20 ghz low power qvco and de-skew techniques in 0.13µm

40
20 GHz Low Power QVCO and De-skew Techniques in 0.13μm Digital CMOS Masum Hossain & Tony Chan Carusone University of Toronto [email protected]

Upload: others

Post on 01-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS

Masum Hossain & Tony Chan CarusoneUniversity of Toronto

[email protected]

Data

Shared Clock

Source

ClockDeskew

D-FFRx3

ClockDeskew

D-FFRx2

ClockDeskew

D-FFRx1

PDLP

F

fref

Motivation

1

Data

Shared Clock

Source

ClockDeskew

D-FFRx3

ClockDeskew

D-FFRx2

ClockDeskew

D-FFRx1

Motivation

Deskew

JitterFilter

(optional)

DCC

2

Low power clock source in Digital CMOS• Review of CMOS LC VCO topology• Colpitts vs Cross-coupled• Proposed VCO topology• Experimental Results

Low power clock deskew technique CMOS• Review of existing deskew techniques• Proposed deskew technique• Experimental Results

Outline

3

(gm)

CLRPL

M1

-1Cvar

Cross-Coupled VCO

4

RPL

C1

Cvar

CL

(gm)M1

Conventional Colpitts

RP

L

C1

M1

Cvar

RL CL

(gm)

[Nguyen’92]

Modified Colpitts

Decouples the tank from load

Colpitts VCO

5

RP

L

C1

M1

Cvar

RL CL

(gm)

Zin

RP

L

var12

m

CCωgR =−

var1

var1eq CC

CCC+

=

Colpitts VCO

6

(gm)

CLRPL

M1

-1Cvar RP

L

C1

M1

Cvar

RL CL

(gm)

Less gm requiredfosc depends on CL

More gm requiredfosc independent of CL

R

CL

L

CGS

M2

M1

-1

Cvar

RL

(gm1)

(gm2)

Proposed VCO

Cross-Coupled Colpitts

7

R

CL

L

CGS

M2

M1

-1

Cvar

RL

(gm1)

(gm2)Yx

RP

vx

v1

+

-ix

Cvar

(-1/gm1)

gm2v1L

CGS

RL CL

Proposed VCO

8

PR1

1

var

var2−

⎟⎟⎠

⎞⎜⎜⎝

+=

CCCCLf

GS

GSosc π

( )( ) 1

var2−

+= Losc CCLf π

1

var1

var12−

⎟⎟⎠

⎞⎜⎜⎝

+=

CCCCLf osc π

PR4

⎟⎟⎠

⎞⎜⎜⎝

⎛−≥ 2

var1m

GSP

gCC

R

Frequencyof Oscillation

MinimumRequired gm

Cross-Coupled

Colpitts

ProposedVCO

Proposed oscillator combines the benefit of both topology !

VCO Summary

9

On die 300 um T. Line

To scope

I-VCOIn-

In+

C-

C+Q-VCO

In-

In+

C-

C+

00 1800 900 2700

Off-chip 50-ohm term.

In+

C+C-

M2

MCM1

In-

50-ohm 50-ohmV bias

V DD = 1.2 V

QVCO Implementation

10

650 um

400 um

Metal Dummy

Fill

0o

180o270o

90o

QVCO Implementation

11

0 0.5 1 1.518

19

20

21

22

0-18

-16

-14

-12

-10

Vcontrol (V)

Freq

uenc

y (G

Hz)

Pout

(dB

m)

Tuning range 2.4 GHz (~12%)

QVCO Performance

12

0 0.5 1 1.518

19

20

21

22

0-18

-16

-14

-12

-10

Vcontrol (V)

Freq

uenc

y (G

Hz)

Pout

(dB

m)

QVCO Performance

13

0 0.5 1 1.518

19

20

21

22

0-18

-16

-14

-12

-10

Vcontrol (V)

Freq

uenc

y (G

Hz)

Pout

(dB

m)

Cable loss was de-embedded

QVCO Performance

14

18 19 20 21-115

-110

-105

-100

-95

1-18

-16

-14

-12

-10

Phas

e N

oise

(dB

c/H

z)(@

1 M

Hz

offs

et)

Frequency (GHz)

Pout

(dB

m)

QVCO Performance

Phase Noise = -48.152-10log10(RBW) = -102.92 dBc/Hz

15

18 19 20 21-110

-105

-100

-95

Phas

e N

oise

(dB

c/H

z)(@

1 M

Hz

offs

et)

Frequency (GHz)

PDC=30 mW

PDC=20 mW

QVCO Performance

Phase Noise = -46.634-10log10(RBW) = -101.40 dBc/Hz

16

VLSI’05JSSC’07 JSSC’04

0.13-um CMOS

20 GHz

Cross-Coupled

Quad.

12 %

5

-102.41

---------30mW

---------173.45

Technology

Frequency

Topology

Diff./Quadrature

Tuning Range

Inductor Q

Phase Noise(dBc/Hz@1 MHz)

VCO powerVCO+ Buffer

FOM (VCO) (dB)(VCO+ Buffer)

90-nm CMOS

10 GHz

Colpitts

Diff.

12.2 %

10

-117.5

36 mW

181.9 --------

90-nm CMOS

10 GHz

Cross-Coupled

Diff.

15.8 %

10

-109.2

7.5 mW17.5 mW

180.4176.5

0.13-um CMOS

10 GHz

Cross-Coupled

Quad.

15%

-------

-95

14.4 mW--------

163.4--------

0.13-um CMOS

26 GHz

Gm Tuned

Diff.

23.6 %

18

-92.6

43.6 mW50 mW

163.9163.3

90-nm SOI

40 GHz

Cross-Coupled

Quad.

12.5 %

18

-87@3 MHz

---------81 mW

--------150.4

This workCSICS’06CSICS’06

Performance Comparison

17

0-3600 deskewModerate powerSupply NoiseDuty Cycle Dis.All pass JTF

Mux/Interpolator

[Maneatis’96]

0-3600 deskewSimple architectureUses 2f0 or 4 phaseNon-linearityAll pass JTF

T-FF

2f0

0o 90o

0o

90o

[ Takauchi’03Kromer’06]

Less supply noiseLess DCDLow pass JTFLow powerLimited deskew (<360)Non-linearitySkew dependent JTF

finj

Vcontrol

θinjθout

θout -θ inj

fosc-finj

[Zhang’06O’mahony’08]

Deskew Techniques

18

R

L

-1

VINJ

R

L

-1

VINJ

Passive Injection Technique

19

R

L M2

M1

-1

(gm1)

(gm2)VOUT θout

θinjIINJ

θoscIOSC

ILO based deskew

20

18.6 18.8 19 19.2 19.4-100

-50

0

50

100

Simulated [k=0.1]Measured [k=0.1]

fosc (GHz)

Deskew (deg.)

225 mV

50 mV

• 4.5 X Clock amplification• Less than 10% amplitude variation• 12 mW power consumption• Deskew << 180o

Deskewed clock

ILO based deskew (K=0.1)

21

Deskew (deg.)

fosc (GHz)18.5 19 19.5-100

-50

0

50

100

Sim.Sim.Meas.Meas.

100 mVK=0.1

K=0.2

• 2.25 X Clock amplification• More than 30% amplitude variation• 12 mW power consumption• Deskew range increases but non-linear

ILO based deskew (K=0.2)

22

RBW = 100 kHz 10 dB

5 MHzK=0.02

19 GHz

Input clock

Vcontrol

Outputclock

Spectrum Analyzer VCO JitterTF

Freq.fhighpass

Input JitterTF

Freqflowpass

Jitter Transfer Function

Input clock

K=0.1Outputclock

23

RBW = 100 kHz 10 dB

5 MHz

Input clock

K=0.02K=0.2

Outputclock

19 GHz

Input clock

Vcontrol

Outputclock

Spectrum Analyzer VCO JitterTF

Freq.

Higher K

Input JitterTF

Freq

Higher K

Jitter Transfer Function

24

Jitter of Deskewed Clock

18.5 19 19.5-100

-50

0

50

100

Sim.Meas.

-98 dBc/Hz (Ref. VCO)-107 dBc/Hz (20o)-110 dBc/Hz (0o)

25

Jitter of Deskewed Clock

18.5 19 19.5-100

-50

0

50

100

Sim.Meas.

-98 dBc/Hz (Ref. VCO)-99 dBc/Hz (90o)-110 dBc/Hz (0o)

26

18.5 19 19.5-100

-50

0

50

100

Sim.Meas.

Des

kew

(deg

.)

fosc (GHz)

Linear Region

Nonlinear Region

Nonlinear Region

Linear Region (deskew< 50o)Amplitude variation <10%Linear phase steps12 dB jitter reduction @ 0o

9 dB @ +/- 25o

Nonlinear Region (deskew> 50o)Amplitude variation >20%Non-linear phase stepsNo jitter reduction at 90o

Motivation: Achieve 0-360o deskew range using only the linear region

Summary: ILO Based Deskew

27

VCO

V control θout

θinj

θout -θ inj

fosc-finj

Proposed Deskew Technique

I-VCO

V control

Q-VCO

BinarySelection[1/0]

θout

θinj

θout -θ inj

fosc-finj

A

B

28

VCO

V control θout

θinj

θout -θ inj

fosc-finj

I-VCO

V control

Q-VCO

BinarySelection[1/0]

θout

θinj

θout -θ inj

fosc-finj90o

A

B

C

D

Proposed Deskew Technique

29

18.6 18.8 19 19.2 19.4-50

0

50

100

150Sim.Meas.

I-VCO

V control

Q-VCO

BinarySelection[1/0]

θout

θinj

fosc (GHz)

Des

kew

(deg

.)

K=.125Clock Amp=11.48 dB

Proposed Deskew Technique

30

fosc (GHz)

Des

kew

(deg

.)

K=.125Clock Amp=11.48 dBLess Amplitude variation

18.6 18.8 19 19.2 19.4-200

-100

0

100

200

I-VCO

V control

Q-VCO

BinarySelection[1/0]

θout

θinj

I-VCO

Q-VCO

Proposed Deskew Technique

31

18.6 18.8 19 19.2 19.4-200

-100

0

100

200

I-VCO

V control

Q-VCO

BinarySelection[1/0]

θout

θinj

A

B

I-VCO

Q-VCODes

kew

(deg

.)

fosc (GHz)

Proposed Deskew Technique

32

I-VCO

V control

Q-VCO

BinarySelection[1/0]

θout

θinj

AD BC

18.6 18.8 19 19.2 19.4-200

-100

0

100

200

A

B C

D

I-VCO

Q-VCO

Des

kew

(deg

.)

fosc (GHz)

Proposed Deskew Technique

33

18.6 18.8 19 19.2 19.4-200

-100

0

100

200

A

B C

D

E

F

F (-109 dBc/Hz)E(-108 dBc/Hz)

-98 dBc/Hz (Ref. VCO)I-VCO

Q-VCO

Deskew (deg.)

fosc (GHz)

Proposed Deskew Technique

34

18.6 18.8 19 19.2 19.4-200

-100

0

100

200

A

B C

D

E

F

I-VCO

Q-VCO

D (-104 dBc/Hz)B (-105 dBc/Hz)

-98 dBc/Hz (Ref. VCO)

fosc (GHz)

Deskew (deg.)

Proposed Deskew Technique

35

-100 -50 0 50 100-115

-110

-105

-100

-95Using Q VCOUsing Diff VCO

Phas

e N

oise

(dB

c/H

z)(@

1 M

Hz

offs

et)

Deskew (deg.)

Comparison and Summary

We have introduced: • Low power Q-VCO topology for high-speed applications• Utilize the QVCO based Deskew technique with inherent clock amplification and jitter filtering

36

Acknowledgements

•Intel Circuit Research Lab:F. O’Mahony, M. Mansuri & B. Casper for their contribution in clock deskew technique presented in this work

•Gennum Corporation:For providing design & fabrication facilities

37

39

Backup Slide: Calibration

Trigger

Delay

Channel 3

Channel 4Delay

Channel 3

Channel 4

Source

10 ps

30 mV

40

Backup Slide: Additional Verification

The same technique is also applicable with quadraturering oscillator