 1)cos(x2 + x) (d) (2x –1)cos(x2 – x)

39. ( )( )log ( )10 10 10 10cosec x

(a) 10 cosec(10x) · cot (10x) · log10 · (10)cosec (10x)

(b) –10 cosec(10x) · cot (10x) · log10 · (10)cosec (10x)

(c) –10 cosec(10x) · cot (10x) · log10(d) 10 cosec(10x) · cot (10x) · log10

40. ( ) ( )log sin log cos4 92 3x x+ (a) 0 (b) 1(c) sinx + cosx (d) –1

41. a a x2 2 2+ +

(a) x

a x a x2 2 2 2+ ⋅ +

(b) x

a x a a x2 2 2 2 2 2+ ⋅ + +(c) x

a x a x2 2 2+ ⋅ +

(d) x

a x a a x2 2 2 2 2+ ⋅ + +

42. cos x

(a) − sin xx2

(b) sin xx2

(c) sin x (d) − sin x

43. cos x3 · sin2(x5)(a) 5x4 · sin(2x5) + 3x2 sin x3

(b) 5x4 · sin(2x5) · cosx3 + 3x2sinx3 · sin2(x5)(c) 5x4 · sin(2x5) · cosx3 – 3x2sinx3 · sin2(x5)(d) –5x4 · sin(2x5) · cosx3 – 3x2sinx3 · sin2(x5)

44. sin23x · tan32x(a) 6 sin23x · sec22x + 3tan32x(b) –6 sin23x · tan22x · sec22x + 3tan32x · sin 6x(c) 6 sin23x · tan22x · sec22x – 3tan32x · sin 6x(d) 6 sin23x · tan22x · sec22x + 3tan32x · sin 6x

10 Objective MHT-CET Mathematics

45. cos(sinx)(a) – cosx · sin(sinx) (b) cosx · sin(sinx)(c) cos (sinx) · sinx (d) – cos (sinx) · sinx

46. tan x

(a) − sin

tan

2

4

x

x x (b) sec

tan

2

4

x

x x

(c) − sec

tan

2 x

x x (d) sec

tan

2 x

x x47. sin(ax2 + bx + c)

(a) (2ax – b) cos(ax2 + bx + c)(b) –(2ax + b) cos(ax2 + bx + c)(c) (2ax + b) cos(ax2 + bx + c)(d) (2ax + b) cos (2ax + b)

48. sin(x2 + x + 5) (a) (2x + 1) cos(2x +1) (b) (2x –1) cos(x2 +x + 5)(c) –(2x + 1) cos(x2 + x + 5) (d) (2x +1) cos(x2 + x + 5)

49. sin x

(a) cossin

xx2

(b) − cossin

xx2

(c) cossin

xx

(d) − cossin

xx

50. 1cot( tan cot )a x b x+

(a) sec2(a tan x + b cotx) · (a sec2x – b cosec2x)(b) sec2(a tan x – b cotx) · (a sec2x – b cosec2x)(c) sec2(a tan x + b cotx) · (a sec2x + b cosec2x)(d) sec(a tan x + b cotx) · (a sec2x + b cosec2x)

51. tan2 (logx3)

(a) 6 3 2x

x xtan(log ) sec (log )⋅

(b) − ⋅6 3 2x

x xtan(log ) sec (log )

(c) 6 3 2 3x

x xtan(log ) sec (log )⋅

(d) tan(logx3) · sec2(log x3)

52. sec(tan )x

(a) sec(tan ) tan(tan ) secx x xx

⋅ ⋅ 2

2

(b) − ⋅ ⋅sec(tan ) tan(tan ) secx x xx

2

2

(c) sec(tan ) tan(tan ) secx x xx

⋅ ⋅ 2

(d) − ⋅ ⋅sec(tan ) tan(tan ) secx x xx

2

53. ( )sina x x

(a) − +

⋅a x x xx

x xsin cos sin2

(b) a x x xx

x x⋅ +

sin cos sin2

(c) a a x x xx

x x⋅ ⋅ +

sin (log ) cos sin2

(d) − ⋅ +

⋅a a x x xx

x xsin (log ) cos sin2

54. sin sin x

(a) cos sin cos

sin

x x

x x

(b) cos sin cos

sin

x x

x x

⋅4

(c) cos sin

sin

x

x x

(d) − ⋅

cos sin cos

sin

x x

x x4

55. exsin2x + cos2x

(a) ( cos sin ) sin cos2 2 2 2 2x x x ex x x+ +

(b) ( cos sin ) sin cos2 2 2 2 2x x x ex x x+ −

(c) ( cos sin ) sin cos2 2 2 2 2x x x ex x x− −

(d) ( cos sin ) sin cos2 2 2 2 2x x x ex x x− +

56. e ex x5⋅

(a) e xx x55 14+ ⋅ −( ) (b) e xx x5

5 14− ⋅ +( )

(c) e xx x55 14− ⋅ −( ) (d) e xx x5

5 14+ ⋅ +( )

57. ex + 2 logx

(a) (x + 2x2)ex (b) (x – 2x2)ex

(c) (x2 + 2x)ex (d) (x2 – 2x)ex

58. ax5sin

(a) a xx x5 5 5

sin sin cos log⋅ ⋅ ⋅

(b) 5 5sin cos logx x⋅ ⋅

(c) a x ax x5 5 5

sin sin cos log log⋅ ⋅ ⋅ ⋅

(d) − ⋅ ⋅ ⋅ ⋅a x ax x5 5 5

sin sin cos log log

59. log (log )e

x2

(a) 12x xlog

(b) − 12x xlog

(c) 12 log x

(d) − 12 log x

11Differentiation

60. 71x x+

(a) xx

xx

2

2

11 7 7−

⋅ ⋅+

log

(b) xx

xx

2

2

11 7 7+ ⋅ ⋅

+log

(c) xx

xx

2

2

11 7 7− ⋅ ⋅

−log

(d) xx

xx

2

2

11 7 7+ ⋅ ⋅

−log

61. eax bx c2+ +

(a) ( )22

ax b eax bx c− ⋅ + +

(b) ( )22

ax b eax bx c+ ⋅ + +

(c) ( )22

ax b eax bx c+ ⋅ − −

(d) − + ⋅ + +( )22

ax b eax bx c

62. ( )3 44 352x x− +

(a) 152

4 1 3 42 4 332x x x x( )( )− − −

(b) − − − +152

4 1 3 42 4 332x x x x( )( )

(c) 152

4 1 3 42 4 332x x x x( )( )− − +

(d) − + − −152

4 1 3 42 4 332x x x x( )( )

63. sin sinx x+

(a) cossin

cossin

xx

xx x2 4

+

(b) cossin

cossin

xx

xx x2 4

(c) − +cossin

cossin

xx

xx x2 4

(d) − −cossin

cossin

xx

xx x2 4

64. 11

−+

coscos

xx

(a) 12 2

2sec x (b) − 12 2

2sec x

(c) sec22x (d) − sec2

2x

65. 84x e x⋅

(a) − ⋅ ⋅ ⋅ +⋅8 8 4 14 4x e xx

e x(log ) ( )

(b) 8 8 4 14 4x e xx

e x⋅ ⋅ ⋅ ⋅ +(log ) ( )

(c) 8 8 4x xe⋅ ⋅(log )(d) − ⋅ ⋅8 8 4x xe(log )

66. log (ex· sin5x)(a) 1 – 5cotx (b) 1 + cotx(c) 1 – 5cotx5 (d) 1 + 5cotx

67. sin2[log(2x + 3)]

(a) −+

⋅ +22 3

2 2 3x

xsin[ log( )]

(b) 22 3

2 2 3x

x+

⋅ +sin[ log( )]

(c) 22 3

2 3x

x+

⋅ +sin[log( )]

(d) −+

⋅ +22 3

2 3x

xsin[log( )]

68. log(emx – e–mx)

(a) e ee e

mx mx

mx mx+−

− (b) m e ee e

mx mx

mx mx( )+

(c) e ee e

mx mx

mx mx−+

− (d) e ee e

mx mx

mx mx

−−

+

69. log sinsin

11

+−

xx

(a) tanx (b) cotx(c) secx (d) –secx

70. 1x a x+ −

(a) −+

+

12

1 1a x a x

(b) 12

1 1a x a x+

(c) 1 1x a x+

+ (d) 12

1 1a x a x+

+

71. ( )2 1 52x x+ +

(a) 4 10

5

2

2

x x

x

+ +

+ (b) 4 10

5

2

2x x

x+ +

+

(c) 4 10

5

2

2

x x

x

− −

+ (d) 4 10

5

2

2

x x

x

− +

+72. elog tan x

(a) sec2x (b) – sec2x(c) secx tanx (d) – secx tanx

73. x2 log sin x(a) x2cot x – 2x log sin x (b) xcot x + 2x log sin x(c) xcot x + 2 log sin x (d) x2cot x + 2x log sin x

74. ex log(sin 2x)(a) ex{2 cotx + log(sin 2x)} (b) ex{2 cot2x + log(sin 2x)}(c) ex{2 cotx – log(sin 2x)} (d) –ex{2 cot2x + log(sin 2x)}

12 Objective MHT-CET Mathematics

75. e x

(a) ex

x12

4 (b) − e

x

x12

4

(c) ex

x

4 (d) − e

x

x

4

76. log (log x), x > 1

(a) 1x xlog

(b) − 1x xlog

(c) 1log x

(d) 1x

77. log tan x2

(a) –cosec x (b) –cot2x(c) cosec x (d) cot2x

78. log(log(log x3))

(a) 1x xlog

(b) 13x x x(log )(log )

(c) − 33x x x(log )(log log )

(d) 33 3x x x(log )(log log )

79. ecot x

(a) ecotx(cosec2x) (b) ecotx(cosecx cotx)(c) –ecotx(cosec2x) (d) –ecotx(cosecx cotx)

80. tan(log x)

(a) sec (log )2 x

x (b) −

sec (log )2 xx

(c) sec tan (log )x x xx

(d) −sec tan (log )x x x

x

81. log sin (ex + 5x + 8)(a) –(ex + 5) · cot(ex + 5x + 8)(b) (ex + 5) · cot(ex + 5x + 8)(c) (ex + 5) · cosec2(ex + 5x + 8)(d) –(ex + 5) · cosec2(ex + 5x + 8)

82. e–5xcot 4x(a) –e–5x(5 cot 4x + 4 cosec24x)(b) e–5x(5 cot 4x + 4 cot24x) (c) e–5x(5 cot 4x + 4 cosec24x) (d) –e5x(5 cosec 4x + 4 cosec24x)

83. 3x + 2

(a) (9 × 3x log 3) (b) –(9 x log 3)(c) –(9 × 3x log 3) (d) 9x log 3

84. log( )x x+ +1 2

(a) −+

1

1 2x (b) 1

1 2x x+ +(c) 1

1 2+ x (d) −

+ +

1

1 2x x

85. log sin x2 1+

(a) x

xx

22 2

11

++cot (b) x

xx

22

11

++cot

(c) −+

+x

xx

22

11cot (d) x

xx

22

11

++tan

86. ex cos x

(a) excosx(cosx – x sinx) (b) –excosx(cosx – x sinx)(c) e–xcosx(xcosx – sinx) (d) –e–xcosx(cosx – sinx)

87. 11

+−

ee

x

x

(a) −− −

e

e e

x

x x( )1 1 2 (b)

e

e e

x

x x( )1 1 2+ −

(c) e

e e

x

x x( )1 1 2− − (d) −

+ −

e

e e

x

x x( )1 1 2

88. x3excos x(a) –exx2(x sin x – x cos x + 3 cos x)(b) –exx2(x cos x– x sin x + 3 cos x)(c) exx2(x sin x – x cos x + 3 sin x)(d) exx2(x cos x – x sin x + 3 cos x)

89. esinxsin(ex)(a) esinx(ex sin(ex) + sin x cos(ex))(b) esinx(ex cos(ex) – cos x cos(ex))(c) esinx(ex cos(ex) + cos x sin(ex))(d) –esinx(ex cos(ex) + cos x sin(ex))

90. e x−2

(a) − −1 2

xe x (b) 1 2

xe x−

(c) 1 2

xe x (d) −1 2

xe x

91. tan(x + 45)(a) sec2(x + 45) (b) –sec2(x + 45)(c) sec(x + 45) tan(x + 45)(d) –sec(x+ 45) tan(x + 45)

92. 32 2x x+

(a) − ⋅ ++( log ) ( )3 3 2 12 2x x x

(b) ( log ) ( )3 3 2 12 2x x x+ ⋅ −

(c) 2 3 12 2( ) ( )x x x+ ⋅ +

(d) 2 1 3 32 2( ) ( log )x x x+ ⋅ +

13Differentiation

93. cos(log x)2

(a) 2 2log sin(log )x x

x (b)

log sin(log )x xx

(c) − log sin(log )x x

x

2

(d) −2 2log sin(log )x x

x94. eex

(a) e ee xx× (b) − ×e ee xx

(c) e ex e x× − (d) ee x

95. (x2 + x + 1)4

(a) –4(x2 + x + 1)3 · (2x + 1) (b) –4(x2 + 2x + 1)3 · (2x + 1)(c) 4(x2 + x + 1)3 · (2x + 1) (d) 4(x2 + x + 1)· (2x + 1)

96. 1

2 2a x−(a) −

−x

a x( ) /2 2 3 2 (b) 12 2 3 2( ) /a x−

(c) xa x( ) /2 2 3 2−

(d) −−

12 2 3 2( ) /a x

97. elog(logx)· log3x

(a) log( )x

x

2 (b)

log( )3 2xx

(c) −log( )3 2x

x (d)

− log( )xx

2

98. Find dydx when y = 2u3 + 1 and u

x= 1

2 3/ .

(a) 43x

(b) −4

3x

(c) 4x3 (d) –4x3

99. Find the derivative of the following w.r.t. x : (2x2 + 3)5/3(x + 5)–1/3

(a) − + + −+

( ) ( )( )

/

/2 3 18 100 3

3 5

2 2 3 2

4 3x x x

x

(b) ( ) ( )( )

/

/2 3 18 100 3

3 5

2 2 3 2

4 3x x x

x+ − −

+

(c) ( ) ( )

( )

/

/2 3 18 100 3

3 5

2 2 3 2

4 3x x x

x+ + −

+

(d) − + + ++

( ) ( )( )

/

/2 3 18 100 3

3 5

2 2 3 2

4 3x x x

x

100. Differentiate |2x2 – 1| w.r.t. x.

(a) 4 2 1

2 1

2

2x x

x|( ) |−

− (b) −

−−

4 2 12 1

2

2x x

x| |

(c) 4 2 12 1

2

2x x

x( )

| |−

− (d) 2 1

2 1

2

2xx

−+

2.3 Derivative of Inverse Functions

2.3.2 Derivative of Inverse Composite Functions

Direction(101 to 160) : Differentiate w.r.t.x.

101. cos ( )−1 4 x

(a) 21 16( )− x

(b) −−2

1 16x x( )

(c) 21 16x x( )+

(d) 216 1( )x −

102. 5x.sec–12x

(a) 5

4 15 5 2

21

xx

x xx

−+ −(log ) sec

(b) 5

4 15 5

21

xx

xx

−+ −(log ) sec

(c) 54 1

5 5 21x

x

x xx

( )(log ) sec

−+ −

(d) 5

4 15 2

21

xx

x xx

−+ −sec

103. cos cos− +1 12

x

(a) −12

(b) 12

(c) 1 (d) –1

104. cosec(3 tan–1x)

(a) −

+

− −3

1

1 1

2cosec (tan ) cot(tan )x x

x

(b) 3 3 3

1

1 1

2cosec ( tan ) cot( tan )− −

x x

x

(c) 3 3

1

1 1

2cosec (tan ) cot( tan )− −

+

x x

x

(d) −

+

− −3 3 3

1

1 1

2cosec ( tan ) cot( tan )x x

x105. sin–1(2 cos2x –1)

(a) –2 (b) –1

(c) 1 (d) 12

106. cos sin cos− +

1 3 45

x x

(a) 12

(b) 2(c) –1 (d) 0

14 Objective MHT-CET Mathematics

107. sincos sin− +

1

2x x

(a) 2 (b) 1(c) 0 (d) –2

108. tan− −−

13

231 3x x

x(a) 3

1 2+ x (b) −

+3

1 2x

(c) 11 2+ x

(d) −+

11 2x

109. sin−

+

12

21

xx

(a) −+

21 2x

(b) 21 2+ x

(c) 11 2+ x

(d) −+

11 2x

110. tan tantan

− +−

1 a b xb a x

(a) 11 2+ x

(b) –1

(c) 1 (d) 0

111. sin–1(1 –x2)

(a) −

+ −

2

1 1 2 2( )x (b)

− −

2

1 1 2

x

x( )

(c) 2

1 1 2

x

x+ −( ) (d)

− −

2

1 1 2 2

x

x( )

112. sin–1(2x)

(a) 2 2

1 4

x

x

log

− (b)

2

1 4

x

x−

(c) log 2

1 4+ x (d)

2

1 2

x

x

xlog

113. sin− +121

2x

(a) −

x

x1 4 (b)

x

x1 2−

(c) x

x1 4− (d)

x

x

2

41 −

114. cosec–1(2x +1)

(a) 2

2 1 12( )x x+ − (b)

2

2 1 2 12( )x x+ +

(c) −

+ + −

2

2 1 2 1 12| | ( )x x

(d) 1

2 1 2 1 12| | ( )x x+ + −

115. cos–1(log 2 x)

(a) −

1

2 2 2x x(log ) (log )

(b) 12x xlog log−

(c) 1

2 2 2(log ) (log )− x

(d) 12x log

116. tan sincos

−+

11

xx

(a) −12

(b) 12

(c) 1 (d) 0

117. tan sincos

− −

1 1 xx

(a) 1 (b) 0

(c) −12

(d) –1

118. cot–1(cosec x + cotx)

(a) 1 (b) 12

(c) −12 (d) –1

119. tan coscos

− −+

1 11

xx

(a) 1 (b) 12

(c) −12

(d) –1

120. sincos sin− +

1 4 541

x x

(a) 1 (b) –1

(c) 0 (d) 12

121. sin ( )− −1 22 1x x

(a) 2

1 2− x (b)

2

1 2x

(c) 1

1 2− x (d) −

1

1 2x

15Differentiation

122. sin− + + −

1 1 12

x x

(a) 1

2 1 2− x (b)

1

2 1 2x

(c) −

+

1

2 1 2x (d)

1

1 2− x

123. tan− −−

12 3

3 23

3a x x

a ax

(a) 3

2 2a x+ (b) 3

2 2a

a x−(c) 3

2 2a

a x+ (d) 3

2 2

a

a x+

124. sin− −+

12

21 251 25

xx

(a) 10

1 25+ x (b)

101 25 2− x

(c) 1

1 25 2+ x (d)

−+

101 25 2x

125. tan−

12

71 12

xx

(a) 41 16

31 92 2+

++x x

(b) 41 16

31 9+

++x x

(c) 1

1 161

1 92 2++

+x x (d)

121 16 1 92 2( )( )+ +x x

126. tan− −+

1 x ax a

(a) a

x a

2

2 2+ (b)

−+a

x a2 2

(c) a

x a2 2+ (d)

12 2x a+

127. tan−+

112

1 4

x

x

(a) 2 2

1 4

1x

x

+

+log

(b) 2 2

1 4

x

xlog

+

(c) −

+

+2 2

1 4

1x

xlog

(d) 2

1 4

x

x+

128. sin−

1 xa

(a) −

12 2a x

(b) 1

a x−

(c) 12 2a x+

(d) 1

2 2a x−

129. cot−

1 xa

(a) a

a x2 2+ (b)

12 2a x+

(c) −+a

a x2 2 (d) −+1

2 2a x

130. 1

+

− −b

xb a

xa

tan tan1 11

(a) −+

++

1 12 2 2 2x b x a

(b) 1 1

2 2 2 2x b x a++

+

(c) 1 12 2 2 2x b x a+

−+

(d) none of these

131. sin(2cos–1x)

(a) 2 2

1

1

2

sin( cos )−

x

x (b)

+

−2 2

1

1

2

sin( cos )x

x

(c) −

−2 2

1

1

2

cos( cos )x

x (d) 2 2

1

1

2

cos( cos )−

x

x132. 5x · sec–1x

(a) 5 11

51x

x xx

−+

−( )(log )cosec

(b) 1

15

21

x xx

−+ −( )(log )sec

(c) 5 1

15

21x

xx

−+

−( )(log )sec

(d) 5 1

15

21x

x xx

−+

−( )(log )sec

133. cos–1(2 – x)

(a) 1

1 2 2− −( )x (b) −

− −

1

1 2 2( )x

(c) −

+ −

1

1 2 2( )x (d)

1

2 2− x

134. cosec −

1 14x

(a) −

4

1 16 2x (b)

4

1 16 2+ x

(c) 4

1 16 2− x (d)

1

1 16 2− x

135. e xsin(cos )ec −1

(a) e

x

x−1

2

/ (b)

−ex

x1

2

/

(c) ex

x1

2

/ (d) e

x

x−1/

136. sin cosec−

17x

(a) −72x

(b) 72x

(c) 12x

(d) −7x

16 Objective MHT-CET Mathematics

137. sin–1(1 – 2sin2x )(a) 0 (b) 1(c) –1 (d) –2

138. sin sin cos− +

1 4 35

x x

(a) 1 (b) – 12

(c) 0 (d) 12

139. tan− −+

12

211

xx

(a) 2

1 4xx+

(b) −+2

1 4xx

(c) 1

1 2+ x (d) 2

1 2xx+

140. tan− −

1 212

xx

(a) 21 2+ x

(b) 1

1 2+ x

(c) −+

21 2x

(d) −+

11 2x

141. sec co− −+−

1 12 1

x x

xsec

(a) 2

12x − (b)

2

12x

(c) 1

12x x − (d)

2

12x x −

142. cos ( )− − − ⋅ −1 2 21 1ax a x

(a) −

1

1 2x (b)

1

1 2− x

(c) 1

1 2x x− (d)

x

x1 2−143. cos–1(1 – 2x2)

(a) −

2

1 2x (b)

2

1 2− x(c) 1

1 2− x (d) 2

12x −144. cot–1(tan 3x)

(a) 3 (b) –3(c) –3x (d) 3x

145. tan− + −

1 21 1xx

(a) 1

1 2+ x (b)

12 1 2( )+ x

(c) −+

12 1 2( )x

(d) −+

11 2x

146. tan sin coscos sin

− +−

1 a x b xa x b x

(a) 1 (b) –1

(c) 0 (d) 1

1 2+ x

147. tan− +−

1 4 33 4

xx

(a) −+

11 2x

(b) 2

1 2+ x

(c) 1

1 2+ x (d)

−+

21 2x

148. tan− ( )1 5x x

(a) 3

1 2+ x (b) −

+3

1 2x

(c) 13 1 2( )+ x

(d) none of these

149. cossin cos

ec−+

1 54 3x x

(a) 0 (b) 1

(c) 54

(d) 53

150. tan cossin

− −

1 1 33

xx

(a) 1

1 2+ x (b)

11 9 2+ x

(c) 32

(d) −32

151. tan− + +

+ −

1 2

2

1

1

x x

x x

(a) 1

1 2+ x (b)

−+

12 1 2( )x

(c) −+

11 2x

(d) 1

2 1 2( )+ x152. sin–1[cos(2x – 3)]

(a) 0 (b) 1(c) 3 (d) none of these

153. tan− +− −

12

5 13 6

xx x

(a) 1

9 12 51

2 2 12 2x x x x+ ++

− +

(b) 39 12 5

12 2 12 2x x x x+ +

+− +

(c) 3

9 12 51

2 2 12 2x x x x+ +−

− +

(d) 3

9 12 51

2 2 12 2x x x x− −+

+ −

17Differentiation

154. cot log

log log− −

+

12

2

x x

e x

x

x x

(a) 11

112 2+

++x x x[ (log ) ]

(b) 1

11

12 2++

+x x[ (log ) ]

(c) 11

112 2+

−+x x[ (log ) ]

(d) 11

12 2+

+x x x(log )

155. cos cos( / ) sin( / )− +

1 3 2 22

x x

(a) –2 (b) −12

(c) 32

(d) − 32

156. cos− −+

1 11

xx

(a) 11 + x

(b) 1

1x x( )+

(c) 1

1( )+ x x (d) −

+1

1( )x x

157. sin sin , .− −+ − − ≤ ≤1 1 21 1 1x x x

(a) 1

11

2−+

x

xx| |

(b) −

−−

1

11

2x

xx| |

(c) 11

1−

x

xx| |

(d) none of these

158. 4 1 21 2

1tan coscos

− +−

xx

(a) 0 (b) 3(c) –4 (d) –2

159. tan− −+

1

1x a

ax

(a) 11x x( )+

(b) 1

2 1x x( )+

(c) −

+1

2 1x x( ) (d) 1

2 x

160. tan−

12 2

x

a x

(a) 12 2a x−

(b) −

12 2a x

(c) 1

2 2a x+ (d)

+

12 2a x

2.4 Logarithmic Differentiation

Direction (161 to 183) : Differentiate each of the following w.r.t. x.

161. xx + (tanx)x

(a) xx (1 – log x) + (tan x)x [2cosec 2x + log sin x](b) xx (1 + log x) + (tan x)x [2x cosec 2x + log tan x](c) xx (1 + log x) + (tan x)x [2cosec x + log tan x](d) xx (1 + log x) + 2cosec x + log tan x

162. (x tan x)secx

(a) sec x (x tan x)x [ 1x

+ tan x log (x tan x) + 2cosec x]

(b) sec x (x tan x) [ 1x

+ tan (log (tan x)) + 2cosec 2x]

(c) sec x (x tan x) [x + tan x + 2cosec 2x]

(d) sec x (x tan x)sec x [ 1x

+ tan x · log (x tan x) + 2cosec 2x]

163. (sin )logxx

x

1 2+

(a) sin (log ) log sin( )

x x xx

xx

+ −+2

1 2 2

(b) loglog sin

xx

xxx

+ −+2

1 2

(c) (sin ) cot log

log sinlogxx

x xx

xxx

x

12

12 2++ −

+

(d) cot (log ) log sinx x xx

xx

+ −+2

1 2

164. (sec )21

x x

(a) 2 2 1

2(sec ) [ tan log sec ]

/xx

x x xx

(b) 2 sec [ tan log sec ]xx

x x x−

(c) 2 2

2tan [ tan log cos ]xx

x x x−

(d) − −2 2 1

2(sec ) [ tan log sec ]

/xx

x x xx

165. ( ) ( ) ( )x x x+ ⋅ + ⋅ −1 2 3 7 332

52

72

(a) ( ) ( ) ( )

( ) ( )

/ / /x x x

x x x

+ + −

++

++

1 2 3 7 33

2 15

2 321

2 7 3

1 2 3 2 7 2

(b) ( ) ( ) ( )

( ) ( )

/ / /x x x

x x x

+ + −

++

+−

1 2 3 7 33

15

2 321

2 7 3

5 2 3 2 9 2

18 Objective MHT-CET Mathematics

(c) ( ) ( ) ( )

( ) ( )

/ / /x x x

x x x

+ + −

++

+−

1 2 3 7 33

2 15

2 321

2 7 3

3 2 5 2 7 2

(d) ( )( )

/7 3 32 1

52 3

7 2−+

++

xx x

166. (tanx)sinx

(a) (sin x)tan x [cosec x + (cos x) (log tan x)](b) (tan x)sin x [sec x + (cos x) log tan x](c) (tan x)cos x [sec x + (sin x) (log tan x)](d) (tan x)sin x [tan x + (cos x) (log sec x)]

167. xx + ax + xa + aa

(a) (1 + log x) + (ax log a + axa–1)(b) xx(1 + log x) + log a + axa–1

(c) xx(1 + log x) + xa log x + axa–1

(d) xx(1 + log x) + ax log a + axa–1

168. (logx)x – xlogx

(a) (log )log

log(log ) loglogxx

x x xx

x x1 2+

(b) (log )log

log(log )loglogx

xx x

xx

x x1 2−

+

(c) (log )log

log(log )log

xx

xx

xx 1 2

+

+

(d) (log ) [log(log )]loglogx x x

xx

x x−

2

169. xx

(a) xx(1 + log x) (b) xx(1 – log x)(c) –xx(1 + log x) (d) xx log x

170. 22 42+

− ⋅ +xx x( )

(a) 22

4 12

12 4

22

+−

++

+−

++

xx

xx x

xx

( )

(b) 22

4 12 2

12 2

24

22

+−

++

+−

++

xx

xx x

xx

( )( ) ( )

(c) 22

4 12 2

12 2

24

22

+−

++

−−

−+

xx

xx x

xx

( )( ) ( )

(d) 22

4 12

12 4

22

+−

++

−−

−+

xx

xx x

xx

( )

171. (1 + x)x

(a) ( ) log( )11

1++

− +

x xx

xx

(b) ( ) log( )11

1 2++

+ +

x xx

xx

(c) ( ) log( )11

1++

+ +

x xx

xx

(d) ( ) log( )11

1 2++

− +

x xx

xx

172. x

x x

xcos

2 4 5+ +

(a) x

x xx

xx x x

x x

xcos cos (sin )(log )2 24 52 4

4 5+ +− − +

+ +

(b) x

x x

xx

x x x

x x

xsin sin (cos )(log )2 24 5

2 4

4 5+ +− − +

+ +

(c) x

x x

xx

x x x

x x

xcos cos (sin )(log )2 24 5

2 4

4 5+ ++ + +

+ +

(d) x

x xx

xx x x

x x

xsin sin (cos )(log )2 24 52 4

4 5+ ++ + +

+ +

173. ex sin x+ xlog x

(a) e x x x xx

xx x xsin log( sin cos )

log+ +

2

(b) e x x x xx

xx x xsin log( sin cos )

log− +

2

(c) e x x x xx

xx x xsin log( cos sin )

log− +

2

(d) e x x x xx

xx x xsin log( cos sin )

log+ +

2

174. x xx xsin (sin )−

+ −1 1

(a) x xx

x

x

xsin sin log− −+

1 1

21

+− ⋅

+

−−

−(sin )sin

log(sin )12 1

1

1x x

x xxx

(b) x xx

x

xx

x

xx

x xsin sin log(sin )

log(sin )

− −−

−−

+

−−

1 1

21

21

1

1

(c) x xx

x

xx

x

xx

x xsin sin log(sin )

log(sin

− −−

+−

−+

1 1

21

21

1

2 1))

(d) x xx

x

xx

xx

x xsin cos log(sin )

sinlog(sin

− −−

−−

+−

+

1 1

21

11

1

xx)

19Differentiation

175. 1010x

x

.

(a) − + ⋅

10 10 10 1 1010 10x x

x xx

xxlog log log

(b) 10 10 1 1010x xx

xx

log log log+ ⋅

(c) 10 10 10 1 1010 10x xxx

xx x

log log log+ ⋅

(d) 10 10 10 1 1010x x

x

xxlog log log+ ⋅

176. (sin )cosx x−1

(a) (sin ) (sin )(cot )log sincosx x x

x

x

x− − −−

1 121

(b) (sin ) (cos )(cot ) log sincosx x x xx− − −{ }1 1

(c) (sin ) (sin )( )log sincosx x x

x

x

x− − −−

1 121

cosec

(d) (sin ) (cos )(cot )log sincosx x x

x

x

x− − −−

1 121

177. (xx)x

(a) x(x x)x (1 + 2 logx) (b) (x x)x (1 – 2 logx)(c) (x x)x (1 + 2 logx) (d) x(x x)x (1 – 2 logx)

178. xx + x1/x

(a) x x xx

xx x( log )

( log )/111

2+ ++

(b) x x xx

xx x( log )

( log )/111

2+ +−

(c) x x xx

xx x( log )

( log )/111

2+ −−

(d) − + −−

x x xx

xx x( log )

( log )/111

2

179. (x cos x)x + (x sin x)1/x

(a) ( cos ) cos sincos

( sin ) sin cossin

/

x x x x xx

x x x x xx x

x

x

+ +

12

(b) ( cos ) {log( cos )} ( sin )log( sin )

/x x x x x xx x

x

x x+

1

2

(c) ( cos ) cos sincos

( sin )

sin cossin

/x x x x xx

x x

x x xx x

x x+

+

1

2

(d) ( cos ) cos sincos

log( cos )x x x x xx

x xx − +

+ + −

( sin ) sin cossin

log( sin )x x x x x

x x

x x

xx1

2 2

180. y e e ee x eex ex xx

= + + .

(a) e e e e x ex

x

e e x x

x e e x e x

e x x

x e x x ex

xx x

+ +

+ +

1

1

log

( log )

(b) e e e e x ex

xx e e x e xx e x x ex

− +

1 log

(c) e e e e e x xx e e e x xx e x xx x− +( )1 log

(d) e e xx

x e e x xx x e e x xe x x xx x1 1+

+ +log ( log )

181. (sin x)cosx – x1/x

(a) (sin ) (cos cot sin log(sin ))

log

cosx x x x x

xx

x

x

x

−−

1

21

(b) (sin ) (cos sin )logcosx x x x

x

xx x− −

1

21

(c) (sin ) (sin )(log(sin ))logcosx x x x

x

xx x−

1

21

(d) none of these

182. x xx( )2 32

1+

+

(a) x xx x

xx x

( )2

22

11

26

21

1+

++

+−

+

(b) x x

x xx

x x( )2 3

22

11

26

21

1+

++

+−

+

(c) x xx x

xx x

( ) /2 3 2

22

11

26

21

1++

++

++

(d) ( )x

x xx

x x

2 3

221

12

62

11

++

++

−+

183. (2x + 3)x–5

(a) ( ) ( ) log( )2 3 2 52 3

2 35x xx

xx+ −+

+ +

(b) (2x + 3)x – 5 [2(x – 5) + log (2x + 3)]

(c) (2x + 3)x – 5[(x – 5) + log (2x + 3)]

(d) ( ) log( )2 3 52 3

2 35x xx

xx+ −+

+ +

20 Objective MHT-CET Mathematics

184. If x = ex/y, then find dydx

.

(a) −+( )

logx y

x x (b) −−( )

logx y

x x

(c) ( )

logx y

x x+

(d) x y

x x−

log185. Differentiate w.r.t. x : x2ex sinx

(a) x e xx

xx2 2 1sin cot− −

(b) x e xx

xx2 2 1sin cot+ +

(c) xe xx

xx sin cot1 +

(d) xe xx

xx sin cot1 1+ +

186. If findy x xx

dydx= +

−( )

( ), .

/

/4

4 3

3 2

4 3

(a) x xx x x x( )

( ) ( ) ( )

/

/+

−⋅ +

+−

44 3

12

32 4

163 4 3

3 2

4 3

(b) – x xx x x x( )

( ) ( ) ( )

/

/+

−⋅ +

+−

44 3

12

32 4

163 4 3

3 2

4 3

(c) x x

x x x x( )

( )

/

/+

−−

+−

44 3

12

34

164 3

3 2

4 3

(d) none of these

187. Differentiate x xx sin−1 w.r.t. x.

(a) ( sin )( log )x x x x

x x

xx

− − +−

12

1

(b) ( sin )( log )( )

x x x x

x x

xx

− − +−

12

12

(c) ( sin )( log )( )

x x x x

x x

xx

− + +−

12

12

(d) ( sin )( log )( )

− + −−

−x x x x

x x

xx

12

12

Direction (188 to 200) : Find dydx

.

188. If y = (x)cosx + (cosx)sinx

(a) ( ) cos (log )sincosx xx

x xx ⋅ −

+ ⋅ − + ⋅(cos ) { sin tan cos log(cos )}sinx x x x xx

(b) ( ) cos (log ) cos

(cos ) {cos (log cos )}

cos

sin

x xx

x x

x x x

x

x

⋅ −

+

(c) ( ) cos (log )sin

(cos ) { sin tan }

cos

sin

x xx

x x

x x x

x

x

⋅ −

+ −(d) none of these

189. y = xx · e(2x+5)

(a) xx e2x + 5 (b) xx e2x + 5(3 – logx)

(c) xx e2x + 5(1 – logx) (d) xx e2x + 5·(3 + logx)

190. y x xex=

3 sin

(a) x xe x

xx

3 3 1sin cot− +

(b) x x

e xxx

sin cot3 1+ −

(c) x xe x

xx

3 3 1sin cot+ −

(d) x x

e xxx

3 1 1sin cot+ −

191. y = (2 – x)3(3 + 2x)5

(a) ( ) ( )2 3 2 153 2

82

3 5− ++

−−

x xx x

(b) ( ) ( )2 3 2 153 2

32

3 5− ++

+−

x xx x

(c) ( ) ( )2 3 2 103 2

32

3 5− ++

−−

x xx x

(d) ( ) ( )2 3 2 103 2

32

3 5− + ⋅+

+−

x xx x

192. y = x sin2x

(a) x xx

x xxsin sin ( cos ) log2 2 2 2⋅ +

(b) x xx

x xxsin cos ( sin ) log2 2 2 2⋅ +

(c) x xx

x xxsin sin ( cos ) log2 2 2 2⋅ −

(d) x xx

x xxsin cos ( sin ) log2 2 2 2⋅ −

193. y x x x= ( )

(a) x x x x x xx x x xx( ) ( )[ (log ) (log ) ]⋅ + +−1 2

(b) x x x xx xx( ) ( )[ log (log ) ]− + +1 2

(c) x x x x xx x xx( ) ( )[ log (log ) ]− + +1 2

(d) x x x x x xx x x xx( ) ( )[ log (log ) ]− + −1 2

21Differentiation

194. y = (tan x)1/x

(a) (tan )sin log(tan )

xx x x

xx1

22 2 −

(b) (tan )cot log(tan )

xx x x

xx1

22 2 −

(c) (tan )log(tan )

xx x x

xx1

22 2cosec +

(d) (tan )log(tan )

xx x x

xx1

22 2cosec −

195. y x xx

= ++

( )3 51

2

(a) x x

x x x x( )3 5

11

26

3 51

1

2++

−+

−+

(b) x x

x x x x( )

( ) ( )3 5

11

26

3 51

2 1

2++

⋅ ++

−+

(c) x xx x x x

( )( )

3 51

1 63 5

12 1

2++

−+

−+

(d) x x

x x x x( )3 5

11 6

3 51

1

2++

++

−+

196. y = esinx + (tan x)x

(a) esinxcosx + (tanx)x[2x cosec2x + log tanx](b) esinxcosx – (tanx)x[x cosec2x + log cotx](c) esinxcosx + (tanx)x[x cosec2x + log sinx](d) esinxcosx – (tanx)x[2x cosec2x + log secx]

197. y = (sinx)logx

(a) (sin ) (log )log sinlogx x x

xx

x ⋅ +

cosec2

(b) (sin ) (log ) cot(log sin )logx x x

xx

x ⋅ −

(c) (sin ) (log ) cot(log sin )logx x x

xx

x ⋅ +

(d) (sin ) (log ) coslog sinlogx x x

xx

x ⋅ −

ec2

198. yx

x= 5

5

(a) 5 55

x

xlog (b)

5 5 55

x

x xlog −

(c) 5 5

5

x

x xlog

(d) − −

5 5 55

x

x xlog

199. y x xx

x x= + +−

cos2

211

(a) xxcosx ·{cosx – xsinx (logx) + cosx(logx)}

−−

412 2

xx( )

(b) xxcosx ·{sinx – xcosx (logx) + sinx(logx)}

−−

412 2

xx( )

(c) xxcosx ·{cosx + xsinx (logx) – cosx(logx)}

−−

412 2

xx( )

(d) xxcosx·{sinx + xcosx logx – sinx(logx)}

200. y x x=

(a) x x

x

x ( log )22

− (b) x

xx

x ( log )12−

(c) x x

x

x ( log )22

+ (d) x

xx

x 12+

log

2.5 Derivative of Implicit Functions

Direction (201 to 235) : Find dydx in each of the

following.

201. x2 + siny = y2 + log (x + y)

(a) 1 2

2 1− +

+ − + −x x y

x y y y x y( )

( ) cos ( )

(b) 1 2

2 1+ +

+ − + +x x y

x y y y x y( )

( ) cos ( )

(c) 1

2 1− +

+ − + −x x y

x y y y x y( )

( )sin ( )

(d) 1

1+ +

+ − + −x x y

x y y y x y( )

( ) cos ( )

202. cos− −+

=1

2 2

2 2x yx y

a

(a) −yx

(b) yx

(c) xy

(d) − xy

203. 1 12 2− + − = −x y a x y( )

(a) 11

2

2−−

xy

(b) 11

−−

yx

(c) 11

−−

xy

(d) 1

1

2

2−−

y

x

204. x3 + y3 + 4x3y = 0

(a) 3 1 4

3 4

2

2 3x y

y x

( )++

(b) −−

−3 1 4

3 4

2

2 3x y

y x

( )

(c) −+

+3 1 4

3 4

2

2 3x y

y x

( ) (d) −

++

3 1

3 4

2

2 3x y

y x

( )

22 Objective MHT-CET Mathematics

205. x3 + x2y + xy2 + y2 = 81

(a) ( )3 2

2 3

2 2

2 2x xy y

x xy y

+ ++ +

(b) − + +

+ +( )3 2

2 3

2 2

2 2x xy y

x xy y

(c) ( )3 2

2 3

2 2

2 2x xy y

x xy y

+ −− +

(d) 3

3

2 2

2 2x xy y

x xy y

+ ++ +

206. xy = yx

(a) log

log

y yx

x xy

− (b)

log

log

x yx

y xy

(c) log

log

y xy

x yx

− (d)

log

log

y yx

x xy

+

+

207. sec x yx y a+

= 2

(a) −yx (b)

yx

(c) − xy (d)

xy

208. sin tan ( )− −−+

=1

2 2

2 21x y

x ya

(a) yx

(b) −yx

(c) xy

(d) − xy

209. log10

3 3

3 3 2x yx y

−+

=

(a) 99101

2

2xy

(b) 10199

2

2xy

(c) − 99101

2

2xy

(d) − 10199

2

2yx

210. xy = ex – y

(a) x y

x−

+( log )1 (b)

x yx

++( log )1

(c) x y

x x−

+( log )1 (d)

x yx x

++( log )1

211. x3 + y3 = 3ax2y

(a) − −

−x ay x

y ax

( )22 2 (b)

x ay x

y ax

( )22 2

++

(c) x ay x

y x

( )−−2 2 (d)

x ay x

y ax

( )22 2

−−

212. y3 – 3y2x = x3 + 3x2y

(a) x xy yx xy y

2 2

2 222

+ ++ −

(b) − + ++ −

x xy yx xy y

2 2

2 222

(c) x xy yx xy y

2 2

2 2+ ++ −

(d) − + ++ −

x xy yx xy y

2 2

2 2

213. x = cos(xy)

(a) −+

1 y xyx xy

sinsin

(b) 1 +

y xyx xy

sinsin

(c) 1 − y xy

xysin

sin (d) 1 + y xy

xysin

sin214. esiny = xy

(a) −

−y

x y y( cos )1 (b) y

y ycos − 1

(c) y

y ycos + 1 (d) y

x y y( cos )− 1

215. tan− −+

=1

2 2

2 2 2x yx y

k

(a) − xy (b)

yx

(c) xy (d) −

yx

216. y = kx + y

(a) −−

y ky klog

log1 (b) log

logk

y k1 −

(c) −−

loglogk

y k1 (d) y k

y klog

log1 −217. x + y = sin(xy)

(a) y xy

x xycos( )

cos( )−

−1

1 (b) −

−−

y xyx xy

(cos )cos( )

11

(c) −−

y xyx xycoscos( )1

(d) y xyx xycoscos( )1 −

218. x2 + y2 = ex + y

(a) −+ −− −

( )x y x

y x y

2 2

2 22

2 (b) x y x

y x y

2 2

2 22

2

+ −− −

(c) x y x

y x y

2 2

2 22

2

+ ++ +

(d) x y x

y x y

2 2

2 22

2

+ +− +

219. y x xx

=∞

( )...

(a) −

−y

x y x

2

2( log ) (b) yy x

2

2 + log

(c) y

x y x

2

2( log )+ (d) y

x y x

2

2( log )−

220. x y axy3 3 2+ =

(a) − −−

8 33 8

2 2 2

2 2 2a xy xy a x y

(b) 8 3

3 8

2 2 2 2

2 2 2a x y x

y a x

−−

(c) 8 3

3 8

2 2 2

2 2 2a xy x

y a x y

−−

(d) −−

+( )8 3

3 8

2 2 2 2

2 2 2a x y x

y a x y

23Differentiation

221. xy = ex + y

(a) log

( log )

x

x

−− +

2

1 2 (b) −+

log

( log )

x

x1 2

(c) log

( log )

y

x1 2+ (d)

−+

log

( log )

y

x1 2

222. (cosx)y = (cosy)x

(a) − +

+(log cos tan )log cos tan

y y xx x y

(b) log cos tanlog cos tan

x x yy y x

++

(c) log cos tanlog cos tan

y y xx x y

++

(d) − ++

log cos tanlog cos tan

x x yy y x

223. y x y= +

(a) −

−1

2 1y (b) 1

2 1y −

(c) −+1

2 1y (d) 1

2 1y +

224. xy + yx = ab

(a) − +

+

−{ . (log )}{ (log ) }

( )

( )y x y y

x x x y

y x

y x

1

1

(b) y x y yx x x y

y x

y x. (log )

(log )

( )

( )

−+

+

1

1

(c) y x y y

x x x y

y x

y x+

+

(log )

(log )

(d) − +

+

{ (log )}

(log )

y x y y

x x x y

y x

y x

225. (x2 + y2)2 = xy

(a) − −

−y

xx y

x y

( )

( )

3

3

2 2

2 2 (b) xy

x y

x y

( )

( )

3

3

2 2

2 2−

(c) y x y

x x y

( )

( )

3

3

2 2

2 2−

− (d)

− −−

xy

x y

x y

( )3

3

2 2

2 2

226. xy = yx2

(a) − −

−y

xx y yy x x

( log )( log )

(b) xy

x y yy x x

( log )( log )

−−

(c) − −

−x

yx y yy x x

( log )( log )

(d) yx

x y yy x x

( log )( log )2 2

2−

227. sin( )xy xy x y+ = −2

(a) 2 2 3

2 2xy y y xy

xy xy x y

− −− +

cos( )

cos( )

(b) −− −

− +2 2 3

2 2xy y y xy

xy xy x y

cos( )

cos( )

(c) 2 2 3

2xy y y xy

xy xy x y

− +− +

cos( )

cos

(d) − − +

− +( cos )

cos2 2 3

2xy y y xy

xy xy x y228. xy2 – x2y = 4

(a) −−−

2

2

2

2xy y

xy x (b) −

−−

2

2

2

2xy x

xy y

(c) 2

2

2

2xy x

xy y

−−

(d) 2

2

2

2xy y

xy x

−−

229. 2x2 –3xy + 4y2 = 8

(a) 4 33 8

x yx y

−−

(b) 3 84 3

x yx y

−−

(c) −−−

4 33 8

x yx y

(d) 3 48 3

x yx y

−−

230. sec(x + y) = xy

(a) −− + +

+ + −

y x y x yx y x y xsec( )tan( )

sec( )tan( )

(b) y x y x y

x y x y x− + +

+ + −sec( )tan( )

sec( )tan( )

(c) y x y x yx x y x y

+ + +− + +

sec( )tan( )sec( )tan( )

(d) y x y

x y x

+ ++ −

tan ( )

tan ( )

2

2

231. x3 + y3 = 3 axy

(a) −−−

ay x

y ax

2

2 (b)

y ax

ay x

2

2−−

(c) ay x

y ax

−−

2

2 (d) −−−

y ax

ay x

2

2

232. sin2 x + cos2y = 1

(a) sinsin

22

yx

(b) − sinsin

22

xy

(c) −sinsin

22

yx

(d) sinsin

22

xy

233. log( ) tanx y xy

2 2 12+ =

(a) y xy x

−+

(b) −−+

y xy x

(c) y xy x

+−

(d) −+−

y xy x

24 Objective MHT-CET Mathematics

234. y = x sin y

(a) −−

sin( cos )

yx y1

(b) sin

( cos )x

x y1−

(c) sin

( cos )y

x y1− (d)

−−

sin( cos )

xx y1

235. y xx

xx

=+

+ + ∞

sincos

sincos ...

11 1 to

(a) −+ +

+ + −( )cos sin

cos sin1

1 2y x y xy x x

(b) ( )cos sin

cos sin1

1 2+ +

+ + −y x y xy x x

(c) sin

( cos )y

x y1−

(d) −−

sin( cos )

xx y1

2.6 Derivative of Parametric Functions

236. Find dydx , if x = sin(log t), y = log (sin t)

(a) t t

tcot

cos(log ) (b) − t t

tcot

cos(log )

(c) −t t

tcosec2

cos(log ) (d) −t t t

tcos cotcos(log )

ec

237. If x = a sec3q and y = a tan3q, find dydx at q p= 3

(a) 12 (b) 3

2

(c) −12

(d) − 3

2238. Differentiate log (1 + x2) w.r.t. tan–1 x

(a) – 2x (b) 1

1 2+ x

(c) 2x (d) 2

1 2xx+

239. Find dydx , if x e e y e em m m m

= − = +− −

2 2,

(a) xy

(b) − xy

(c) yx

(d) −yx

240. If xt

ty

t=

+

=+

− −sin , cos ,12

121

1

1

then find dydx

(a) – 1 (b) 0

(c) 1 (d) 12

241. Find dydx , if x = a(q – sinq), y = a(1 – cosq)

(a) − cot q2

(b) cosec2 q2

(c) −cosec2 q2

(d) cot q2

242. Find dydx , if x u y u= + = +1 12 2, log( )

(a) 2

1 2+ u (b)

+

2

1 2u

(c) 1

1 2+ u (d)

21 2

uu+

243. Find dydx , if x = q – sinq, y = 1 – cosq, at q p= 2 .

(a) 1 (b) 0

(c) – 1 (d) 12

244. Find dydx , if x = 2 cos t + cos 2t, y = 2 sin t – sin 2t, at

t = p4 .

(a) 2 1− (b) 1 2+

(c) 1 2− (d) 12

245. Find dydx , if y = log(secq + tan q), x = secq, at q p= 4 .

(a) 1 (b) – 1

(c) 12

(d) 2

246. If x a t ty a t t

= −

= +

1 1, , then find dydx

(a) − xy

(b) xy

(c) yx

(d) −yx

247. If x = esin3t, y = ecos 3t, then find dydx

(a) y xx y

loglog

(b) −y xx y

loglog

(c) x xy y

loglog

(d) −x xy y

loglog

248. Differentiate 5x w.r.t. log5x.(a) 5x ⋅ x ⋅ (log 5)2 (b) 5x log 5(c) – 5x ⋅ x ⋅ (log 5)2 (d) 5x ⋅ x ⋅ log 5

249. Differentiate cos–1(sinx) w.r.t. tan–1x.(a) 1 + x2 (b) x2 – 1(c) –(1 + x2) (d) 1 – x2

25Differentiation

250. Find dydx , if x = asec3t, y = b tan2t

(a) − 23

ba tsec

(b) 3

2a

b tsec

(c) − 32

ab tsec

(d) 2

3b

a tsec

251. Find dydx , if x y=

= −−

− −tan , tan12

13

22

131 3

qq

q qq

(a) 32

(b) − 32

(c) 23

(d) − 23

252. Find dudv , if u x

xv x

x= −

+

=−

− −cos , tan12

21

211

21

(a) – 1 (b) 1(c) 0 (d) 2

253. Differentiate cos− −+

12

211

xx

w.r.t. tan–1 x

(a) – 2 (b) 1(c) 2 (d) 0

254. Differentiate tanx w.r.t. sin x.(a) sec2 x (b) sec x tan x(c) – sec3 x (d) sec3 x

255. If x = t log t, y = tt, then find dydx

(a) ex (b) – ex

(c) e–x (d) ex + 1

256. Find dydx at q p= 4 , if x = sin2q, y = tan q.

(a) 2 (b) 12

(c) 2 (d) – 2257. Differentiate x5 w.r.t. 5x

(a) −⋅

55 5

4xx log

(b) 5 5

5 4

x

x

⋅ log

(c) −⋅5 5

5 4

x

x

log (d)

55 5

4xx ⋅ log

258. Find dydx , if x = cos–1(4t3 – 3t), y t

t= −

−tan 1 21

(a) 13

(b) − 13

(c) 1 (d) – 1

259. Find the derivative of sec−

121

2 1x w.r.t. 1 2− x

at x = 12 .

(a) – 4 (b) 14

(c) 4 (d) − 14

260. If x = ecos2t and y = esin2t, then find dydx .

(a) y xx y

loglog

(b) x xy y

loglog

(c) −y xx y

loglog (d) −

x xy y

loglog

261. If x tt

= −+

11

2

2 and y tt

=+2

1 2 , then find dydx .

(a) − xy

(b) xy

(c) yx

(d) −yx

262. Find dydx when x = a (q – sin q), y = a (1+ cos q).

(a) tan q2 (b) cot q

2

(c) − tan q2

(d) − cot q2

263. Differentiate sin2(q2 + 1) w.r.t. q2.

(a) – sin(2q2 + 2) (b) sin(2q2 + 2)(c) cos(2q2 + 2) (d) – cos(2q2 + 2)

264. Find dydx at t = 2 when x bt

t=

+2

1 2 and y a tt

= −+

( ) .11

2

2

(a) 43

ab

(b) − 43

ab

(c) 34ba

(d) − 34ba

265. Find dydx

when x e y e= +

= −

−q qq q q q1 1,

(a) e− − − −

+ + −

2 3 2

3 21

1

q q q qq q q

( )(b)

e2 3 2

3 21

1

q q q qq q q( )− + + +

+ + −

(c) e− − + + +

+ + −

2 3 2

3 21

1

q q q qq q q( )

(d) e2 3 2

3 21

1

q q q qq q q( )− − −

+ + −

266. Find dydx

when x = a tan q, y = a cot q

(a) −yx

(b) yx

(c) xy

(d) − xy

267. Differentiate sinx3 w.r.t. x3

(a) – cos x3 (b) cos x3

(c) 3x cos x3 (d) – 3x2 cos x3

26 Objective MHT-CET Mathematics

268. If x = 3 cos t – 2 cos3 t and y = 3 sin t – 2 sin3t, then

find dydx .

(a) cot t (b) tan t(c) – cot t (d) – tan t

269. Differentiate xx xsin sinw.r.t. .

(a) x x

x− tansin2 (b)

x xx

+ tansin2

(c) x xx

− cotsin2 (d) tan

sinx x

x−

2

270. Differentiate sin–1 x w.r.t. tan–1x.

(a) 1

1

2

2

+

x

x (b) − +

( )1

1

2

2

x

x

(c) x

x

2

2

1

1

− (d)

1

1 2

+

x

x

271. If x a tt

= +−

11

2

2 and y t

t=

−2

1 2( ), find dy

dx .

(a) 12

2+ tat

(b) − +( )12

2tat

(c) tat

2 12

− (d) 2

1 2att+

272. If a > 0, x t t

a= +

1 and y at t=+( )1

, find dydx .

(a) a at

t+ −

1 1log (b) −

+

+ −

−a a

tt

tt

a

1 1

11

log

(c) a a

tt

tt

a

+ −

−⋅

+

1 1

11

log( ) (d)

log a

tt

a+

−1 1

273. Differentiate ex w.r.t. x .

(a) −2e xx (b) −e xx

(c) e xx (d) 2e xx

274. If x tt

y tt= + = +1 3 2

2log log ,and then find dy

dx .

(a) t (b) – t

(c) 1t

(d) − 1t

275. Find dydx , when x = at2, y = 2at

(a) − 1t

(b) 1t

(c) t (d) –t

276. If x tt

y tt

dydx= =sin

cos, cos

cos, .

3 3

2 2find

(a) cot 3t (b) tan 3t(c) – cot 3t (d) – tan 3t

277. Find dydx , when x

ty t

t=

+=

+− −cos , sin1

21

2

1

1 1(a) – 1 (b) 1

(c) 0 (d) 12

278. Find dydx , when x = a log t, y = b sin t

(a) bt tacos (b)

−bt tacos

(c) abt tcos

(d) −a

bt tcos

279. Find dydx , when x = eq (sin q + cos q), y = eq (sin q – cos q)

(a) – tan q (b) cot q(c) – cot q (d) tan q

280. Find dydx , when x = a cos q and y = b sin q

(a) − ba

cot q (b) ba

cot q

(c) ba

tanq (d) ab

cot q

281. If x = 2 cos q – cos 2 q and y = 2 sin q – sin 2 q, then

find dydx

(a) cot 32q

(b) −

tan 3

2q

(c) tan 32q

(d) −

cot 3

2q

282. If x a t t= +

1 and y a t t= −

1 , then find dydx

(a) − xy

(b) xy

(c) yx

(d) −yx

283. Find dydx , when x a t t= +{ }cos log tan1

2 22

and y = a sin t(a) cot t (b) – tan t(c) – cot t (d) tan t

27Differentiation

284. Find dydx , when x e y e= −

= +

−q qq q q q1 1and

(a) e23 2

2 31

1q q q q

q q q

+ + −

− + +

(b) e2

2 3

3 211

q q q qq q q

+ − −+ + +

(c) e− − − −+ + −

23 2

3 211

q q q qq q q

( ) (d) e− − + +

+ + −2

2 3

3 211

q q q qq q q

( )( )

285. Find dydx , when x = b sin2q and y = a cos2q

(a) − ab

(b) ab

(c) ba

(d) − ba

286. Find dydx when x = a (q – sin q) and y = a(1 – cos q)

(a) − cot q2

(b) cot q2

(c) tan q2

(d) − tan q2

287. Find dydx , when x t y t= =4 4,

(a) 12t

(b) t2

(c) − 12t

(d) – t2

288. If x = e–cos2t and y = e–sin2t, then dydx =

(a) y xx y

loglog (b) −

y xx y

loglog

(c) y yx x

loglog

(d) −y yx x

loglog

289. Find dydx , when x = log t, y = sin t

(a) t cost (b) cost

t(c)

1t tcos (d) – t cost

290. Find dydx , when x = sin t, y = cos 2t

(a) 4 sint (b) 4sint

(c) – 4 sint (d) sint4

2.7 Higher Order Derivatives (Second Order Derivatives)

Direction (291 to 294) : Find d ydx

2

2 .

291. x3 + 5x2 – 3x + 10(a) 6x + 10 (b) – 6x – 15(c) 6x2 + 10x (d) 3x2 + 10x –3

292. e4x · cos 5x(a) e4x (9 cos 5x + 40 sin 5x) (b) – e4x (40 cos 5x + 9 sin 5x)(c) – e4x (9 cos 5x + 40 sin 5x)(d) e4x (40 cos 5x + 9 sin 5x)

293. y = log xex

2

(a) 22x

(b) − 22x

(c) ex

x

2 (d) x2

2294. y = sec x – tanx

(a) − −

⋅ −

12 4 2 4 2

2sec tanp px x

(b) 12 4 2

2sec p −

x

(c) 12 4 2 4 2

sec tanp p−

⋅ −

x x

(d) 12 4 2 4 2

2sec tanp p−

⋅ −

x x

295. Find d ydx

2

2 , if x = at2, y = 2at

(a) 1

2 3at (b) − 1

2 3at

(c) 1t (d) log t

296. If y = x2ex, then d ydx

2

2

(a) –ex(x2 + 4x) (b) e–x(x2 + 4x)(c) ex(x2 + 4x + 2) (d) ex(2x + 4)

297. If ax2 + 2hxy + by2 = 0, then d ydx

2

2 =

(a) 0 (b) 1(c) – 1 (d) 2

298. Find d ydx

2

2 , if y = cos(log x)

(a) cos(log ) sin(log )x x

x

−2

(b) sin(log ) cos(log )x x

x

−2

(c) cos(log ) sin(log )x xx−

2

(d) sin(log ) cos(log )x xx

−2

28 Objective MHT-CET Mathematics

299. Find d ydx

2

2 , if y = log (1 – cos x)

(a) 12 2

2cosec x

(b) − 1

2 2 2cosec x xcot

(c) −

12 2

2cosec x (d)

12 2 2

cosec x xcot

300. Find d ydx

2

2 , if x = acos3q, y = asin3q

(a) secsin

4

3qqa

(b) sec

sin

2

3qqa

(c) sec

sin

4

3qq

(d) secsin

4 qq

301. If y = emx + e–mx, then d ydx

2

2 =

(a) my (b) my2

(c) m2y (d) m2y2

302. Find d ydx

2

2 , if : x = a (q – sin q), y = a (1 – cosq)

(a) 14 2

4cosec q

(b) −

14 2

4cosec q

(c) −

14 2

2sec q (d) none of these

303. Find d ydx

2

2 , if y = x3 + 4x + 3

(a) – 6x (b) 2x(c) – 2x (d) 6x

304. If x = a(1 + cosq), y = a(q + sinq), then d ydx

2

2 2at q p= is

(a) 0 (b) 1

(c) 1a (d) − 1

a

305. Find d ydx

2

2 , if y = e3x + x3 + 5

(a) 9e3x + 6x (b) 9e3x + x(c) 3e3x + x (d) 3e3x + 6x

306. If y = sin (logx), find d ydx

2

2 .

(a) − +{sin(log ) cos(log )}x x

x2

(b) {sin(log ) cos(log )}x x

x

+2

(c) sin(log )x

x2

(d) − +{sin(log ) cos(log )}x x

x4

307. If y = e4x sin 3x, find d ydx

2

2 .

(a) ex(7 sin 3x + cos 3x)(b) e2x(7 sin 3x + 24 cos 3x)(c) e4x(7 sin 3x + 24 cos 3x)(d) e4x(7 sin x + 24 cos 3x)

308. If y x d ydx

= −tan , find .12

2

(a) 2

1 2xx+

(b) −+2

1 2 2xx( )

(c) 2

1 2 2xx( )+

(d) 2

1 2 2( )+ x

309. If x = a (q + sinq) and y = a (1 – cosq), findd ydx

2

2 at

q p= 2 .

(a) 1a

(b) −1a

(c) – a (d) a

Direction (310-314) : Find d ydx

2

2 .

310. y = x11.(a) – 110 x9 (b) 110 x9

(c) 110 x2 (d) – 110 x8

311. y = (x4 + cot x)(a) 12x + 2 cosec x + cot x(b) 12x2 + 2 cosec2 x cot x(c) 12x2 + cosec2 x cot x(d) x2 + cosec2 x cot x

312. y = x3 log x(a) 5 + 6 log x (b) 5x + 6 log x(c) 5x + 6x log x (d) 5 + 6x log x

313. y = 2 sinx + 3 cos x(a) 2 sin x + 3 cos x (b) – 2 cos x – 3 sin x (c) 2 cos x + 3 sin x (d) – 2 sin x – 3 cos x

314. y = (cosec x + cot x)(a) y2 cosec x (b) y cosec x(c) y cosec2 x (d) y2 cosec2 x

315. If x = a(q – sinq) and y = a(1 – cos q), find d ydx

2

2 at q = p.

(a) 1

4a (b)

a4

(c) − 14a

(d) − a4

29Differentiation

Direction (316-327) : Find d ydx

2

2.

316. y = sin 3x cos 5x.(a) 2 sin x – 32 sin 8x (b) 2 sin 2x + 32 sin x(c) sin 2x – 32 sin 8x (d) 2 sin 2x – 32 sin 8x

317. y = x sin x (a) x sin x – 2 cos x (b) x sin x + 2x cos x(c) sin x + 2 cos x (d) – x sin x + 2 cos x

318. y xx= log

(a) ( log )2 3

3x

x

− (b)

( log )2 32x

x+

(c) 2 3

2log x

x

− (d)

2 3log xx

319. y = e3x sin 4x(a) e3x(24 cos x – 7sin x)(b) e2x(24 cos 4x – 7sin 4x)(c) ex(24 cos 4x – 7sin 4x)(d) e3x(24 cos 4x – 7sin 4x)

320. y = 2x3 + 3x2 + 6(a) 12x – 6 (b) 12x + 6(c) 6x + 12 (d) 12 + 3x

321. xa

yb

2

2

2

2 1− =

(a) ba y

2

2 3 (b) b

a y

4

2 3

(c) −ba y

4

2 3 (d) −b

a y

4

3 2

322. y = |x|3

(a) 6 x (b) 6x(c) 2 x (d) does not exist

323. y2 = ax2 + b

(a) aby2

(b) aby3

(c) a by

3 (d) ab

y

324. y = x

x x2 3 2− +

(a) 21

223 3( ) ( )x x−

+−

(b) 11

113 2( ) ( )x x−

+−

(c) 21

223 3( ) ( )x x−

−+

(d) −−

+−

21

423 3( ) ( )x x

325. y = ax

(a) ax (log a) (b) a2x (log a)2

(c) ax (log a)2 (d) xa log a

326. y = emsin–1x

(a) e mx

mxx

m xsin/( )

−+

1 2

2 2 3 21 1

(b) e mx

mxx

m xsin( )

−+

1

1 12 2 2

(c) e mx

mxx

xsin/( )

−+

1 2

2 2 3 21 1

(d) e mx

mxx

m xsin

1 12−+

327. y cos–1x(a) cosec2y cot y (b) cosec y cot2 y(c) cosec y cot y (d) –cosec2y cot y

328. If x = a(cos t + t sin t) and y = a (sin t – t cos t), findd ydx

2

2 .

(a) −1 2at

t(sec ) (b) 1 3a

t(sec )

(c) 1 3at

t(sec ) (d) 1 3at

ec t(cos )

329. If x = t2 and y = t3, find d ydx

2

2 .

(a) 34t

(b) 34t

(c) 32t

(d) 32t

330. If y = | logex|, find d ydx

2

2 .

(a) 1 0 1 1 1x

xx

xif and if< < − >

(b) 1 0 1 1 12 2x

xx

xif and if< < − >

(c) x, if 0 < x < 1(d) x2, if 0 < x < 1

331. If x = 2 cos t – cos 2t, y = 2 sin t – sin 2t, find d ydx

2

2 at

t = p2

(a) 32

(b) 1

(c) −32

(d) – 1

30 Objective MHT-CET Mathematics

332. If x = a cos q, y = b sin q, then d ydx

2

2 =

(a) −ba y

4

2 3 (b) ba y

2

2 2

(c) b

ay

3

3 (d) ba y

4

2 3

333. If y = x3 log x, then d ydx

4

4 =

(a) −6x

(b) 6x

(c) 1x

(d) −1x

Direction (334-340) : Find the second derivative in each of the following.

334. y = x3 + tan x(a) 6x – 2 sec x – tan2x (b) 6 + 2x sec2x tan x (c) 6x + 2 sec2x (d) 6x + 2 sec2x tan x

335. y = x4 log x(a) x2(5 + 6 log x) (b) 5x2 + log x(c) x2(7 + 12 log x) (d) 7x2 + 3 log x

336. y = log(log x)

(a) − +( log )( log )

12x

x x (b) 1+ log

logx

x x

(c) 12

+ log( log )

xx x

(d) 1− loglog

xx x

337. y = e–x cosx(a) 2ex sin x (b) e–x sin x(c) 2e–x sin x (d) ex sin x

338. y = e6x cos 3x(a) 9ex (3 cos 3x + 4 sin 3x)(b) 9e6x (3 cos 3x – 4 sin 3x)(c) 9e6x (3 cos 3x + 4 sin 3x)(d) 9e2x (3 cos x – 4 sin x)

339. y = xx

(a) yx

x1 1 2+ +

( log ) (b) − + +

yx

x1 1 2( log )

(c) yx

x1 2+

(log ) (d) − +

yx

x1 2(log )

340. ey (x + 1) = 1

(a) −+1

1 2( )x (b) 1

1( )x +

(c) 11 2( )x +

(d) −+11x

341. If y = axn+1 + bx–n, then x d ydx

22

2 =

(a) n(n – 1)y (b) n(n + 1)y(c) ny (d) n2y

342. If x = a cos nt – b sin nt, then d xdt

2

2 =

(a) n2x (b) –n2x(c) –nx (d) nx

343. If y xa bxe

x=

+

log , then x3 y2 =

(a) a xa bx

2 2

2( )+ (b) (1 + x)2

(c) a xbx

2

(d) (1 – y)2

344. If y2 = ax2 + bx + c, then y d ydx

32

2 is(a) a constant (b) a function of x only(c) a function of y only (d) a function of x and y

345. If y = etanx, then (cos2x)y2 = (a) (1 – sin 2x)y1 (b) –(1 + sin 2x)y1

(c) (1 + sin 2x)y1 (d) none of these

346. If x = a sin t – b cos t, y = a cos t + b sin t, then d ydx

2

2 =

(a) x y

y

2 2

3+

(b) yx y

3

2 2+

(c) −+y

x y

3

2 2 (d) − +x yy

2 2

3

347. If log y = tan–1 x, then (1 + x2)y2 =(a) (1 – 2x) y1 (b) (1 + 2x) y1

(c) (2x – 1) y1 (d) 2xy1

348. If y = (sin–1x)2, then (1 – x2)y2 =(a) 2 – xy1 (b) – (2 + xy1)(c) 2 + xy1 (d) xy1

349. If y = 3e2x + 2e3x, then d ydx

2

2 =

(a) 2e2x + 6e3x (b) 12e2x – 6e3x

(c) 12e2x – 18e3x (d) 12e2x + 18e3x

350. If y = x–x, find d ydx

2

2

(a) x xx

x (log )2 1+{ } (b) x xx

x ( log )1 12+ −{ }(c) x x

xx (log )2 1−{ } (d) none of these

31Differentiation

LEVEL - 2

1. If y = log5(log7x), find dydx

(a) 15x xlog . log

(b) −15x xlog . log

(c) 1x xlog

(d) 17x xlog . log

2. If y x x

x x= + +

+ −

log2

2

25

25, find dy

dx

(a) −

+

2

252x (b) 1

252x +

(c) 2

252x + (d) −

+

1

252x

3. If yx x

=+

13 cos cot

,ec

find dydx

(a) −+

coseccosec cot

xx x3

(b) cosec

cosec cotx

x x3 3 +

(c) cosec

cosec cot

2

3

xx x+

(d) −

+cosec

cosec cot

2

3

xx x

4. If y e xx

x= ⋅ −+

log ,3234

3 find

dydx

(a) 3 143 4 3

−− +( )( )x x

(b) 3 143 4 3

+− +( )( )x x

(c) 3 144 3

+− +( )( )x x

(d) 3 144 3

−− +( )( )x x

5. If y = sin2(log(2x + 3)), find dydx

(a) 22 3

2 2 3x

x+

+. sin( log( ))

(b) −+

+22 3

2 2 3x

x. sin( log( ))

(c) 12 3

2 2 3x

x+

+. sin( log( ))

(d) −+

+12 3

2 2 3x

x. sin( log( ))

6. Differentiate ( )2 7 42 53 x x− − w.r.t. x.

(a) − − − −53

2 7 4 4 72 2 3( ) .( )/x x x

(b) 53

2 7 4 4 72 2 3( ) .( )/x x x− − −

(c) 35

2 7 4 4 72 2 3( ) .( )/x x x− − +

(d) − − − −35

2 7 4 4 72 2 5( ) .( )/x x x

7. Differentiate 13 7

17 3x x+

−−

w.r.t. x.

(a) 32

13 7

17 33 2 3 2( ) ( )/ /x x+

+−

(b) −+

−−

12

13 7

17 33 2 3 2( ) ( )/ /x x

(c) 12

13 7

17 33 2 3 2( ) ( )/ /x x+

+−

(d) −+

+−

32

13 7

17 33 2 3 2( ) ( )/ /x x

8. Differentiate sec tansec tan

x xx x

+− w.r.t. x.

(a) − +

+

tan .secp p

4 2 4 22x x

(b) sec24 2p +

x

(c) tan .secp p4 2 4 2

2+

+

x x

(d) sec . tanp p4 2 4 2

+

+

x x

9. If theny x xx x

dydx= −

+ =sec tansec tan ,

(a) − −

tan secp p

4 2 4 22x x

(b) − +( ) +( )tan secp p4 2 4 2

2x x

(c) tan secp p4 2 4 2

2−( ) +( )x x

(d) tan secp p4 2 4 2

2+( ) −( )x x

10. If y = exsin2x + cos2x, then dydx =

(a) (2xcos 2x – sin 2x)exsin2x + cos2x

(b) (2xcos 2x + sin 2x)exsin2x + cos2x

(c) (2cos 2x – xsin 2x)exsin2x + cos2x

(d) (2cos 2x + xsin 2x)exsin2x + cos2x

11. If y e ee e

x x

x x= +−

− , then dydx =

(a) 4

1

2

2 2e

e

x

x( )− (b)

−−

41

2

2 2e

e

x

x( )

(c) 21

2

2 2e

e

x

x( )− (d)

−−

21

2

2 2e

e

x

x( )

32 Objective MHT-CET Mathematics

12. If y a

x

x=

+

cos,

1 2 then dy

dx =

(a) a x a x x

x

xcos [( )(log )(sin ) ]1 2

1

2

23

+ −

+( )(b)

− + −

+( )a x a x x

x

xcos [( )(log )(sin ) ]1 2

1

2

23

(c) a x a x x

x

xcos [( )(log )(sin ) ]1 2

1

2

23

+ +

+( )(d)

− + +

+( )a x a x x

x

xcos [( )(log )(sin ) ]1

1

2

23

13. If f(x) = logx (logx), then f ′(x) at x = e is

(a) 1e (b) 1

(c) e (d) none of these

14. If y

x

x=

+ ( )− ( )

−tancos

cos,1

12

12

then dydx =

(a) 12 (b)

−12

(c) 14 (d)

−14

15. If y x x x x= − + −( )−sin ,1 21 1 then dydx =

(a) −

−+

2

1

1

22 2

x

x x x (b)

−−

1

1

1

22 2x x x

(c) 1

1

1

22 2−+

−x x x (d)

1

1

1

22 2−−

−x x x

16. If y xx

=+

−cos log(log )

,12

21 then

dydx =

(a) −

+2

1 2x x( (log ) ) (b) 2

1 2x x( (log ) )+

(c) −

+1

1 2x x( (log ) ) (d)

11 2x x( (log ) )+

17. If f x xx

( ) cos (log )(log )

= −+

−12

211

, then f ′(e) =

(a) 1 (b) 22e

(c) 2e (d) 1

e

18. If y x a x

x a x= + +

+ −−cot ,1

2 2

2 2 then dy

dx =

(a) −+a

a x2 2 2( ) (b)

aa x2 2 2( )+

(c) −+a

a x

2

2 22( ) (d)

aa x

2

2 22( )+

19. If y xx

xx

=+

+ −+

− −tan cot ,12

141 5

3 22 3

then dydx =

(a) 5

1 252

12 2++

+x x (b)

51 25

212 2+

−+x x

(c) −+

51 25 2x

(d) 51 25 2+ x

20. If y xx x

dydx

x=

+ −=(cos ) ,

1 2 then

(a) y x x x xx x

log(cos ) tan+ + −+ −

2 11 2

(b) y x x x xx x

log(cos ) tan− − −+ −

2 11 2

(c) y x x x xx x

log(cos ) tan+ − −+ −

2 11 2

(d) y x x x xx x

log(cos ) tan− + −+ −

2 11 2

21. If y x xx x= +3 3( ) , then dy

dx =

(a) x x x x xx x3 2 31 3 1( log ) ( log )+ + +

(b) x x x x xx x3 2 31 3 1( log ) ( log )+ + +

(c) x x x x xx x3 2 31 1( log ) ( log )+ + +

(d) x x x x xx x3 2 31 3 3 1( log ) ( log )+ + +

22. If y x xx x= +− −(sin ) ( ) ,cos1 1

then dydx =

(a) (sin ) log sinsin

− −−

−−

1 12 11

x x x

x xx

+ +−

− −x

xx

x

xxcos cos log1 1

21

(b) (sin ) log sinsin

− −−

+−

1 12 11

x x x

x xx

+ +−

− −x

xx

x

xxcos cos log1 1

21

(c) (sin ) log sinsin

− −−

+−

1 12 11

x x x

x xx

+ −−

− −x

xx

x

xxcos cos log1 1

21

(d) (sin ) log sinsin

− −−

−−

1 12 11

x x x

x xx

+ −−

− −x

xx

x

xxcos cos log1 1

21

33Differentiation

23. Differentiate ( )( )x xx x− +

+ +3 4

3 4 5

2

2 w.r.t. x.

(a) 12

3 4

3 4 5

2

2( )( )x x

x x

− +

+ +

1

32

46 4

3 4 52 2xx

xx

x x−+

+− +

+ +

(b) −− +

+ +12

3 4

3 4 5

2

2( )( )x x

x x1

3 46 4

3 4 52 2xx

xx

x x−+

++ +

− −

(c) 12

3 4

3 4 5

2

2( )( )x x

x x

− +

+ +

1

32

46 4

3 4 52 2xx

xx

x x−+

+− +

− −

(d) 12

3 4

3 4 5

2

2( )x x

x x

− +

+ +1

32

46 4

3 4 52 2xx

xx

x x−−

++ +

+ +

24. If x a y a dydx

t t= = =− −sin cos,

1 1 then

(a) yx

(b) xy

(c) − yx (d) − x

y

25. Differentiate tan− + −

1 21 1xx

w.r.t.

cos .− + +

+

1 2

2

1 1

2 1

x

x(a) 1 (b) tan x

2

(c) –1 (d) 0

26. If y = Aemx + Benx, then y2 =(a) mAemx + nBenx (b) m2Aemx + n2Benx

(c) m2emx + n2enx (d) –m2Aemx – n2Benx

27. Find dydx if x t

ty t

t= =sin

cos, cos

cos

3 3

2 2.

(a) cot 3t (b) tan 3t(c) –cot 3t (d) –tan 3t

28. If x = f(t), y = g(t) and x, y are differential functions of

t, then d ydx

2

2 =

(a) g t f t f t g tf t

″( ⋅ ′( − ″( ⋅ ′′(

) ) ) ( )[ )]2

(b) g t f t g t f tf t

″( ⋅ ′( − ′( ⋅ ″′(

) ) ) ( )[ )]3

(c) g t f t f t g tf t

′( ⋅ ″( − ′( ⋅ ″(′(

) ) ) ))

(d) f t g t g t f tf t

″( ⋅ ′( − ″( ⋅ ′(′(

) ) ) )[ )]3

29. The derivative of (logx)x w.r.t. log x is

(a) x x x xx(log ) log log(log )1 +

(b) (logx)x (log x + x)(c) x[1 + log (log x)] (d) (logx)x[1 + log (logx)]

30. The derivative of log10x w.r.t. logx 10 is

(a) − (log )(log )

x 2

210 (b)

(log )(log )

x 1010

2

2

(c) 1 (d) (log )log

x 2

210

31. Differentiate ( cos ) ( sin )x x x xx x+1

w.r.t. x.(a) (x cosx)x [sec x (cos x – x sin x) + log (x cos x)]

+

( sin ) /x x

x

x

2

1 [cosec x (x cos x + sin x)

– log (x sin x)](b) (x cosx)x [sec x (cos x + x sin x) + log (x cos x)]

+( sin ) /x x

x

x1

2 [cosec x (x cos x + sin x) – log (x sin x)](c) (x cosx)x [cos x + x sin x) + log (x cos x)]

+( sin ) /x x

x

x1

2 [(x cos x – sin x) – log (x sin x)]

(d) ( cos ) [log( cos )] ( sin ) /x x x x x x

xx

x+ ×

1

2[log (x sin x)]

32. If y = e2cos–1(3x), then ( )1 9 22

2− =x d ydx

(a) 36 9y x dydx

− (b) 9 36x dydx

y+

(c) 36 9x dydx

y+ (d) 36 9x dydx

y−

33. If (x – a)2 + (y – b)2 = c2, then 1

2 3 2

2

2

+

dy

dxd ydx

/

is

(a) a constant independent of a only.(b) a constant independent of b only.(c) a constant independent of a and b.(d) none of these

34 Objective MHT-CET Mathematics

34. If y x xm

= + +{ }2 1 , then (x2 + 1) y2 =

(a) xy1 – m2y (b) m2y1 – xy(c) xy – m2y1 (d) m2y – xy1

35. If y x x x=

∞(cos ) ,(cos )(cos )...

then dydx =

(a) y xy x

2

1tan

( log cos )− (b) −

−y xy x

2

1tan

( log cos )

(c) y xy x

tan( log cos )1 − (d)

−−

y xy x

tan( log cos )1

36. If y x x x= + + + ∞log log log ... ,to then dydx =

(a) −

−1

2 1x y( ) (b) 1x

(c) 1

2 1x y( )− (d) −1x

37. If xy log(x + y) = 1, then dydx =

(a) y x y x yx xy x y

( )( )

2

2+ ++ +

(b) − + ++ +

y x y x yx xy x y

( )( )

2

2

(c) x xy x yy x y x y

( )( )

2

2+ ++ +

(d) − + −+ −

y x y x yx x y xy

( )( )

2

2

38. If xy + yx = (x + y)x + y, find dydx

(a) ( ) { log( )} log

log ( ) { l

x y x y yx y y

x x xy x y

x y y x

y x x y+ + + + −

+ − + +

+ −

− +1

1

1

1 oog( )}x y+

(b) ( ) { log( )} log

log ( ) { l

x y x y yx y y

x x xy x y

x y y x

y x x y+ + + + +

− + + −

+ −

− +1

1

1

1 oog( )}x y+

(c) ( ) { log( )} log

log ( ) { log(

x y x y yx y y

x x x y x y

x y y x

y x y+ − + + −

− + + +

+ −

+1

1

1

))}(d) none of these

39. If y axx a x b x c

bxx b x c

cx c= − − − + − − + − +

21( )( )( ) ( )( ) ,

then dydx =

(a) −−

+−

+−

yx

aa x

bb x

cc x

(b) xy

aa x

bb x

cc x−

+−

+−

(c) yx

aa x

bb x

cc x−

+−

+−

(d) yx

aba x

bcb x

cac x−

+−

+−

40. Find dydx , when y

x a x a

x a= + − −

( ) ,2

2 2 where x > a > 0.

(a) −−2 2

2 2 3 2a

x a( ) / (b) 2 2

2 2 3 2a

x a( ) /−

(c) 2

2 2 3 2a

x a( ) /− (d)

−−

22 2 3 2

ax a( ) /

41. If y e ee e

x x

x x= −+

− , then dydx =

(a) y2 – 1 (b) y – 1(c) –y2 (d) 1 – y2

42. Find dydx , when x a t t= +

cos log tan 2

and

y = a sin t, 0 2< <t p .

(a) –tan t (b) tan t(c) cot t (d) – cot t

43. Differentiate log sin x2

3 1−

w.r.t. x

(a) cot

log sin

x

x

2

2

31

31

(b) x x

x

cot

log sin

2

2

31

31

(c) x x

x

cot

log sin

2

2

31

33

1

(d) x x

x

tan

log sin

2

2

31

33

1

44. Differentiate x x x x1 12 2+ + + +log( ) w.r.t. x

(a) − +2 12x (b) 2 12x +

(c) 1

1 2x x+ (d)

2

12x +

45. If x = secq – cosq and y = secn q – cosnq, then dydx =

(a) sec cos

sec cos

n nq qq q

−+

(b) n n n(sec cos )

sec cosq q

q q−

+

(c) sec cos

cos sec

n nq qq q

++

(d) n n n(sec cos )

sec cosq q

q q+

+

35Differentiation

46. If ya b

a ba b

x=−

+−

−222 2

1tan tan , then dydx =

(a) 1a b x− cos

(b) 1

a b x+ cos

(c) −

−1

a b xcos (d) 1

a x bcos −

47. Find dydx when

y x xx x

x= + + −+ − −

< <−cot sin sin

sin sin, .1 1 1

1 10 2

p

(a) − 12

(b) 1

(c) 12

(d) 0

48. If y xx

xx

=−

+ +−

− −tan sec12

12

22

111

find d ydx

2

2 .

(a) 1

1 12 2−+

+xx

x x| | ( )

(b) 21 2x

x x| | ( )+

(c) 1

1212 2+

+−xx

x x| | ( )

(d) none of these

49. If y x x

xx=

−+ −

−sin log ,1

22

11 then dy

dx =

(a) sin

( ) /

1

2 1 21x

x (b) −

−sin( ) /

1

2 3 21x

x

(c) 1

1 2 3 2( ) /− x (d) sin

( ) /

1

2 3 21x

x

50. Differentiate x xx

xx+

+

+1 1 1 w.r.t. x.

(a) xx

xx

xx

x+

−+

+ +

1 11

12

2

2log

+ + −

+x x

xx

xx

1 1

2 21 log

(b) − +

−+

+ +

+

+x

xxx

xx

xx

x1 11

12

2

2 1 1

logxx+

12

(c) xx

xx

x xx

xx+

−+

+ +

+1 11

12

2

1 1

2

(d) xx

xx

x xx

xx+

−+

+

+1 11

2

2

1 1

2log

51. If y = (logcosxsinx)(logsinx cosx)–1 + sin–1 21 2

xx+

,

find dydx at x = p

4 .

(a) 8

232

162log−

+p (b) 32

168

22p +−

log

(c) 816

3222p +

−log

(d) 82

32162log

++p

52. If x = 2 cos q – cos2q and y = 2 sin q – sin2q, find d ydx

2

2 at q p= 2 .

(a) 32

(b) 1

(c) − 32

(d) –1

53. If y x a x a xa

dydx= − +

=−2 2

2 22

1sin then

(a) x a2 2− (b) a x2 2+

(c) a2 – x2 (d) a x2 2−

54. If y = { tan log( )},2 11 2x x x dydx

− − + =then

(a) – 2 tan–1x (b) 2 cot–1x(c) 2 tan–1x (d) – 2 cot–1x

55. If y = xcosx + (cosx)x, then dydx =

(a) x xx

x x x xx xcos cos (sin )(log ) (cos ) {log cos }−{ } +

(b) x xx x xxcos cos (sin )(log )⋅ −{ }

+ (cosx)x[(log cos x)– x tan x]

(c) x xx

x xxcos cos (sin )(log )+{ } + (cosx)x {log cos x + x tan x}

(d) x xx

x xxcos cos (sin )(log )+{ } + ( cos x)x {log cos x – tan x}

56. If y x xx

x

= ++

+ + ∞

11

1...

, then dydx =

(a) y

y x( )2 − (b)

−−y

y x2

(c) xy x2 −

(d) −−x

y x2

36 Objective MHT-CET Mathematics

57. If x = a sin 2t(1 + cos2t) and y = bcos 2t (1 – cos 2t),

then dydx t

=

=at p4

(a) − ba

(b) ab

(c) ba

(d) − ab

58. Differentiate 2 4 11

2 1

2 3 2

x x xx

+ + ⋅ −−( ) / w.r.t. x.

(a) y xx

( ) log2 1 2 24 1

+ +−

(b) y x xx

( ) log2 1 2 312+ −

(c) y xx

xx

( )2 1 24 1

312+ +

−−

(d) y xx

xx

( ) log2 1 2 24 1

312+ +

−−

59. For the function f given by f(x) = x2 – 6x + 8, f ′(5) =(a) 4 (b) 10(c) 3 (d) 6

60. Let f xx xx x

( )( ),( ),

,=+ ≥− <

2 02 0

ifif

then f (x) is

(a) everywhere differentiable(b) not differentiable at x = 0(c) differentiable in [–1, 1](d) none of these

37Differentiation

2015

1. If the function g xk x xmx x

( ),,

=+ ≤ ≤

+ < ≤

1 0 32 3 5

is

differentiable, then the value of k + m is

(a) 103 (b) 4

(c) 2 (d) 165 (JEE Main)

2014

2. If f and g are differentiable functions in [0, 1] satisfying f (0) = 2 = g(1), g(0) = 0 and f (1) = 6, then for some c ∈ ]0, 1[(a) 2 f ′(c) = 3g′(c) (b) f ′(c) = g′(c)(c) f ′(c) = 2g′(c) (d) 2f ′(c) = g′(c)

(JEE Main)

2013

3. If y = sec(tan–1 x), then dydx

at x = 1 is equal to

(a) 12

(b) 1

(c) 2 (d) 12

(JEE Main)

CompetitiveExams

2012

4. Consider the function, f(x) = |x – 2| + |x – 5|, x ∈ R Statement 1 : f ′(4) = 0 Statement 2 : f is continuous in [2, 5], differentiable

in (2, 5) and f (2) = f (5).

(a) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement 1.

(b) Statement 1 is true, Statement 2 is false.(c) Statement 1 is false, Statement 2 is true.(d) Statement 1 is true, Statement 2 is true; Statement

2 is a correct explanation for Statement 1.

(JEE Main)

2011

5. d xdy

2

2equals to

(a) d y

dx

dydx

2

2

2

− (b) −

−d y

dx

dydx

2

2

3

(c) d y

dx

2

2

1

(d) −

− −d y

dx

dydx

2

2

1 3

(JEE Main)

38 Objective MHT-CET Mathematics

LeveL - 11. (a) : We have, f(0) = 0

lim ( ) lim sinx x

f x xx→ →

=

0 0

1

= 0So, the function f(x) is continuous at x = 0.

Now, Rf f h fh

h hhh h

′ = + − = −→ →

( ) lim ( ) ( ) lim sin( / )0 0 0 1 00 0

=→

lim sin( / ),h

h0

1 which does not exist.

Hence, f(x) is not differentiable at x = 0

2. (b) : We have, f(x) = x3 ⇒ f(3) = (3)3 = 27

lim ( ) lim ( )x h

f x h→ →+

= +3 0

33

= + + +

→lim ( )

hh h h

03 227 27 9

= 27

lim ( ) lim ( )x h

f x h→ →−

= −3 0

33

= − − + =

→lim ( )

hh h h

03 227 27 9 27

= 27\ = =

→ →+ −f f x f x

x x( ) lim ( ) lim ( )3

3 3

Hence, f(x) is continuous at x = 3.

Now, Rf ′(3) = lim ( ) ( )h

f h fh→

+ −0

3 3

= + −

→lim ( ) ( )

h

hh0

3 33 3

= + + + −

→lim ( )

h

h h hh0

3 227 27 9 27

= + + =

→lim ( )

hh h

02 27 9 27

Lff h f

hh

hh h′ =

− −−

= − −−→ →

( ) lim( ) ( )

lim ( ) ( )33 3 3 3

0 0

3 3

= − − + −

−→lim [ ]

h

h h hh0

3 227 27 9 27

= + − =

→lim ( )

hh h

02 27 9 27

Hints & explanations\ Rf ′ (3) = Lf ′(3) = 27So, the function f(x) is differentiable at x = 3

3. (a)

4. (a) : We have f (2) = |2 – 2| = 0.lim ( ) lim ( ) lim | |

x h hf x f h h

→ → →+= + = + −

2 0 02 2 2

= = =→ →

lim | | limh h

h h0 0

0

lim ( ) lim ( ) lim | |x h h

f x f h h→ → →−

= − = − −2 0 0

2 2 2

= − = =

→ →lim | | limh h

h h0 0

0

So, f(x) is continuous at x = 2.

Now, Rf ′(2) =+ −

→lim ( ) ( )

h

f h fh0

2 2

=

+ − −→

lim| |

h

hh0

2 2 0

= =

→lim ( )

h 01 1

Lff h f

hh′ =

− −−→

( ) lim( ) ( )

22 2

0

=

− − −−

= − = −→ →

lim| |

lim ( )h h

hh0 0

2 2 01 1

\ Rf ′(2) ≠ Lf ′(2)So, f(x) is not differentiable at x = 2.

5. (a) : lim ( ) lim ( ) lim ( )x h h

f x f h h→ → →+

= + = − −1 0 0

1 2 1

= − =

→lim ( )

hh

01 1

lim ( ) lim ( ) lim ( )x h h

f x f h h→ → →−

= − = − =1 0 0

1 1 1

f ( ) ( )1 2 1 1= − =

lim ( ) lim ( ) ( )x x

f x f x f→ →+ −

= = =1 1

1 1

So, f(x) is continuous at x = 1.

Now, Rf ′(1) =+ −

→lim

( ) ( )h

f h fh0

1 1

= − − −

=

− −

= −

→ →lim ( ) lim

h h

hh

hh0 0

2 1 1 1 1 1

Lff h f

hh′ =

− −−→

( ) lim( ) ( )

11 1

0

39Differentiation

= − −

=→

limh

hh0

1 1 1

\ Rf ′(1) ≠ Lf ′(1)So, f(x) is not differentiable at x = 1.

6. (a) : lim ( ) lim ( ) lim [( ) ]x h h

f x f h h→ → →+

= + = + −1 0 0

21 1 1

= + + − =

→lim ( )

hh h

021 2 1 0

lim lim ( ) lim [ ]x h h

f h h→ → →−

= − = − + =1 0 0

1 1 1 0

f ( ) ( )1 1 1 02= − =

lim ( ) lim ( ) ( )x x

f x f x f→ →+ −

= = =1 1

1 0

\ f(x) is continuous at x = 1.

Now, Rf ′(1) =+ −

→lim ( ) ( )

h

f h fh0

1 1

= + + − −

→lim ( )

h

h hh0

21 2 1 0

= + =

→lim ( )

hh

02 2

Lff h f

hh

hh h′ =

− −−

= − +−

= −→ →

( ) lim( ) ( )

lim ( )11 1 1 1 1

0 0

Q Rf ′(1) ≠ Lf ′(1)So, f(x) is not differentiable at x = 1.

7. (b) : f(2) = 1 + 2 = 3lim ( ) lim ( ) lim( )

x h hf x f h h

→ → →−= − = + − =

2 0 02 1 2 3

lim ( ) lim ( ) lim( )x h h

f x f h h→ → →+

= + = − − =2 0 0

2 5 2 3

lim ( ) lim ( ) ( )x x

f x f x f→ →− +

= = =2 2

2 3

\ f(x) is continuous at x = 2

Lf f h fh

hhh h

′ = − −−

=

+ − −−

→ →

( ) lim ( ) ( ) lim ( )2 2 2 1 2 30 0

= − −

=

−−

=→ →

lim limh h

hh

hh0 0

3 3 1

Rf f h fhh

′( = + −

2 2 20

) lim ( ) ( )

= − + −

lim ( )h

hh0

5 2 3

= − −

=

= −→ →

lim limh h

hh

hh0 0

3 3 1

Lf ′(2) ≠ Rf ′(2)\ f(x) is not differentiable at x = 2

8. (c) : f(0) = 0

lim ( ) lim cosx x

f x x x→ →=

=0 0

1 0

\ f(x) is continuous at x = 0

f f h fh

h hhh h

′(0 = + −

=

→ →) lim ( ) ( ) lim

cos

0 0

0 01 0

=

lim cos ,h h0

1 which does not exist.

... f ′(0) does not exist.\ f(x) is not differentiable at x = 0

9. (a) : f(2) = 2(2) – 3 = 4 – 3 = 1lim ( ) lim ( ) lim ( )

x h hf x f h f h

→ → →−= − = − − =

2 0 02 2 1 1

lim ( ) lim ( ) lim( )x h h

f x f h h→ → →+

= + = + − =2 0 0

2 4 2 3 1

\ f(x) is continuous at x = 2

Now, Rff h f

hh′ =

+ −

( ) lim( ) ( )

22 2

0

=

+ − −

lim( )

h

hh0

2 2 3 1

= + − =

→lim ( )

h

hh0

4 2 4 2

Lff h f

hh′ =

− −−

( ) lim( ) ( )

22 2

0

= − − −

limh

hh0

2 1 1

= −

=→

limh

hh0

1

Q Rf ′ (2) ≠ Lf ′ (2)\ f(x) is not differentiable at x = 2.

10. (b) : f(x) is continuous at x = 0, then

lim ( ) ( ) lim sinx x

pf x f x x p→ →

= ⇒

= ⇒ >

0 00 1 0 0

f(x) is differentiable at x = 0, if

lim ( ) ( )x

f x fx→

−−

0

00 exists

→lim

sin

x

px xx0

1 0exists

−lim sinx

px x01 1 exists ⇒ p – 1 > 0 or p > 1

If p ≤ 1, then lim sinx

px x→−

0

1 1 does not exist and

at x = 0, f(x) is not differentiable

40 Objective MHT-CET Mathematics

Hence for 0 < p ≤ 1, f(x) is continuous at x = 0 but not differentiable.

11. (b) :

f x

xx

xx

x

( )

,,,,

,

=

− − ≤ < −1− − ≤ <

≤ <≤ <≤

2 21 1 00 0 11 1 2

2 2

ifififif

if

f(1) = 1lim ( ) lim ( ) lim( )

x h hf x f h

→ → →−= − = =

1 0 01 0 0

lim ( ) lim ( ) lim( )x h h

f x f h→ → →+

= + = =1 0 0

1 1 1

lim ( ) lim ( ) ( )x x

f x f x f→ →− +

≠ =1 1

1

\ f(x) is not continuous at x = 1

Lf f h fhh

′(1) = − −−

lim ( ) ( )0

1 1

= −

limh h0

0 1=

= ∞→

limh h0

1

Rf f h fh hh h

′ = + −

=

=→ →

( ) lim ( ) ( ) lim1 1 1 1 1 00 0

... Rf ′(1) ≠ Lf ′(1)\ f(x) is not differentiable at x = 1

12. (c) : f(0) = 0

lim ( ) lim( )

x hf x h

→ →−= =

0 00

lim ( ) lim( )x h

f x→ →+

= =0 0

0 0

lim ( ) lim ( ) ( )x x

f x f x f→ →− +

= =0 0

0

\ f(x) is continuous at x = 0

Lf f h fhh

′( = − −−

0 0 00

) lim ( ) ( )

= − −

limh

hh0

0 0 = −−

=→

limh

hh0

1

Rf f h fh hh h

′ = + −

=

=→ →

( ) lim ( ) ( ) lim0 0 0 0 0 00 0

... Rf ′(0) ≠ Lf ′(0)\ f(x) is not differentiable at x = 0

13. (a) : Every differentiable function is continuous but every continuous function is not necessarily differentiable.

14. (b) :

f xx x

x x( )

( ),,

=− − <

− ≥1

1 11

forfor

f(1) = 0lim ( ) lim ( ) lim[ ( )]

x h hf x f h h

→ → →−= − = − − − =

1 0 01 1 1 0

lim ( ) lim ( ) lim( )x h h

f x f h h→ → →+

= + = + − =1 0 0

1 1 1 0

lim ( ) lim ( ) ( )x x

f x f x f→ →+ −

= =1 1

1

\ f(x) is continuous at x = 1

Lf f h fhh

′ = − −−

( ) lim ( ) ( )1 1 10

= − − − −

lim ( )h

hh0

1 1 0 = −

= −→

limh

hh0

1

Rf f h fhh

′(1 = + −

) lim ( ) ( )0

1 1

= + − −

=

=→ →

lim ( ) limh h

hh

hh0 0

1 1 0 1... Rf ′(1) ≠ Lf ′(1)\ f(x) is not differentiable at x = 1

15. (c) : f(1) = 1lim ( ) lim ( ) lim( )

x h hf x f h h

→ → →+= + = + − =

1 0 01 2 2 1 1

lim ( ) lim ( ) lim ( )x h h

f x f h f h→ → →−

= − = − =1 0 0

1 1 1

lim ( ) lim ( ) ( )x x

f x f x f→ →− +

= =1 1

1

\ f(x) is continuous at x = 1

Lf f h fhh

′ = − −−

( ) lim ( ) ( )1 1 10

= − −

=

−−

=→ →

lim limh h

hh

hh0 0

1 1 1

Rf f h fh

hhh h

′( = + −

=

+ − −

→ →

1 1 1 2 1 1 10 0

) lim ( ) ( ) lim ( )

= + −

=

=→ →

lim limh h

hh

hh0 0

2 2 2 2 2... Rf ′(1) ≠ Lf ′(1)\ f(x) is not differentiable at x = 1

16. (a) : Given

f x x a x a x a

x a( ) ( )cos ,

,= − −

=

1

0

lim ( ) ( )cosx a h

f x a h a a h a→ →= + − + −

lim

0

1

=

=→

lim cosh

h h0

1 0

lim cos

hh h h

→= ≤ ≠ 0

0

0 1 1and for all

Hence limx a

f x f a→

=( ) ( ) ⇒ f(x) is continuous at x = a.

Also, f a f a h f ahh

′( = + −→

) ( ) ( )lim0

41Differentiation

Complete chapter available in

BUY NOW