2005 stainless steels

Upload: anonymous-98vskytadg

Post on 22-Feb-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 2005 Stainless Steels

    1/76

    Stainless steels

    Iron-Chromium, iron-chromium-Nickel

    alloys but may contain other alloying

    elements that alter microstructure and or

    properties

    Minimum level of chromium - 11%

    Stainless steel discovered by Brarely/

    Sheffield in 11!

  • 7/24/2019 2005 Stainless Steels

    2/76

    "pplications

    #o$er %eneration

    #etrochemical Industries

    Nuclear applications

    &omestic applications

    #ulp' paper industries

    (e)tile industries

    &airy' food processing

    industries

  • 7/24/2019 2005 Stainless Steels

    3/76

    Applications

    Chemical, po$er ' *ngg - !+

    ood Industries - 1.

    (ransport - 1.

    Consumer goods '

    &omestic application - .

  • 7/24/2019 2005 Stainless Steels

    4/76

    %ood corrosion resistance

    %ood o)idation resistance

    0igh Stress rupture properties

    *rosion resistance

    %ood notch toughness properties -

    "ustss Cryogenic service

    resistance to brittle fracture

    #roperties

  • 7/24/2019 2005 Stainless Steels

    5/76

    Wrought Alloys, Pipes & tubes, Casting

    Major Alloying

    elements

    Prouct forms

    Cr, !i, C, Mn, "i, Cb, !,

    #i, Mo, Cu, "&P

    Physical properties

    Properties M"" $"" A""

    ensity gcc '() '() '()

    Melt pt( *C 1+)-1. 1+)-1. 1+)-1.

    #hermal e/apn( 11(0-1(1 11(-1(1 1'(-12(

    #her(Con( )(' +(+-0(. 1)('-()

  • 7/24/2019 2005 Stainless Steels

    6/76

    erritic stainless steel

    2artensitic stainless steels

    "ustenitic stainless steels

    &upel) stainless steels

    lassification

  • 7/24/2019 2005 Stainless Steels

    7/76

    erritic

    2artensitic

    "ustenitic

    &uple)

    lassification

  • 7/24/2019 2005 Stainless Steels

    8/76

    Classification

    A3"3 classification

    "eries Alloy type

    44

    .44

    +44

    Cr,!i

    Cr

    A3"3 classification

    5Castings6

    7!" classification

    Wrought- " Cast- 8

    9:-44

    Cr,!i,Mn

    94-44C4-44

  • 7/24/2019 2005 Stainless Steels

    9/76

    2a)imum service temperature in air

    for stainless steels

    %rade 2a)m(emp 3C4 51,5.16

    !51 .+5

    !5,!5+ .75

    !5. !

    !5 .5

    !15,!!5 15!5

    !18,!17,!1,!+7 .75

  • 7/24/2019 2005 Stainless Steels

    10/76

    Austenitic stainless steels

    %rade C Cr Ni Spladdition

    51 516 18-1. !6-66 N 56, 2n 66-76

    !5B 516 17-1 .-15 Si -!

    !5!Se 516 17-1 .-15 Se 516 - 55

    !5+0 55+-515 1.-5 .-156

    !5+9 55! 1.-5 .-1

    !5+ 9N 55! 1.-5 .-1 N 515 - 518

    !5 Cu 55. 17-1 .-15 Cu !-+

    !56 51 17-1 156-1!

    !5. 55. 1-1 15-1

    !5 55 -+ 1-16

  • 7/24/2019 2005 Stainless Steels

    11/76

    "ustenitic stainless steels

    %rade C Cr Ni Spladdition

    !5S 55. -+ 1-16

    !15 56 +-8 1-

    !15 S 55. +-8 1-

    !1+ 56 !-8 1- Si 16-!5

    !18 55. 18-1. 15-1+ 2o -!

    !18 55. 18-1. 15-1+ # 5,S 51

    !180 55+-515 18-1. 15-1+ 2o -!

    !189 55! 18-1. 15-1+ 2o-!

    !189N55! 18-1. 15-1+ N 51-518

  • 7/24/2019 2005 Stainless Steels

    12/76

    "ustenitic stainless steels

    %rade C Cr Ni Spladdition

    !17 55. 1.--5 11-16 2o !-+

    !1 55. 17-1 -1 (i - 6:C

    !+70 55+-515 17-1 -1! Nb .)C - 15

    !!5 55. 517-5 !+-!7

    !+. 55+-515 17-1 -1! ;

    ;Co 5, 15)C, 15 Nb,51 (a

  • 7/24/2019 2005 Stainless Steels

    13/76

    (ypical mechanical properties of

    "ustStsteel

    %rade (S32pa4

  • 7/24/2019 2005 Stainless Steels

    14/76

    ifficulties in ;eling "tainless steel

    3ntergranular corrosion

    "igma embrittlement

    "tress corrosion crac

  • 7/24/2019 2005 Stainless Steels

    15/76

    - Cracuus temp(

    - $ully Austenitic ;el metal are more susceptible

    - 9ot crac

  • 7/24/2019 2005 Stainless Steels

    16/76

  • 7/24/2019 2005 Stainless Steels

    17/76

    ", P, "i, ?, form li>ui films along B

    Belo; the solius temperature of the alloy, the metalhas not evelope strength

    #he contraction stresses cause tearing along

    grain bounaries

  • 7/24/2019 2005 Stainless Steels

    18/76

    55+

    1 1+ 18 1. 515

    Crack

    No Crack

    55.

    51

    5.Cr e=/ Ni e=

    S>#3,4

  • 7/24/2019 2005 Stainless Steels

    19/76

    ?ole of &elta ferrite

    - Cracking tendency decreases as the ferrite

    increases

    - Controlled level of ferrite 3+-15 4 is

    beneficial

    - errite has higher solubility for impurities

    - #rovides additional boundary area to act as

    sink for impurities

    - errite strengthens grain boundary

    - 9o$er thermal e)pansion coefficient

  • 7/24/2019 2005 Stainless Steels

    20/76

    elta ferrite

    $errite level epens on impurity level anservice conitions

    $errite reuces corrosion resistance

    $or urea service, nil or very lo; ferrite isre>uire

    $or e>uipments liuirement, nil ferrite is re>uire

    9igh temperature service, sigma embrittlement

    +-)% controlle ferrite level

    or cryogenic service @

  • 7/24/2019 2005 Stainless Steels

    21/76

    Austenite

    Aust($errite

    $errite

    AM

    MartensiteM$

    ACMC$

    Cr e>uivalentDCr1("iMo(!b

    1 1 . .

    1

    1

    .

    .

    1%$

    "chaeffler iagram

    !i e >

    u iv a le nt D

    !iM

    n&1. , C

    $CM

  • 7/24/2019 2005 Stainless Steels

    22/76

  • 7/24/2019 2005 Stainless Steels

    23/76

    3ntergranular corrosion 53C6

    - &uring $elding, 0"A e)periences a $ide temprange

    ?egions heated to 865 C n slo$ cooling Chromium carbideprecipitation at grain boundary takes place 3sensitiation 4

    - 9ess than 865 C, time is short

    - Chromium combines $ith C to form carbide 3 Cr! C84

    - Carbides are rich in chromium- appro) -+ times the

    nominal level

    - Cr depletion in adDacent regions of carbide

    - Corrosion attack at boundaries- Called as $eld decay $hen attack occurs in 0"A of

    $eldment

  • 7/24/2019 2005 Stainless Steels

    24/76

    I%C

    %rain boundary

    Chromium carbide

    Chromium depletion one

    Nominal chromium

  • 7/24/2019 2005 Stainless Steels

    25/76

    3ntergranular corrosion 53C6

    - "ustStsteel subDected to +.5-.16 C, susceptible to I%C

    - Cr depletion $hen carbide forms $idth 1 Em

    - strains at the carbide matri) interface

    Chromium diffusion is slo$er as compared to FC- preferred sites for carbide formation

    &elta ferrite - aust %rain boundary

    "ust %rain boundary

  • 7/24/2019 2005 Stainless Steels

    26/76

    (o avoid I%C

    ?educe carbon level 3 55+ ma)4

    (i ' Nb addition- appro) 8-. : C

    (i,Nb has higher affinity to$ards C

    (iC, NbC formed instead of Cr carbide

    Solution anneal

    Carbides dissolved in solution

    ?apid cool to retain the condition

    limitatation- &istortion

    &ifficult for large ' fully processed component

  • 7/24/2019 2005 Stainless Steels

    27/76

    (o avoid I%C

    9o$ carbon grades

    strength is lo$

    Nitrogen strengthened aust ststeel

    C- 55!, N-558-515

    !5+ N% ' !18 N% 3 Nuclear grade4

    BG? application - .5 C

    ?adiation cause Cr depletion and enrichment Ni level

    called Irradiation assisted SCC

  • 7/24/2019 2005 Stainless Steels

    28/76

    :nife line corrosion

    ?ccurs in stabilise graes of Aust(st(steel

    ;hen the 9AE e/periences temp( 1. C

    #iC, !bC are reissolve in solution

    ?n @api cooling no stablise carbies are

    forme

    uring annealing F - 0 C, Cr carbies

    are forme(

    Corrosion in narro; regions ;here !bC

    issolve(

    Stablise "nnaling can be done - .+6-55 C/6h

  • 7/24/2019 2005 Stainless Steels

    29/76

    Stress corrosion cracking 3SCC4

    ailure of metal due to the combined effects of corrosion

    and stress

    Causes

    Corrosive environment

    Stress - "pplied, residual or both

    2echanism

    &estruction of passive film at localised region

    2icro anode formation

    Stress concentration at these points

    ormation of primary cracks

    Crack propagation - Corrosion and stress interaction

  • 7/24/2019 2005 Stainless Steels

    30/76

    actors influencing SCC

    Stress - "pplied, residual

    - 2inimum stress for propagation

    - Compressive stresses do not cause

    SCC

    Corrosive medium - Chlorides- Caustic solution

    - 0ydrogen sulphide

    (emperature - Susceptibility increases $ith

    increase in temperature

    Chemical composition- Nickel alloyed reduces SCC

    3 !6-+5 Ni fully prevents SCC4

  • 7/24/2019 2005 Stainless Steels

    31/76

    actors influencing SCC

    - Si ' 2o increases ?esistance to SCC

    - %rain boundary carbides- Increases SCC

    (o prevent SCC

    - "void crevices

    - ?educe residual stress - #G0( re=d

    - Compressive stresses can be induced by

    #eening

    - Ghen conditions cannot be changed, material has

    to be changed

  • 7/24/2019 2005 Stainless Steels

    32/76

    - #ure metals generally immune to SCC

    "lloying a metal $ith more noble metal to forma homogeneous solid solution susceptible to

    SCC

    Characteristics of SCC

    Brittle fracture

    (ranscrystalline or inter crystalline

    &iscontinuous process

  • 7/24/2019 2005 Stainless Steels

    33/76

    Gelding of "ust stainless steels

    "ustenitic stainless steels $eldability is good

    *)cept o)y acetelyne, all $elding process can be

    adopted

    %enerally matching $eld consumables are available

    iller metal selection ' procedure depends on

    Ghether ferrite is acceptable in $eld

    If ferrite is acceptable, range of filler and procedure

    are $ide

    If ferrite is not acceptable to $eld, then the procedure

    is restricted

  • 7/24/2019 2005 Stainless Steels

    34/76

    Gelding of "ust stainless steels

    S2"G electrodes ferrite level - 5 - 5 N

    Solid rods - ! - . N

    *)))-16 electrodes better resistant to hot cracking

    Conve) beads are better than concave

    *)))16 provides conve) $hile *)))-18 that of nearly

    flat profile

    ully austenitic ststeel $elding

    Impurities H S,# shall be lo$"void high heat input

  • 7/24/2019 2005 Stainless Steels

    35/76

    Gelding of "ust stainless steels

    Ese lo$er dia electrode

    use lo$er range of current

    "void narro$ deep $eld puddle

    "void $eld pool $ith sharp tail

    9o$ heat input

    Short arc to be maintained during $elding to avoid N

    pick up

    No preheat /#ost heat re=uiredInter-pass temperature ma)imum 165 C

    cleaning tools such as $ire brushes and chipping

    hammers shall be of stainless steels

  • 7/24/2019 2005 Stainless Steels

    36/76

    iller metal for "ustenitic stainless steels

    2aterial S2"G %("G, %2"G

    51,5,56 *+5 *?+5

    !51,!5,!5+,!56,!5. *!5. *? !5+9

    !5+9,C! *!5.9 *? !5.9!5+0 *!5.0 *?!5.0

    !5,!5S,!50,C05 *!5 *?!5

    !5Cb, !50 Cb *!5Cb

    !15,!15S,!150,C5 *!15 *? !15

    !15Cb *!15 Cb

    !18,C .2 *!18 *? !18

    iller metal for "ustenitic stainless steels

  • 7/24/2019 2005 Stainless Steels

    37/76

    iller metal for "ustenitic stainless steels

    2aterial S2"G %("G, %2"G

    !189,C!2 *!189 *? !189

    !180 *!180 *? !180

    !17,C%.2 *!17 *? !17

    !1,!10,!+7,!+70,!+. *!+7 *?!+7

    !5, C2 72 *!5 *?!5

    !!5 *!!5 *?!!5

    C.,C5 *!5. *?!5.

    C%1,C05 *!5 *? !5

    C.C *!+7 *? !1

    CN!2 *!.6

  • 7/24/2019 2005 Stainless Steels

    38/76

    Chemical composition of "ustiller metal%rade C Cr Ni Spl

    *5 558 5-+ -1 +-72n, 16-!5 2o*1 558 1-1 6-7 .-152n

    *+5 558 17-1 +-8 15-1!2n

    *!57 55+-51+ 1.-1 -15 56-162o, !- +72n

    *!5. 55. 1.-1 -11

    *!5.0 55+-55. 1.-1 -11

    *!5.9 55+ 1.-1 -11

    *!5.2o 55. 1.-1 -1 -! 2o

    *!+7 55. 1.-1 -11 .C-1 Cb

    *!5 516 -6 1-1+

    *!5Cb 51 -6 1-1+ 57-15Cb

    *!15 55.-55 6-. 5-

  • 7/24/2019 2005 Stainless Steels

    39/76

    Chemical composition of austiller metal%rade C Cr Ni Spl

    *!15Cb 51 6-. 5- 57-1*!150 5!6-5+6 6-. 5-

    *!1 516 .-! .-15

    *!18 55. 17-5 11-1+ -! 2o

    *!1. 55. 17-5 11-1+ 8:C- Cb -15

    *!17 55. 1.-1 1-1+ !-+ 2o

    *!5 557 1-1 !-!8 .:C- 1Cb, !-+ Cu

    *!59? 55! 1-1 !-!8

    *!!5 51.-56 1+-17 !!-!7

    *!+ 51! 1.-1 .-15 5!6-5862o, 576Cb

    *!.! 55! 8- !5-!! !-+ 2o, 58-16Cu

    *!.6 55! 1-1 +-8 +-6 2o, 1- Cu

  • 7/24/2019 2005 Stainless Steels

    40/76

    #ost$eld heat treatment

    - Selection of Stress relief heattreatment depends on

    - &esign and operating condition

    - Specific materials used

    - abrication procedures involved

  • 7/24/2019 2005 Stainless Steels

    41/76

    #ost$eld heat treatment

    "pplication 9o$ C grade (hermal treatment

    Stabilised Enstabilised

    Severe SCC ",B B," -

    2oderate SCC ",B,C B,",C C -

    2ild SCC ",B,C,*, B,",C ,*, C,

    No SCC ----------not re=d -----

    I%C ",C ",C,B C

    Severe orming ",C ",C C

    "- "nneal 1585-115C, slo$ cool *- S? +.5-865C,slo$ coolB- S? 55C, slo$ cool - S? @+.5C, slo$ cool

    C- "nneal 1586-115, =uenching

    &- S? 55C, =uenching

  • 7/24/2019 2005 Stainless Steels

    42/76

    *ssentially iron chromium alloysNi is usually less than 1

    (i, "l,Cb ' Se added for spl properties

    Service upto 65 JC

    BCC structure

    2oderate corrosion resistance

    9o$ ductility' toughness

    ?esistance to SCC good than "ES(SS

    Can not be hardened by 0(

    Eseful In automotive e)haust system

    erritic stainless steels

  • 7/24/2019 2005 Stainless Steels

    43/76

    Chemical compositions of typical ferritic stainless steels

    rae C Mn "i !i Cr ?thers

    + 0.08 1.00 1.00 - 11.5-14.5 0.10-0.30 Al

    +2 0.08 1.00 1.00 - 10.5-11.75 Ti; 6XC min

    +. 0.12 1.00 1.00 - 16.0-18.0 -

    +.#i 0.10 1.00 1.00 0.75 16.0-19.5 Ti; 5XC-0.75

    +. 0.10 1.00 1.00 0.75 16.0-19.5 Ti; 5XC-0.75

    +.+ 0.121.001.00- 16.0-19.5 0.75-1.25 Mo

    +.0 0.121.001.00- 16.0-19.5 0.75-1.25 Mo

    Nb 5 X C

  • 7/24/2019 2005 Stainless Steels

    44/76

    Chemical compositions of typical ferritic stainless steels

    rae C Mn "i !i Cr ?thers

    ++ 0.20 1.00 1.00 - 16.0-23.0 Ti 0.20+4(C+N)

    ++0 0.20 1.50 1.00 - 23.0-27.0 Ti 0.25

    0-1 0.006 0.75 0.75 0.50 25.0-27.0 0.75-1.50 Mo. 0.20

    -1.0Ti 0.04 N,0.2 Cu

    2-+- (1 ( (. (-( )(-.( .(-+(Mo,(1 Cu

    CB . (. 1( 1( ( 1)(-1( Casting

    CC ( 1(-1( +( 0(-.( Casting

  • 7/24/2019 2005 Stainless Steels

    45/76

    Martensite

    uctility #oughness

    rain coarsening

    3mprove

    @euce

    PW9#

    @euce

    =o; interstials

    !l"#bili$%

  • 7/24/2019 2005 Stainless Steels

    46/76

    9o$ interstials 3ntermeiate

    purity

    1-) ppm

    7ltra high purity

    5C!6G 1 ppm

  • 7/24/2019 2005 Stainless Steels

    47/76

    +' Hmbrittlement

    - - "ging of e-Cr alloys at +55 -665 C for e)tendedperiods

    causes formation of Cr rich precipitates -

    - 0ard brittle inter metallic compound

    - 0ardness and strength increases

    - &rastic reduction in ductility and toughness

    - Impact transition temperature is increased

    - "lloying elements Cr,2o, increases embrittlement

    - Co, "l' Ni reduces embrittlment

    - Corrosion resistance decreased

  • 7/24/2019 2005 Stainless Steels

    48/76

    - "ging of e-Cr alloys at +55 -665 C for e)tendedperiods causes formation of Cr rich precipitates

    - 0ard brittle inter metallic compound

    - 0ardness and strength increases

    - &rastic reduction in ductility and toughness

    - Impact transition temperature is increased

    - "lloying elements Cr,2o, increases embrittlement

    - Co, "l' Ni reduces embrittlment

    +76 *mbrittlement

  • 7/24/2019 2005 Stainless Steels

    49/76

    Weling of $""

    Matching consumable

    uctility & toughness lo;

    PW9# re>uire

    PW9#- ' - ) C cool

    rapily throI -+C

    H+2Cb H+.#3 H+. Cb

  • 7/24/2019 2005 Stainless Steels

    50/76

    Weling of $""

    %("G

    CE??*N(

    (ype-&C

    #olarity-*lectrode negative

    *lectrode-(ungsten (horia

    -(apered tip

    %as shielding-

    "r ,0e ,"r> 0e

    0igh purity gas

    (railing gas used for high speed

    process

  • 7/24/2019 2005 Stainless Steels

    51/76

    Weling of $""

    %("G

    Back gas shielding

    0igh =uality gas for full penetration

    Nitrogen should not be used

    Inert gas used atleast for t$o layers

    (railing gas shielding

    used for high speed automatic process

    "rc stability

    reduced by o)idation of electrode tip

  • 7/24/2019 2005 Stainless Steels

    52/76

    Weling of $""

    %("G

    #rocedure to enhance $eld =uality

    %roup III "lloys

    (horough degreasing

    use clean gloves

    keep torch at right angles

    $eaving not permitted

    prepurge the torch before $elding

    gradual increase and decrease of current $hile

    initiating and e)tinguishing the arc

  • 7/24/2019 2005 Stainless Steels

    53/76

    Weling of $""

    %2"G

    CE??*N( (ype-dc,#olarity-electrode #ositive

    2ethods of metal transfer

    Spray transfer-high heat input - e)cessive grain gro$th

    %lobular transfer-lo$ heat input - minimied spatter

    short circuit transfer-lo$est heat input - lack of fusion

    (o control grain gro$th

    use austenitic filler metal

    0igh travel speed

    lo$er interpass temperature

    use heat sinks

  • 7/24/2019 2005 Stainless Steels

    54/76

    Weling of $""

    %2"G

    Shielding gas

    "r > or C

    pure "r -results in arc instability

    for group III alloys o)idising gases reduces toughness

    and ductility

    (o solve "rc $andering problem

    add o)idiing elements into the inert gas

  • 7/24/2019 2005 Stainless Steels

    55/76

    Weling of $""

    C"G

    S0I*9&IN%- either supplementary gas shielding or

    self shielding consumable

    %roup III alloys-difficulty of maintaining alloy purity

    $eld deposits not clean

    use $hen

    application is less critical

    filler used is austenitic

    mode of operation -spray arc-high heat input

    -problem of grain gro$th

    Weling of $""

  • 7/24/2019 2005 Stainless Steels

    56/76

    Weling of $""

    S2"G

    Current K type dc, polarity-electrode positive

    *lectrodeK

    choice of electrode-0igh Cr austenite grade to

    high nickel alloy grade

    Ese dissimilar $elding electrode $hen post$eld

    annealing is not practical

    for group III alloys covered electrodes for matchingcomposition is not available

    Improper storage -pick up of moisture -$eld porosity,0IC

    Weling of $""

  • 7/24/2019 2005 Stainless Steels

    57/76

    Weling of $""

    S2"G

    $ith matching filler - lo$er toughness0igh nickel alloy $eld metal - sluggish,shallo$ penetration

    0eat input K

    $hen "SS filler is used provide sufficient heatto fuse SS $eld metal and to avoid lack of fusion

    %eneral techni=ues

    Geld Doint surfaces to be cleaned using solvents

    "rc should be struck in the bevel rather than on base metal

    short arc shall be maintained *)cessive crater cracks

    must be ground to sound $eld metal

  • 7/24/2019 2005 Stainless Steels

    58/76

    Weling of M""

  • 7/24/2019 2005 Stainless Steels

    59/76

    Chemical compositions of martensitic stainless steels

    %rade C 2n Si Cr Ni others

    +5! 516 155 565 116-1!5

    +15 516 155 155 116-1!5

    +1+ 516 155 565 116-1!5 16-65

    +18 516 16 565 15-1+5 S-516 mi

    +5 516 min 155 15-1+5

    + 55-56 576 115-1!5

    +!1 55 155 155 165-175 16-65

    ++5" 585-576 165-175 16-65 5762o

    ++5B 576-56 C ++5 C K 56-15 C

    Ch i l iti f t iti t i l

  • 7/24/2019 2005 Stainless Steels

    60/76

    Chemical compositions of martensitic stainless

    steels

    %rade C Cr Ni others

    C"8N2 558 116-1+5 !6-+6 5+5 -15 2o

    C"16 516 116-1+5 15 565 2o

    C"+5 5+5 116-1+5 15 56 25

    Cr-317:C4 @ 16 2ss

    Cr-317:C4 L 16 SS

  • 7/24/2019 2005 Stainless Steels

    61/76

    Geldingof Martensitic stainless steels

    2SS- highly sensitive to 0ydrogeninduced cracking

    Causes

    0igh strength and inade=uate

    toughness, ductility

    0ydrogen

    ?estraint

    Weling of martensitic stainless steels

  • 7/24/2019 2005 Stainless Steels

    62/76

    Weling of martensitic stainless steels

    Ese e)tra lo$ hydrogen $elding

    Ese lo$ heat input

    2aintain preheat , #ost heat and

    interpass temp control

    Post ;el 9eat treatment for Martensitic

  • 7/24/2019 2005 Stainless Steels

    63/76

    +5!,+15,+18 865-785 JC .!5-..6

    +1+ 865-7!5 Not recommended

    +5 8.5-785 .!5-..6

    +!1 85-755 Not recommended

    ++5",B,C8.5-785 .65-55

    C"8N2 855-85 7.5-.16

    C"16,C"+5 85-865 .65-55

    ; urnace cool up to 855 JC and then air cool

    Post ;el 9eat treatment for Martensitic

    stainless steels

    #ype "ubcritical PW9# $ull annealing J

    KC

    (ypical preheat and post $eld heat treatment re=uirements of

  • 7/24/2019 2005 Stainless Steels

    64/76

    (ypical preheat and post $eld heat treatment re=uirements of

    martensitic stainless steelss

    Carbon #reheat 3C4 #G0(@556 15 ptional

    556-516 55 ?ecommended

    L556 !16 Necessary

  • 7/24/2019 2005 Stainless Steels

    65/76

    Thank you

  • 7/24/2019 2005 Stainless Steels

    66/76

    &uple) stainless steels

    -($o phase alloys

    - "ppro)imately e=ual amounts of ferrite and austenite

    - Carbon ma) 55!

    - Better $eldability

    - 0igher strength compared to "ustss

    - Better SCC resistance than "ust SS

    - Better ductility and toughness than SS

  • 7/24/2019 2005 Stainless Steels

    67/76

    Composition of &uple) stainless steels

    %rade Cr Ni N 2o(s

  • 7/24/2019 2005 Stainless Steels

    68/76

    Gelding of &SS

    - #erformance significantly affected by $elding

    - No preheat re=uired

    - No #G0( re=uired

    - I #G0( is re=uired, then heating to 1565 C and

    cooled rapidly

    - Interpass temp 165 C for 56 steel and 75 C for

    657 steel

  • 7/24/2019 2005 Stainless Steels

    69/76

    .55

    1555

    155

    1+55

    15 16

    "

    >

    "

    9

    9>"

    9>">9>

    (emp C

    Ni

    Si b ittl t

  • 7/24/2019 2005 Stainless Steels

    70/76

    Sigma embrittlemnt

    - 0eating in 6+5-1555 C results in formation of

    sigma

    - Sigma is mainly e, Cr compound $ith otherelements like 2o

    - sigma formation is sluggish

    - orms congruently from ferrite at .16 C

    - Cold $ork accelerates Sigma

  • 7/24/2019 2005 Stainless Steels

    71/76

    Influence of sigma

    - "mount of sigma- &istribution

    - isolated colonies - little effect

    - Continuous net$ork - brittleness

    - &elta ferrite promotes sigma

    - 2inor effect on tensile and hardness

    - Notch sensitivity increased

    - Impairs corrosion resistance in highly

    o)idising *nvt

    # i it ti h d i t i l t l

  • 7/24/2019 2005 Stainless Steels

    72/76

    #recipitation hardening stainless steels

    Properties

    9igh strength better than Aust( "t(steel

    Corrosion resistance comparable to A3"3 .1, .+'

    corrosion resistance -

  • 7/24/2019 2005 Stainless Steels

    73/76

    0eating above .18C ferrite transforms to "ustenite

    martensite forms on cooling

    0igh chromium SS - does not transform to 2artensite

    Carbide precicptitation

    %rain gro$th above 5 C

    (ransition temperature - above ?oom temp

    Carry out #G0( to improve the toughness ' ductility

  • 7/24/2019 2005 Stainless Steels

    74/76

    &issimilar Gelding

    #roblems of dissimilar $elding

    Incompatibility of materials on either side

    ptimiation of 0eat treatment

    Selection of filler metal

    &ifferences in thermal e)pansion coefficient

    "ustenitic stainless steels castings

  • 7/24/2019 2005 Stainless Steels

    75/76

    "ustenitic stainless steels castings

    %rade $rought C Cr Ni

    C"16 +15 2 516 11-1+ 1 562o

    C"+5 +5 2 5+5 11-1+ 1 56 2o

    CB!5 +!1,++ >C 5!5 1.- -

    Not re=d

    Hffect of elta ferrite on tensile properties

  • 7/24/2019 2005 Stainless Steels

    76/76

    Hffect of elta ferrite on tensile properties

    $errite 5%6 #" J5MPa6 JL"5MPa6 %H J %@AJ

    . +0..2 101+ 0+ 0+0.

    1 +2). .+12 01+. '.02

    )++' 201). ..0 )+'

    +1 0.++)) ..11)) +.. +'+2

    J @oom temp. KC