2. turbulence ; turbulence modellingusers.abo.fi/rzevenho/icfd19-rz2.pdf · 2019-10-10 ·...

55
Introduction to Computational Fluid Dynamics 424512 E #2 - rz Introduction to Computational Fluid Dynamics (iCFD) 424512.0 E, 5 sp 2. Turbulence ; Turbulence modelling (lecture 2 of 4) Ron Zevenhoven Åbo Akademi University Process and Systems Engineering Thermal and Flow Engineering Laboratory tel. 3223 ; [email protected] Introduction to Computational Fluid Dynamics 424512 E #2 - rz oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering - Piispankatu 8, 20500 Turku 2/110 2.1 Turbulence as a phenomenon See also HKTJ07 Section 7.1.,7.2

Upload: others

Post on 03-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

Introduction to Computational Fluid Dynamics(iCFD) 424512.0 E, 5 sp

2. Turbulence ; Turbulence modelling(lecture 2 of 4)

Ron ZevenhovenÅbo Akademi University

Process and Systems EngineeringThermal and Flow Engineering Laboratory

tel. 3223 ; [email protected]

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

2/110

2.1 Turbulence as a phenomenon

See also HKTJ07Section 7.1.,7.2

Page 2: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

3/110

Turbulence Most flows in nature and engineering are

turbulent:

Turbulence as seen by Leonardo da Vinci (B92)

See for example the tidal flows atSaltstraumen, Norway

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

4/110

Laminar vs. turbulent pipe flow

HKTJ07

Page 3: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

5/110

Turbulent flows: eddy formation

vD82,HKTJ07

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

6/110

Large-scale structure in turbulent mixing layer

N2 at 1000 cm/s over He/Ar mixture (same density)at 380 cm/s, pressure p = 4 bar.

Same as above, but at higher pressure, i.e.double Re number.More small-scale structure, unalteredlarge-scale structure

vD82

N2

He/Ar

N2

He/Ar

Page 4: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

7/110

Crude oil leaking from a grounded tankship (1976) at ~ 45° angle to the current (Re ~107)

vD82

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

8/110

2.2 Turbulence modelling

See also HKTJ07Section 7.2, 7.3

Page 5: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

9/110

Equation of motion for iso-thermal, incompressible Newtonian flow: Navier-Stokes equations

Fupuut

uFF

2

L*,uρ

p*p,

L

tu*t,

u

u*u

F

0

2*

Re

******

*

*

u

Fupuu

t

u

FF

velocity vector u,fluid density F,

time t, static pressure p,

dynamic viscosity F,external force(s) F

With dimensionless variables:

FF

FF ν

Lu

η

LuρRe

(H75,W93,BSL60)

See lecture 1

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

10/110

Turbulence characteristics Round tube flow : Re < ~ 2100 – 2300 laminar

~ 2200 < Re < ~ 6000 turbulent (fine scale)

Re > 6000 turbulent (large scale)

Velocity fluctuations, v', superimposed on average velocity. Reynolds decomposition: v(t) = vavg + v'(t)

Energy dissipation (W/m³ or W/kg) Fluid dynamic, “kinematic” viscosity

= dynamic viscosity/density = / (m²/s)

(H75,W93,BSL60)

Page 6: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

11/110

1. Turbulence is not unorganised: hence, random distributions for describing turbulent fluctuations are wrong.

2. Turbulent flows are often characterised by vortices.3. Turbulence is 3-dimensional !!!4. Turbulence may be isotropic: all gradients the same in all

directions5. Turbulence may be homogeneous: independent of position6. Turbulence is dissipative

e.g. turbulent kinetic energy k = ½ (ux´² + uy´² + uz´²)(unit: J/kg) energy dissipation = - dk/dt (unit: W/kg)

k- model (isotropic)

Turbulence characteristics /2

(B92,W93)

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

Turbulent flow and time averaging

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

12/110

S10

Page 7: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

13/110

Turbulent scales: length, time, velocity Turbulent macroscale : length l0 (also called integral length scale),

~ 0.1 × system size scaletime scale = l0 /v'.

Turbulent microscale : Kolmogorov length scale lK = (³/)¼

Kolmogorov time scale K = ( /)½

Kolmogorov velocity scale vK = ( )¼

Turbulent Re-number : Rel = v' l0 / = (l0/lK)4/3

Average scaling : Taylor length scale, lT, and lT/l0 = 10/Rel

lT ~ average size of dissipating eddies.

Turbulent Taylor Re- number : ReT² = 10·Rel.

(H75,W93,BSL60)

See also slide 45

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

14/110

Turbulent energy spectrum, showing energy cascade (left to right)

lK = Kolmogorovlength scale

lT = Taylor length scale

l0 = integral length scale (~ 0.1 × system scale)

units: e(k) = W/m³k 1/m

note : k = wavenumber,is not k of k- model !

ENERGY

1/k

Page 8: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

Turbulent energy spectrum

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

15/110

S10

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

16/110

Turbulence solutions: DNS, RANS, LES

HKTJ07

Page 9: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

17/110

Turbulence solutions: DNS, RANS, LES

HKTJ07

Chemistry,if taking place,would occur

here

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

18/110

2.3 Turbulence – statistical description

Material from: HKTJ07Section 7.3

Comment:

RZ doesn’t favour usingthe material derivative

Page 10: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

19/110

Solutions of the N-S equations

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

20/110

Turbulent fluctuations

Measured velocity and temperature fluctuations at a point in a turbulent flow

Page 11: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

21/110

Turbulent pipe flow

Flow velocity distribution or profile across a pipe cross-sectionleft: time realisations right: profiles for time-averagedturbulent flow and laminar flow

Largergradients

near the wallresult in

higher pressuredrop, and

more intensewall

heat transfer

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

22/110

Time averaging

A stationary system vs. a non-stationary system with fluctuations

pic: T06

Page 12: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

23/110

Reynolds averaging /1

7.1

7.2

7.3

7.4

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

24/110

Reynolds averaging /2

7.7

7.6

7.5

Page 13: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

25/110

Reynolds decomposition - rules

For exampleΦ = a velocity termΨ = density

7.8!!

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

26/110

Correlated / non-correlated fluctuations

7.7

Page 14: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

27/110

Reynolds averaged conservation equations /1

γm = body forceγa = surface force

7.10

7.9

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

28/110

Reynolds averaged conservation equations /2

7.10c

7.13

Page 15: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

29/110

Reynolds averaged conservationequations /3 - incompressible flow

7.13

7.12

7.11

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

30/110

Reynolds averaged Navier-Stokes (RANS) equations /1

(Navier-Stokes)

”Reynolds stresses”

See section 1.4b

7.14

Page 16: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

31/110

Reynolds averaged Navier-Stokes (RANS) equations /2 - energy, mass

7.16

7.15

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

32/110

Turbulence modelling: averaging Reynolds averaging:

signal = average signal + fluctuation

Taking into account density fluctuations density weighted average / Favre averaging

0' where),(')(),( utxuxutxu

tt

tt

dttxut

xu ),(1

)(0

lim

0" with ),("),(~),( utxutxutxu

'')')('( and /~ uuuuuuu

ρ

'uρk i

example for

~

Page 17: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

33/110

2.4 Turbulence – features

Material from: HKTJ07Section 7.4

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

34/110

Turbulence features /1

Page 18: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

35/110

Turbulence features /2

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

36/110

Turbulence features /3

Page 19: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

37/110

Turbulence features /4

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

38/110

Turbulence features /5

Page 20: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

39/110

Turbulent energy cascade

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

40/110

Turbulent structure isotropy

Page 21: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

41/110

Turbulence mechanisms

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

42/110

2.5 Turbulence – characterisation and scales of turbulence

Material from: HKTJ07Section 7.5

Page 22: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

43/110

Turbulence intensity

7.17

7.18

7.19

7.20

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

44/110

Turbulence scales /1

7.22

Page 23: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

45/110

Turbulence scales /2

τK lK

lT

Symbols also used here:

7.23

7.24

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

46/110

Turbulence Reynolds numbers /1

ReT

Rel

t2

7.26

Page 24: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

47/110

Turbulence Reynolds numbers /2

7.27

7.28

7.29

7.30

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

48/110

Direct simulation – prospects /1

7.31

Page 25: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

49/110

Direct simulation – prospects /2

7.32

7.18

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

50/110

Direct simulation – prospects /3

See previous

slide

7.18

Page 26: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

51/110

Two-point correlations /1

7.33

7.34

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

52/110

Two-point correlations /2

L11 L22L22

7.35

7.36

Page 27: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

53/110

Two-point correlations /3

223

22

21 2

3

2

1uuuuk

k7.24.

7.20

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

54/110

The turbulent energy spectrum /1

7.37

7.38

7.41

Page 28: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

55/110

The turbulent energy spectrum /2

7.42

7.43

7.44

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

56/110

7.21

See alsoslide 13

The turbulent energy spectrum /3

Page 29: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

57/110

2.6 Turbulent transport phenomena

Material from: HKTJ07Section 8.1

Note: most of section 8.1 and 8.2 NOT part of this course

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

58/110

Example situations

Page 30: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

59/110

Convective processes

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

60/110

2.7 Turbulence modelling: The closure problem

See also HKTJ07Section 9.1

Page 31: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

61/110

Turbulence modelling /1 The closure problem

The Reynolds averaged Navier-Stokes (RANS) equations:

10 unknowns: p, ux, uy, uz + 6 Reynolds stresses ui’uj’only 4 equations a turbulence model is needed

i

j

j

i

ij

jijii

i

i

x

u

x

u

x

p

x

uuuu

t

u

x

u

)''()(

0)(

F97

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

62/110

The closure problem /1 The RANS equations give unknown second moments of

the type Φuj

Solutions for these, i.e. additional model equations must be provided the Turbulence Closure Problem

In principle, for example, multiplying the N-S equations for ui and uj gives terms of the form uiuj, but at the same time higher order terms arise like uiujuk (one may wonder what for example uiujukul means...)

Page 32: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

63/110

The closure problem /2 Fortunately, the higher order terms become less and less

important and allow for simple approximations– Eddy viscosity models (first order models)– Reynolds stress models (second order models)

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

64/110

RANS

Page 33: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

65/110

2.8 Eddy viscosity / eddy diffusivity(zero-equation) models

See also HKTJ07Section 9.2,9.3

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

66/110

Eddy viscosity / eddy diffusivity /1

See lecture 1

9.3

Page 34: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

67/110

Eddy viscosity / eddy diffusivity /2

λeff = λ + λt 9.5

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

68/110

Turbulence modelling /2 Zero-equation models (Boussinesq 1877, Prandtl 1925)

with eddy viscosity µt, and turbulent kinetic energy k:

turbulence can be characterised by k and a length scale L (mixing length):

kx

u

x

uuu ij

i

j

j

i

tji 3

2''

)''''''½(''½ zzyyxxii uuuuuuuuk

09.0 and ckLct F97

Page 35: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

69/110

Turbulent viscosity, mixing length

Assuming that large scale eddies are most important

9.6

!!

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

70/110

Mixing length

See bookSection 8.2

(not part of the course)

9.7

9.8

9.9

Page 36: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

71/110

2.9 One-equation (k), two-equation(k-ε, etc.) models

See also HKTJ07Section 9.4, 9.5

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

72/110

Shortcomings mixing length concept

9.6

Page 37: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

73/110

One- and two-equation models

Note fluctation u = Û – UÛ = Reynold decomposition of U

9.12

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

74/110

One-equation models

The k-equation

Page 38: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

75/110

Turbulence modelling /3 One-equation models (Taylor 1935, Kolmogorov, 1942,

Prandtl 1945)

dissipation vs. turbulence length scale

with turbulent Prandtl number k ~ 1

j

i

i

j

j

i

tjk

t

jj

j

x

u

x

u

x

u

x

k

xx

ku

t

k

L

kc

L

k

)(

~2

3

2

3

F97

See p. 66

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

76/110

Two-equation models: kpLq

Whatever p and q: length scale or time scale follows from kpLq, and eddy viscosity from µt = Cµρk½L = Cµρk2/ε 9.14

Page 39: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

77/110

The k-equation /1 See book p. 215

9.15

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

78/110

The k-equation /2

Page 40: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

79/110

The k-ε model /1

Compare with (9.15) 9.29

9.36

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

80/110

The k-ε model /2

9.39

Page 41: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

81/110

Wall functions; low Re numbers

.

SeeSection 8.2

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

82/110

Turbulence modelling /4 Two-equation models: k- model (Launder and Spalding 1972)

Turbulent kinetic energy, k :

Turbulent kinetic energy dissipation, (= - dk/dt)

with µt= Cµk²/ Cµ = 0.09 C1 = 1.44 C2 = 1.92 k = 1.0 = 1.3

j

i

i

j

j

i

tjk

t

jj

j

x

u

x

u

x

u

x

k

xx

ku

t

k)(

kC

x

u

x

u

x

u

kC

xxx

u

t j

i

i

j

j

i

tj

t

jj

j2

21

F97In the k-ε model, eddy viscosity as µt = Cµρk2/ε, with length scale k3/2/ε

Page 42: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

83/110

Example k - ε

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

84/110

Example k - ε

Source: TUD exam FT2-2002

see p. 20

See also book p. 224 (9.40 & 9.41)

Page 43: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

85/110

2.10 Other two-equation models

See also HKTJ07Section 9.6

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

86/110

Other two-equation models /1

9.64

Page 44: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

87/110

Other two-equation models /2

Not convenient: k-τ, k-L, k-kL use k-ε or k-ω

9.36

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

88/110

Other two-equation models /3

See Section 8.1, 8.2

Page 45: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

Limitations of 2-eq. linear EVMs

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

89/110

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

90/110

2.11 Reynolds stress models

Page 46: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

91/110

Reynolds stress models

The eddy viscosity model has limitations, for example, in 3-D, µt may not be a scalar.

Triple correlations of the velocity correlations ui’uj’uk’ and correlations between velocity and pressure uj’p’ occur.

Modelling these is complicated but can give very goodresults, especially in cases where k-ε fails: swirlingflows, flows with curvatures or curved surfaces

See book section 9.9 p. 236-238F97

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

92/110

2.12 Large-eddy simulations (LES)

See S10 section 11.4 See also B01

Page 47: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

93/110

LES /1

B01

compared to DNS

Piomelli, AIAA paper 98-0534, 1998

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

94/110

LES /2 spatial filtering

B01

D

Page 48: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

Filters, effect of filtering

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

95/110

S10

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

LES and turbulent energy spectrum

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

96/110

S10

Page 49: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

97/110

LES /3 Incompressible N-S

B01The detailed grid must be linked to the less-detailed grid in

a physically correct way.

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

98/110

LES /4 Sub-grid scale modelling

Domaradzki & Saiki, 1997

B01

Page 50: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

99/110

LES /5 Sub-grid scale modelling

B01

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

100/110

LES /6 Wall models

B01

Page 51: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

LES and near-wall region

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

101/110

S10

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

102/110

2.13 Turbulent reacting flows(with k-ε turbulence) modelsfor example: combustion

See also P92, P97

Page 52: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

103/110

Turbulent reacting flow modelling (k- ) /1

Favre averaged balance equations:

with perpendicular coordinates and P92

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

104/110

Turbulent reacting flow modelling (k- ) /2

Favre averaged Reynolds’ stresses:

P92

Page 53: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

105/110

Turbulent reacting flow modelling (k- ) /3

Favre averaged turbulent kinetic energy and dissipation:

with, in the standard k- model, 1.3, C1 1.44, C2 1.9

P92

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

106/110

Turbulent reacting flow modelling (k- ) /4

Temperature and mass fractions for n species:

JT, = heat diffusion (conduction), Ji, = mass diffusionYi = mass fraction, hi = enthalpy , mi = chemical reaction source term

P97

Page 54: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

107/110

Turbulent reacting flow modelling /5

Direct numerical simulation (DNS): only possible for ReT ~ few 100with one or two chemical reactions

Probabilistic representations of turbulence, and turbulence/chemistry interactions (PDF methods)

Large eddy simulations (LES) : DNS for the large scales, a simpler sub-model for the smaller scales. Accurate for cell size > 30 lK.

Eddy break-up (EBU) models (based on "mixed = converted") : the reaction rate is determined by a typical turbulence time (/k) and the mean square fluctuations of the reactants concentration.

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ - Thermal and Flow Engineering -Biskopsgatan 8, 20500 Turku

108/110

Modelling the chemicals’ source terms (i.e. dm/dt):the Eddy Break-Up concept EBU.

“Small scale mixing down to the molecular scales controls the chemistry”Turbulent reaction rate (formation of products):

where Y “pr2 is the Favre variance of the

product mass fraction, andCEBU = 0.35 is the Eddy Break-Up constant

Turbulent reacting flow modelling (k- ) /6

~

P97

Page 55: 2. Turbulence ; Turbulence modellingusers.abo.fi/rzevenho/iCFD19-RZ2.pdf · 2019-10-10 · Introductionto ComputationalFluid Dynamics 424512 E #2 -rz oktober 2019 Åbo Akademi Univ

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

109/110

Sources / further reading #2

B92: Banerjee, S. “Turbulence structures” Chem.Eng.Sci. 47(8) (1992) 1973-1817B01: J. Blazek ”Computational fluid mechanics: principles and applications” Elsevier (2001)BSL60: Bird, R.B., Stewart, W.E., Lightfoot, E.N. “Transport phenomena”, John Wiley & Sons, New York (1960) Chapter 6vD82: van Dyke, M. “An album of fluid motion”, The Parabolic Press, Stanford (CA) (1982)F97: J.H. Ferziger, M. Perić "Computational methods for fluid dynamics", Springer, Berlin (1997) Chapter 9HKTJ07: K. Hanjalić, S. Kenjereš, M.J. Tummers, H.J.J. Jonker “Analysis and modelling of physical transport phenomena” VSSD, Delft, the Netherlands (2007, 2011)ÅA library 13 hardcopies (ASA): https://abo.finna.fi/Record/alma.896997

H75: Hinze, J. O. “Turbulence” (2nd Ed.) New York: McGraw-Hill (1975) Chapters 1,3,5

…………………. continues on next page

Introduction to Computational Fluid Dynamics 424512 E #2 - rz

oktober 2019 Åbo Akademi Univ -Thermal and Flow Engineering -Piispankatu 8, 20500 Turku

110/110

Sources / further reading #2

P92: N. Peters "Fifteen lectures on Laminar and Turbulent Combustion" RWTH Aachen, 1992 https://www.itv.rwth-aachen.de/fileadmin/Downloads/Summerschools/SummerSchool.pdf

P97: N. Peters "Four lectures on Turbulent Combustion" RWTH Aachen, 1997 https://itv.rwth-aachen.de/fileadmin/Downloads/Summerschools/SummerSchool97_ueberarbeitet.pdf

S10: O. Zikanov ”Essentional Computational fluid dynamics” Wiley & Sons (2010)ÅA library: https://ebookcentral.proquest.com/lib/abo-ebooks/detail.action?docID=819001

T06: S.R. Turns ”Thermal – Fluid Sciences”, Cambridge Univ. Press (2006)TYL12: Jiyuan Tu, Guan Heng Yeoh, Chaoqun Liu Computational Fluid Dynamics: A Practical Approach. (2nd Ed.) Elsevier (2012) ÅA library: https://ebookcentral.proquest.com/lib/abo-ebooks/detail.action?docID=1012531

W93: Wilcox, D.C. "Turbulence modelling for CFD", DCW Industries Inc., La Cañada (CA), (1993)