2010 report on airborne observations required to support ... · 2010 report on airborne...

71

Upload: nguyenngoc

Post on 18-Aug-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

2010 Report on Airborne Observations required to support the next generation of NASA Earth science satellite missions

December 2010

National Aeronautics and Space Administration

Airborne Science Program

Susan SchoenungLongitude 122 West, Inc.

Matt FladelandNASA Ames Research Center

1 Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 .1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 .2 NASA Flight Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 .3 NASA Airborne Science Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 .4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Foundational Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 .1 Glory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 .2 Aquarius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 .3 NPOESS Preparatory Mission (NPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 .4 Landsat Data Continuity Mission (LDCM) . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 .5 OCO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 .6 Global Precipitation Measurement (GPM) . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 .7 SAGE-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 .8 GRACE follow-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 .9 Geostationary Operational Environmental Satellite (GOES-R) . . . . . . . . . . 25

4 Decadal Survey Tier I Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 .1 Soil Moisture Active Passive (SMAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 .2 Ice, Cloud, and Land Elevation Satellite (ICESAT) II . . . . . . . . . . . . . . . . . 29

4 .3 Deformation Ecosystem Structure and Dynamics of Ice (DESDynI) . . . . . 31

4 .4 Climate Absolute Radiance and Refractivity Observatory (CLARREO) . . . 32

5 Decadal Survey Tier II Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 .1 Surface Water Ocean Topography (SWOT) . . . . . . . . . . . . . . . . . . . . . . . 35

5 .2 Hyperspectral Infrared Imager (HyspIRI) . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 .3 Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 .4 Geostationary Coastal and Air Pollution Events (GEO-CAPE) . . . . . . . . . . 39

5 .5 Aerosol - Cloud - Ecosystems (ACE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

TABLE OF CONTENTS

iii

6 Decadal Survey Tier III Mission Support . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 .1 Lidar Surface Topography (LiST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 .2 Precision and All-weather Temperature and Humidity (PATH) . . . . . . . . . . 45

6 .3 Global Atmospheric Composition Mission (GACM) . . . . . . . . . . . . . . . . . 46

6 .4 Snow and Cold Land Processes (SCLP) . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 .5 Gravity Recovery and Climate Experiment (GRACE)-II . . . . . . . . . . . . . . . 47

6 .6 Three Dimensional Tropospheric Winds from Space-based Lidar (3-D Winds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 .7 TIER 3 Missions Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Synthesis and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 .1 Cross-cutting requirements and gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 .2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix A: The Airborne Science Program . . . . . . . . . . . . . . . . . . . . . . 53

Appendix B: Decadal Survey Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendix C: Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Appendix D: Program Executives and Scientists . . . . . . . . . . . . . . . . . . . 63

iv

1 EXECUTIVE SUMMARY

This report presents a snapshot in time of known or projected requirements for support from the NASA Airborne Science Program (ASP) for upcoming Earth Science satellite missions . Those missions begin with Glory, scheduled to launch in early 2011, and proceed through the “Tier 3” Decadal Survey missions, which will launch sometime after 2020 .

The types of support required by NASA Earth observing missions from ASP included instrument flight test and algorithm development before launch, and calibration of instruments and algorithm validation measurements post-launch in support of data product generation . In addition, the Program supports “gap filler” to acquire observations between satellite missions; Operation Ice Bridge is one example. Also, the ASP will continue to support other R&A projects, that may or may not use satellite data from these upcoming missions, to address fundamental science questions on Earth system phenomenon and processes . Figure 1 shows the preliminary platform requirements to support upcoming NASA Earth Science missions .

1

Fig. 1: Preliminary platform requirements.

- IIP-funded instruments- AITT-funded instruments

2

The requirements described in this report were gathered from mission cal/val plans, discussions with instrument developers, science teams, and program and project scientists . Assuming funding is available, the Airborne Science Program is well positioned to meet the needs of these missions in most cases . High demand for several platforms, the G-III carrying UAVSAR in particular, may cause scheduling issues . In some cases, integration of new instruments may also challenge available resources, but should be doable with advance planning . Indeed, the major message of this report is that science teams need to make their plans and needs known as early as possible for a successful outcome .

There are also opportunities for airborne missions to support multiple tasks, where cross-cutting requirements have been identified. This occurs when common instruments are requested for similar types of measurements. Examples include the use of LVIS for ice topography measurements that could benefit both ICESat-2 and DESDynI, or the use of MASTER to support spectral imaging missions such as HyspIRI and NPP . These examples have not been discussed with the science teams . The GEO-CAPE and ACE teams have discussed their mutual interest in coastal ocean measurements .

Figure 2 illustrates the level of aircraft support that may be required over the next five years. Projections beyond such a timeframe are not useful given the lack of data on missions beyond that time horizon . Additionally, the figure provides a representative breakdown by mission. Note that many of the requirements are for flight testing of instruments developed under the Earth Science Technology Office.

Fig. 2: Platform support for future missions. NASA’s Earth Science Technology Office (ESTO) manages the Instrument Incubator Program (IIP) and Airborne Instrument Technology Transition (AITT) programs.

NASA Airborne Science Program supporting Decadal Survey Missions

DC-8

ER-2

WB-57

P-3

G-III / UAVSAR

Lear 25

B-200

Global Hawk

SIERRA

Twin Otter

Glo

ry

Aqu

ariu

s

NP

P

LDC

M

OC

O-2

GP

M

SA

GE

-III

GO

ES

-R

CLA

RE

O

SM

AP

ICE

Sat

-II

DE

SD

yni

Hys

pIR

I

AS

CE

ND

S

SW

OT

GE

O-C

AP

E

AC

E

LIS

T

PATH

GR

AC

E-II

SC

LP

GA

CM

3D-W

inds

3

Table 1 summarizes what is currently known about Airborne Science support activities required for upcoming Flight Program missions. Table 1 and the preceding figures do not include requirements for upcoming field campaigns sponsored by the Research and Applications (R&A) program . (Acronyms are spelled out in Appendix 3 .)

MissionEstimated Launch Date

Program Executive

Program Scientist

Satellite Instruments

Supporting Airborne Instruments

Airborne Science Support Activities

Foundational Missions

Glory February 2011 Bretthauer Maring Aerosol Polarimeter (APS), Total Irradiance (TIM)

RSP, ATS, Nephalometers

Cal / val

Aquarius April 2011 Ianson Lindstrom Radiometers,Scatterometer

PolSAT Cal / val

NPP September 2011 Carson Wickland VIIRS, CrIS, ATMS, OMPS

NAST, S-HIS, MAS, PSR, APMIR, MASTER, AVIRIS

Algorithm development, cal / val

LDCM December 2012 Jarett Wickland Multi-band land imager

MAS, EMAS Cal / val

OCO 2 February 2013 Ianson Jucks NIR spectrometer ASCENDS test beds, in situ CO2

Algorithm development, Cal / val

GPM July 2013 Neeck Kakar Microwave Imager (GMI), Doppler Precipitation Radar (DPR)

EDOP Algorithm development: MC3E

Algorithm development: COLDEX

HMT

NAMMA2

Cal / val

SAGE-III Mid 2013 Topiwala Considine Spectrometer Multiple payloads Algorithm development,

GRACE follow-on Mid 2016 Neeck LaBrecque Inter-satellite ranging N/A N/A

GOES-R October 2012 Topiwala Bontempi Advanced Baseline Imager (16 channels)

AVIRIS/MASTER Algorithm development, Cal / val

Tier I Decadal Survey Missions

SMAP November 2014 Ianson Entin L-band radar, L-band radiometer

UAVSAR CANEX Freeze-Thaw

UAVSAR CANEX10

Table 1: Summary of Future Missions and ASP activities.

4

MissionEstimated Launch Date

Program Executive

Program Scientist

Satellite Instruments

Supporting Airborne Instruments

Airborne Science Support Activities

PALS instrument test

SMAPVex 2012

SMAPVex 2015

ICESat II Late 2015 Slonaker Wagner Laser altimeter LVIS OIB

ATM OIB

MABEL instrument test

SIMPL Instrument test flight

LVIS-GH OIB

CLARREO-1 2017 Slonaker Jucks Solar radiometer, IR spectrometer, GPS RO

INFLAME Algorithm development, cal/val

CLARREO-2 2020 Slonaker Jucks Solar radiometer, IR spectrometer, GPS RO

AITT instruments, far IR

Algorithm development, cal/val

DESDynI 2017 Dutta LaBrecque InSAR, LIDAR Flash Lidar instrument test flights

InSAR, LIDAR LVIS-GH Instrument test flights

UAVSAR Algorithm development

Tier II Decadal Survey Missions

SWOT 2020 Neeck Lindstrom Ka-band radar, C-band radar

KaSPAR, HAMSR Cal / val

AirSWOT Algorithm development

ASCENDS 2019 Neeck Jucks CO2 Lidar MFLL, CO2 Lidar Sounder, CO2 LAS

Instrument flight test

A

B

C

Broadband lidar Instrument flight test

ACCLAIM Instrument flight test

Cal / val

HyspIRI >2020 Neeck Turner VIS-IR imaging spectrometer

HYTES Instrument test

EMAS Instrument test

Mineral and gas identifier

Instrument test

5

MissionEstimated Launch Date

Program Executive

Program Scientist

Satellite Instruments

Supporting Airborne Instruments

Airborne Science Support Activities

PACE 2018 Neeck Maring Ocean radiometer (ORCA), OES

ORCA simulator Air-ocean flux measurements

Ship-based UAV

ACE >2020 Neeck Maring Polarimeter, Lidar, cloud radar

Competing polarimeters

Instrument flight test (PODEX), cal / val

CATS

HSRL/DIAL

HSRL & RSP

MACPEX

ACE-PEX 12

PACE3E

ACE-ALDEX13

ACE-ALDEX15

GEO-CAPE >2020 Neeck Al-Saadi Hyperspectral imagers

IIPFTS instruments Algorithm development, instrument flight test

GEO-CAPE >2020 Neeck Al-Saadi Hyperspectral imagers

PRISM Instrument test

PRISM Instrument test

Cal / val

Tier III Decadal Survey Missions

SLCP >2020 Neeck Entin Ku- and X- band radars, K- and Ka-band radiometers

X-band phased array (IIP), K- and Ka-band radars

Instrument flight test, radiometers on GH

LIST .2020 Neeck Dobson LIDAR Swath-mapping lidar (IIP)

Instrument flight test

SIMPL Algorithm development

GACM >2020 Neeck Jucks UV spectrometer, IR spectrometer, Microwave limb sounder

Microwave limb soumder (IIP)

Instrument flight test

PATH >2020 Neeck Kakar Microwave array spectrometer

MW array spectrometer

Instrument test flight

GRACE II >2020 Neeck LaBrecque Microwave or laser ranging systems

Limb sounder Instrument test flight

3-D WINDS >2020 Neeck Kakar Lidar DAWN-Air2 Instrument test flight

TwiLiTE Instrument test flight

Coherent Doppler Lidar (AITT)

Instrument test flight

6

MissionEstimated Launch Date

Program Executive

Program Scientist

Satellite Instruments

Supporting Airborne Instruments

Airborne Science Support Activities

EV-1 Missions

Hurricane Sentinel 2010-2014 Avery Maring GRIP hurricane payload

Field campaign: supports PATH, ACE, 3-D Winds, GPM

DISCOVER-AQ 2010-2014 Avery Maring Column sampling, HSRL, ACAM

Air pollution: supports GEO-CAPE, ACE, GACM

CARVE 2010-2014 Avery Maring Surface carbon sampling; PALS, FTS, gas analyzer

Arctic climate change; supports SMAP, HsypIRI, DESDynI, ASCENDS, OCO reflight.

AirMOSS 2010-2014 Avery Maring Modified UAVSAR Vegetation: supports SMAP, DESDynI

ATTREX 2010-2014 Avery Maring GLOPAC-type sampling payload

Strat/Trop chemistry and aerosols

2.1 Purpose

This report presents the known and projected use of NASA’s Airborne Science Program (ASP) assets to support the development and implementation of upcoming NASA Earth Science satellite missions, including both foundational and Decadal Survey recommended missions [1] . 1

The report is a companion to, “NASA Earth Science Requirements for Suborbital Observations,” a compendium of Airborne Science mission requirements, published in 2007 [2] with the primary objectives to:

• Define major requirements for airborne observations for all upcoming NASA Earth Science Division satellite missions .

• Provide an analysis of areas of common interest among missions and gaps in capabilities that threaten access to needed airborne observations .

• Assess needs against other ASP partners including R&A projects, ESSP EV-1, and ESTO technology development .

2.2 NASA Flight Programs

In order to study the Earth as a system and understand how it is changing, NASA develops and supports a constellation of Earth observing satellite missions that test new instruments and observing techniques and, when necessary, provide continuity of datasets for important environmental and climate data records . These missions provide Earth science researchers the data they require to address NASA’s Earth science questions .

The Flight Programs element of the science mission directorate is responsible for providing engineering support and flight operations across the entire life of an Earth science satellite mission. This includes any airborne support required prior to, and following launch . NASA missions begin with a study phase during which the key science objectives of the mission are defined, requirements are developed and designs for spacecraft and instruments are analyzed . Following the study phase, missions enter a development phase

7

2 INTRODUCTION

1 The“DecadalSurvey”istheNationalResearchCouncilReport“EarthScienceandApplicationsfromSpace:NationalImperativesfortheNextDecadeandBeyond,”released15January2007.Itprovidesscientificgoals,observationneeds,applicabletechnologies,aprogramofrecommendedmissions.

whereby all aspects of the mission are developed and tested to ensure they will meet the mission objectives . Operating missions are those missions that are currently active and providing science data to researchers . Operating missions may be in their primary operational phase or in an extended operational phase .

2.3 NASA Airborne Science Program

TheASPreportstotheEarthScienceFlightProgramsOfficeandservestheResearchandAnalysisprogramoftheEarthScienceDivision,withintheScienceMissionDirectorate(SMD).ASPprovidesflightandairbornemeasurementsinsupportoffieldscience,algorithmdevelopment,instrumenttest,andsatellitecalibrationandvalidation.

ThisreportservestheNASAASPbyhighlightingrequirementsthatemphasizetheneedforsustainedandaugmentedcapabilitieswithintheprogram.TheAirborneScienceProgramhasalwaysprovidedbothpre-andpost-launchsupporttoEarthsciencemissions,mostrecentlytheelementsofEOSand,specifically,theA-Train.Inaddition,ASPassetsareusedtodevelopthenextgenerationofsatelliteinstrumentsthroughESTOandothertechnologyprograms.

Foundationalmissions,thosedevelopedfollowingEOSandpriortotheDecadalSurvey,andscheduledforlaunchwithinthenexttwoyears,willmakeuseofAirborneSciencecapabilitiesforinstrumenttestandalgorithmdevelopment.ThecapabilitiesoftheASP,bothplatformsandsensors,havebeendeveloped/modified,maintainedandoperatedtomeetthoseneeds.

AsthefifteennewDecadalSurveymissionsarenowintheearlystagesofdevelopment,andtheEarthVentureProgrambegins,itisappropriatefortheASPtoevaluatetheupcomingrequirementsforservicesandcapabilitiestosupportthesemissions.Specificquestionsincludetheavailabilityofplatformstomeetincreaseddemandforflighthoursordeploymenttoremotelocations,andthecapabilityoftheplatformstobeadaptedfornewinstrumentsorpayloadsuites.Theinterestinrealtimedataandmultiple,simultaneoussourcesofinformationfeedtheneedforanimprovednetworkingcapability,includingsuborbitalandorbitaldatastreams.

2.4 Approach

TheapproachtocollectingandinterpretingtheneedsforASPassetshasbeenprimarilythroughconversationwithpotentialusers.WithintheNASASMDEarthScienceDivision,eachnewprogramhasaProgramExecutiveandaProgramScientistwhointerfacewiththeProgramExecutive,andthesciencecommunityinterestedinthemission.Thoseinterviewedforthisreportincludedtheaboveplusprogrammanagers,scienceteammembers,andfieldtestplanners.ASPpersonnelhavealsoattendedmanymissionplanningandscienceteammeetingsandworkshops,gatheringinformationfrompresentationsanddiscussions.Forseveralmissions,detailedfieldtestplanshavealreadybeengenerated.Formostofthemissions,thesupportneedsmaynotbeexplicit,butairbornerequirementswerediscoveredamongthescienceplans.

8

9

Foreachmissiondescribedinthisreport,thefollowingarepresented:

• Responsiblepersonnel(ProgramExecutive,ProgramScientist,ProjectScientist)

• Missiondescription,includinglaunchdateandpayload

• Relevantaircraftsimulatororcomplementaryinstrumentation

• KnownorpotentialAirborneSciencesupportactivities

• ScheduleofASPactivities,ifavailable

• Gapassessment

Thefinalsectionofthereportpresentsacross-cuttingviewofthemissionstohighlightpotentialopportunitiesfortechnologyorflightactivityplanning.

11

3 FOUNDATIONAL MISSIONS

“Foundationalmissions”arethoseunderdevelopmentorinimplementationphasewhentheNationalResearchCouncil(NRC)DecadalSurveyrecommendationswerepublishedin2007.SincethesewilllaunchbeforetheDecadalSurveymissions,theAirborneScienceProgramhastoknowandconsiderthemissionsupportrequirements.Atthistime,sincethepayloadinstrumentationisestablished,mostrequirementsareexpectedtoberelatedtopost-launchcal/val.

3.1 Glory

3.1.1 Points of contact

ProgramExecutive:JoyBretthauer,NASAHQProgramScientist:HalMaring,NASAHQProjectScientist:MichaelI.Mishchenko,NASAGSFC

3.1.2 Mission description

3.1.2.1 Objective

Glorywillmeasureglobalaerosolsandcloudliquidpropertiesandtotalsolarirradiance.ThismissionaddressesahighpriorityobjectiveoftheU.S.GlobalChangeResearchProgram.

3.1.2.2 Status and launch date

GloryisintheimplementationphaseandscheduledforlaunchinFebruary2011.

3.1.2.3 Payload instruments

TheGlorypayloadconsistsofanAerosolPolarimetrySensor(APS),whichwillprovidetheretrievalofaerosolparticlemicrophysicalpropertiesbyinvertingmultiangleandmultispectralradianceandpolarizationmeasurements,andaTotalSolarIrradianceMonitor(TIM),whichwillmeasuretheabsorptionandreflectionofsolarradiationbytheEarth’satmosphere,anddeterminetheglobalaveragetemperatureoftheEarth.CloudCameradatawillprovidecrosstrackcoverageoverafiniteswathofaerosolloadandfinemodefractionovertheopenocean.

12

3.1.3 Instrument analogues

LikelyairborneanaloguesincludetheResearchScanningPolarimeter(RSP)andaerosolsamplingnephalometers.

3.1.4 Airborne science support activities

Airbornesupportforcal/valispossible,butnothingiscurrentlyscheduled.

3.1.5 Gap assessment

Nogapsidentified.

3.1.6 Cross-cutting requirements from other missions

Nonecurrentlyidentified

3.2 Aquarius

3.2.1 Points of contact

ProgramExecutive:EricIanson,NASAHQProgramScientist:EricLindstrom,NASAHQProjectScientist:GaryLagerloef,NASAGSFC

3.2.2 Mission description

3.2.2.1 Objective

Aquariuswillmeasureseasurfacesalinityandrelatetheobservationstooceancirculation,globalwatercycle,andclimate.

3.2.2.2 Status and launch date

Aquarius,anEarthSystemSciencePathfinder(ESSP)mission,isintheimplementationphase,andscheduledforlaunchinJune2011.

3.2.2.3 Payload instruments

AquariusisajointprojectwiththeArgentineagencyCONAE.TheformalmissionnameisAquarius/SAC-D.TheprimarypayloadsaredescribedinTable2.Additionalinstrumentsincludeinfraredandvisiblecamerasandaradioocculationsounder.

13

INSTRUMENT OBJECTIVES SPECIFICATIONS RESOLUTION AGENCY

AQUARIUS Radiometer % Scat-

terometer

Sea Surface Salinity Soil Moisture

Integrated L-Band Radiometer

(1.413 Ghz) & Scatterometer (1.26

Ghz) Swath: 390 km

Three beams: 76 x 94,

84 x 120, 96 x 156 km

NASA

MWR Microwave Radiometer

Precipitation, wind speed, sea ice con-

centration

Bands: 23.8 Ghz V Pol. and 36.5 Ghz H

and V Pol. Band width: 0.5 and 1 Ghz swath: 380 km

Sixteen beams< 54 km CONAE

3.2.3 Instrument analogues

PotentialsupportingairborneinstrumentsaretheJPLPolarimetricScatterometer(PolSCAT)andvariousradiometers.

3.2.4 Airborne science support activities

In2009,theAirborneScienceprogramflew“HighWinds09,”amissionontheP-3outofGooseBay,Canada.ThePOLSCATinstrumentwasusedtomeasurescatteringfromtheoceansurface.ThosemeasurementswereusedbytheAquariusscienceteamtodevelopfoundationalalgorithmsfordataproductgeneration.Itisprobablethatsimilarmeasurementsmayberequiredduringthecal/valpost-launchphase(~2011),althoughnothingiscurrentlyscheduled.

3.2.5 Gap assessment

Ifamissionsimilarto“HighWinds09”isrequested,boththeaircraftandinstrumentshouldbeavailablethrougharoutineflightrequest.

3.2.6 Cross-cutting requirements from other missions

Nonecurrentlyidentified,althoughdatacollectedtosupportSMAPmaybenefitAquariuscal/valatsomestage.

Table 2: Payloads for Aquarius.

14

3.3 NPOESS Preparatory Project (NPP)

3.3.1 Points of contact

ProgramExecutive:AndrewCarson,NASAHQProgramScientist:DianeWickland,NASAHQProjectScientist:JamesGleason,NASAHQAtmospherevalidationlead:DavidStarr,NASAGSFC

3.3.2 Mission description

TheNPOESSPreparatoryProject(NPP)isajointmissionwithNOAAandtheU.S.DepartmentofDefensetoextendkeymeasurementsinsupportoflong-termmonitoringofclimatetrendsandglobalbiologicalproductivity.TheoriginalintentwastoextendthemeasurementseriesinitiatedwithEOSTERRAandAQUAbyprovidingabridgebetweenNASA’sEOSmissionsandtheNationalPolar-orbitingOperationalEnvironmentalSatelliteSystem(NPOESS).EventhoughtheNPOESSprogramhasbeenrestructured,splittingtheactivitiesofNASAandtheDefenseDepartment,NPPisstillscheduledtolaunchinOctober2011.Themissionobjectiveremainsthesame:toprovidecontinuitywithNASA’sEarthObservingSystem(EOS)satellitesforclimateobservationsandtoprovidetheoperationalweathercommunitywithriskreductionforthenextgenerationofweathersatellites.

3.3.2.1 Objectives

TheoverallobjectiveistoobtainandmaintainthemeasurementslistedinTable3,whereEDR=EnvironmentalDataRecords:

15

Name of Product Group TypeImagery* Imagery EDRAtmospheric Vertical Moisture Profile * Atm. Sounding EDRAtmospheric Vertical Temperature Profile * Atm. Sounding EDRPressure Vertical Profile Atm. Sounding EDRClear Column Radiances Atm. Sounding SDRPrecipitable Water Atmosphere EDRSuspended Matter Atmosphere EDRAerosol Optical Thickness Aerosol EDRAerosol Particle Size Aerosol EDRCloud Base Height Cloud EDRCloud Cover Layers Cloud EDRCloud Effective Particle Size Cloud EDRCloud Optical Thickness/Transmittance Cloud EDRCloud Top Height Cloud EDRCloud Top Pressure Cloud EDRActive Fires Land ApplicationAlbedo (Surface) Land EDRLand Surface Temperature Land EDRSoil Moisture Land EDRSurface Type Land EDRVegetation Index Land EDRSea Surface Temperature * Ocean EDROcean Color and Chlorophyll Ocean EDRNet Heat Flux Ocean EDRSea Ice Characterization Snow and Ice EDRIce Surface Temperature Snow and Ice EDRSnow Cover and Depth Snow and Ice EDROzone Column Atmosphere EDROzone Profile Atmosphere EDR

CrIS/ATMS VIIRS CMPS * NPP primary EDRs

3.3.2.2 Status and launch date

TheNPPmissionisintheimplementationphase,withlaunchscheduledforOctober2011.

Table 3: NPP Measurements.

Instruments:See3.3.2.3

16

3.3.2.3 Payload instruments

Thepayloadsuiteconsistsof:

• TheCross-trackInfraredSounder(CrIS)combinedwiththeAdvancedTechnologyMicrowaveSounder(ATMS)globallyproducesatmospherictemperature,moisture,andpressureprofilesfromspace.

SpectralRange:LWIRBand650-1095cm-1MWIRBand1210-1750cm-1SWIRBand2155-2550cm-1

• OMPS:OzoneMappingandProfilerSuite Collectsdatatopermitthecalculationoftheverticalandhorizontaldistributionofozonein

theEarth’satmosphere.

Specifications:Nadirmapper300-380nmNadirprofiler250–310nm

• VIIRS:Visible/InfraredImager/RadiometerSuiteCollectsvisibleandinfraredradiometricdataoftheEarth’satmosphere,ocean,andlandsurfaces.Datatypesincludeatmospheric,clouds,Earthradiationbudget,land/waterandseasurfacetemperature,oceancolor,andlowlightimagery.

Specifications:MultipleVISandIRchannelsbetween0.3and14micronsImagerySpatialResolution:~400m@NADIR/800m@EOS

3.3.3 Instrument analogues

Airbornesimulatorinstrumentsincludeanumberofimagers,including:NAST-I,ScanningHIS,PSR,APMIR,MAS,eMAS,MASTER,andAMS.3.3.4 Airborne science support activities

Cal/valactivitiesareanticipated.VIIRSsimulatorinstruments,particularlytheeMASandAirborneModularSensor,aresuitableforcomplementaryvalidationandfieldactivities.Noflightrequestsarecurrentlypendingforpost-launchflights,butareanticipated,specificallythroughtheESDCarbonCycleandEcosystems(CCE)program.

Currentdiscussionofvalidationfieldcampaignsincludesthefollowing:

• Fielddata(airbornein-situ&remotesensing)toquantifyerrorcharacteristicsassociatedwithatmosphericcomposition,suchasabsorbingaerosolsandmixtures(aerosolmodels),andaerosolverticaldistribution.

17

• Fielddata(airbornein-situ&remotesensing)toquantifyerrorcharacteristicsassociatedwithhigh-impact,complexcloudscenes,especiallymultilayeredclouds.Complexcloudscenesinheavyaerosolenvironmentmayalsobeachallenge.

Somesuggestedactivitiesinclude:

FY12:

• Identifyrequirementsforspecificfieldcampaignmeasurements

• Participate,highlyleveraged,inPACE(majorNASANRLfieldexperimentinSEAsia)

FY13-15:

• Participateinfurtherfieldactivities(smallhighlyfocusedactivities)

3.3.5 Gap assessment

Noknowngaps.

3.3.6 Cross-cutting requirements from other missions

Becauseofthespectralimagersrequired,itispossiblethattheremaybecollaborationwithLDCMsupportactivities.

3.4 Landsat Data Continuity Mission (LDCM)

3.4.1 Points of contact

ProgramExecutive:DavidJarrett,NASAHQProgramScientist:DianeWickland,NASAHQProjectScientist:JamesIrons,NASAGSFCCalibration/Validationleads:BrianMarkham,NASAGSFC;andJimStorey,USGS

3.4.2 Mission description

3.4.2.1 Objectives

Characterizeandmonitorland-coveruseandchangeovertimeforglobalclimateresearch,polarstudies,landuseandlandcoverchange,andtheimpactsofnaturaleventsaswellashumanactivitiesontheEarth’ssurface.

MaintaindatacontinuitywiththeLandsatsystem.

ExtendtheLandsatrecordofmulti-spectral,globalcoverageofthelandsurfaceatamoderateresolutionandseasonalbasis.

3.4.2.2 Status and launch date

TheLDCMmissionisinimplementationphase,withscheduledlaunchdateofDecember2012.

18

3.4.2.3 Payload instruments

LDCMwillcarrytwoinstruments,theOperationalLandImager(OLI)andaThermalInfraRedSensor(TIRS).Thecharacteristicsofthemulti-bandOLIarelistedinTable4.Thesecondsensor,theThermalInfraRedSensor,operatesat100mwavelength.ItscharacteristicsareshowninTable4.

Band Number Band Name

Min. Lower Band Edge (nm)

Max. Upper Band Edge (nm)

Ground Sampling Distance (m)

1 Coastal/Aerosol 433 453 28-30

2 Blue 450 515 28-30

3 Green 525 600 28-30

4 Red 630 680 28-30

5 NIR 845 885 28-30

6 SWIR 1 1560 1660 28-30

7 SWIR 2 2100 2300 28-30

8 Panchromatic 500 680 14-15

9 Cirrus 1360 1390 28-30

3.4.3 Instrument analogues

MAS,eMAS

3.4.4 Airborne science support activities

Post-launchcal/valactivitiesareanticipated.

3.4.5 Gap assessment

TheMASandeMASinstrumentsshouldbeavailableforscheduling.Aircraftavailabilitywilldependonschedulepriorities.

3.4.6 Cross-cutting requirements from other missions

Becauseofthespectralimagersrequired,itispossiblethattherecouldbecollaborationwithNPPsupportactivities.

3.5 OCO 2

3.5.1 Points of contact

ProgramExecutive:EricIanson,NASAHQProgramScientist:KenJucks,NASAHQProjectScientist:MichaelGunson,JPLCalibration/Validationleads:PaulWennberg,JPL:RossSalawitch,GSFC

Table 4: Visible and Infrared bands of the Operational Land Imager (OLI).

19

3.5.2 Mission description

OCO-2willcollecthighresolutionmeasurementsofCO2,whichinturnwillprovidethedistributionofCO2overtheentireglobe.Thesemeasurementswillbecombinedwithdatafromtheground-basednetworktoprovidescientistswiththeinformationthattheyneedtobetterunderstandtheprocessesthatregulateatmosphericCO2anditsroleinthecarboncycle.Theon-boardinstrumentwillacquirethemostprecisemeasurementsofatmosphericCO2evermadefromspace.

3.5.2.1 Objectives

ImproveourunderstandingofthegeographicdistributionofCO2sourcesandsinks(surfacefluxes)andtheprocessescontrollingtheirvariabilityonseasonaltimescales.

ValidateapassivespectroscopicmeasurementapproachandanalysisconceptthatiswellsuitedforfuturesystematicCO2monitoringmissions.

3.5.2.2 Status and launch date

OCO-2hasenteredthetailoredformulationphase,andwilllaunchbyFebruary2013.

3.5.2.3 Payload instruments

OCO-2willcarryasingleinstrumentcomprisedofthreehighresolutiongratingspectrometers.EachspectrometerdetectstheintensityofradiationwithinaveryspecificnarrowbandatNearInfrared(NIR)wavelengths.Table5showsthespectralrangeandresolvingpoweroftheOCOspctrometer.

Spectral Range and Resolving Power of Bands:

Minimum Wavelength

O2 A-Band: 0.758 mm

Weak CO2: 1.594 mm

Strong CO2: 2.042 mm

Maximum Wavelength

O2 A-Band: 0.772 mm

Weak CO2: 1.619 mm

Strong CO2: 2.082 mm

Resolving Power (l/Dl)

O2 A-Band: > 17.000

Weak CO2: > 20.000

Strong CO2: > 20.000

Table 5: Spectral Range and Resolving Power of OCO-2 spectrometer bands.

20

3.6 Global Precipitation Measurement (GPM)

3.6.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:RameshKakar,NASAHQProjectScientist:ArthurHou,NASAGSFCGroundValidationleads:MattSchwallerandWalterPeterson,NASAGSFCAlgorithmteam:EricStocker,NASAGSFC

3.6.2 Mission description

TheGlobalPrecipitationMeasurement(GPM)MissionisaninternationalpartnershipinitiatedbyNASAandJapanAerospaceExplorationAgency(JAXA)toprovidethenext-generationprecipitationobservationsfromspace.TheGPMconceptcentersonthedeploymentofaCoreObservatorycarryingadvancedactiveandpassivemicrowavesensorsinanon-Sun-synchronousorbittoserveasaphysicsobservatorytogaininsightsintoprecipitationsystemsandasacalibrationreferencetounifyandrefineprecipitationestimatesfromaconstellationofresearchandoperationalsatellites.NASA’splanincludesthe“Core”observatoryandflightunit2.

3.6.2.1 Objectives

• Providemeasurementsofmicrophysicalpropertiesandverticalstructureinformationofprecipitatingsystemsusingactiveremote-sensingtechniquesoverabroadspectralrange.

• Combineactiveandpassiveremote-sensingtechniquestoprovideacalibrationstandardforunifyingandimprovingglobalprecipitationmeasurementsbyaconstellationofresearchandoperationalmicrowavesensors.

• Measuresnowandlighterrainratesthroughtheuseofhigh-frequencypassivemicrowaveradiometry.

• Improvepassivemicrowaveretrieval(PWR)algorithmsoverland.

• Improveprecipitationmeasurementsinmid-andhigh-latitudesduringcoldseasons.

3.6.2.2 Status and launch date

TheGPMmissioniscurrentlyinimplementationphase.TheCoreObservatorywilllaunchinJuly2013,andtheflightunit2low-inclinationspacecraftwilllaunchinNovember2014.

3.6.2.3 Payload instruments

GPMwillbepointingtowardEarthtomeasureprecipitation.Itwillbevitaltocontroltheattitude(orphysicalorientation)oftheCoreSpacecraftaccurately,sothatwecanmapexactlywheretheresultingdataoriginatesonEarth.TheCoreobservatoryisuniquelyinstrumentedwithaconically-scanningradiometerandacross-trackscanningradar.

21

+GPMMicrowaveImager(GMI)+Dual-frequencyPrecipitationRadar(DPR)

Thewell-calibratedGPMMicrowaveImager(GMI)measurementsandthewellcharacterizedsceneobtainedfromtheDual-frequencyPrecipitationRadar(DPR)willcombinetoprovideanexcellentreferenceagainstwhichtocalibrateothermicrowaveradiometersintheGPMconstellationwhenoverlappingmeasurementsofthesameEarthscenearemade.

3.6.3 Instrument analogues

ER-2DopplerRadar(EDOP)andsimilar,advancedsystems

3.6.4 Airborne science support activities

TheGPMvalidationteamhasprepareda“GroundValidationScienceImplementationPlan,”whichincludesbothsurfaceandairbornemeasurements.Asuccessfulfieldcampaign,theCanadianCloudSAT/CALIPSOValidationProgramme(C3VP)wascarriedoutin2007.Anupcomingcampaign,theMid-latitudeContinentalConvectiveCloudsExperiment(MC3E),jointwiththeDOEARMprogram,isscheduledfor2011.ThiswillinvolvetheuseofEDOPontheER-2,andinsitusamplingonanadditionalplatform,foralgorithmdevelopment.In2012,additionalmeasurementswillbemadefromtheDC-8inanexperimentstagedinCanadacalledCOLDEX.Insummer2013,theGPMNOAA/NASAteamisplanninganHMTexperimentinNorthCarolina.

Post-launch,in2013-2014,thefirstcal/valfieldcampaignwillflytheDC-8,ER-2andGlobalHawk,carryinginstrumentssimilartothoseusedinNAMMAinAugust2006(seeTable6).Finally,in2015,anothercal/valcampaignusingonlytheDC-8willbelaunched.

NAMMA DC-8 Instruments

2DSstereoprobe

Dual-FrequencyAirbornePreciptationRadar(APR-2)

CloudParticleImager:CPI

CloudAerosolandPrecipitationSpectrometer:CAPS

CarbonmOnoxideByAttenuationofLaserTransmission:COBALT

CounterflowVirtualImpactor:CVI

DiodeLaserHygrometer:DLH

HighAltitudeMonolithicMicrowaveIntegratedCircuitSoundingRadiometer:HAMSR

LangleyAerosolResearchGroupExperiment:LARGE

LidarAtmosphericSensingExperiment:LASE

MeteorologicalMeasurementSystem:MMS

RealTimeMissionMonitor:RTMM

ResearchEnvironmentforVehicle-EmbeddedAnalysisonLinux:REVEAL

Table 6: NAMMA DC-8 Instruments.

22

3.6.5 Gap assessment

TheinstrumentsrequiredforGPM-relatedairbornemeasurementseitherexistorarebeingdevelopedandtestedunderfundedprograms(e.g.,IIP,AITT).Integrationontotheplatformsofchoicemayrunintoscheduleconflictsduringtheproposedtimeframes.

3.6.6 Cross-cutting requirements from other missions

Noneclearlyidentified,althoughsomedatafromGPM-relatedexperimentsmaybeofvaluefor3-DWinds.

3.7 SAGE-III

3.7.1 Points of contact

ProgramExecutive:NandkishoreTopiwala,NASAHQProgramScientist:DavidConsidine,NASAHQProjectScientist:MichaelI.Mishchenko,NASAGSFC

3.7.2 Mission description

ThisinstrumentwillflyonISS.Seehttp://science.nasa.gov/media/medialibrary/2010/07/01/climate_architecture.pdfformoreinformation.

3.7.2.1 Objective

TheSAGEIIImissionisanimportantpartofNASA’sEarthObservationSystemandisdesignedtofulfilltheprimaryscientificobjectiveofobtaininghighquality,globalmeasurementsofkeycomponentsof

SAGE III MEASUREMENT OBJECTIVES

PRODUCT NAME VERTICAL COVERAGE

Aerosol Extinction at 8 Wavelengths (solar) 0 - 40 km

Water Vapor (H2O) Concentration 0 - 50 km

Nitrogen Dioxide (NO2) Concentration and Slant Path Column Amount

10 - 50 km 10 - 50 km (slant path)

Nitrogen Trioxide (NO3) Concentration (lunar) 20 - 55 km

Ozone (O3) Concentration and Slant Path Column Amount 6 - 85 km 50 - 85 km (slant path)

Chlorine Dioxode (OCIO) Concentration (lunar) 15 - 25 km

Pressure Profile 0 - 85 km

Temerature Profile (solar) 0 - 85 km

Cloud Presence 6 - 30 km

Table 7: SAGE III Measurement Objectives.

23

atmosphericcomposition(seeTable7)andtheirlong-termvariability.Thesemeasurementsarevitalinputstotheglobalscientificcommunityforimprovedunderstandingofclimate,climatechange,andhuman-inducedozonetrends.

3.7.2.2 Status and launch date

SAGEIIIisintheimplementationphase,witharecentannouncementofaMid-2013launch.

3.7.2.3 Payload instruments

TheSAGEIIIinstrumentisagratingspectrometerthatmeasuresultraviolet/visibleenergy.Itreliesupontheflight-provendesignsusedintheStratosphericAerosolMeasurement(SAMI)andfirstandsecondSAGEinstruments.

3.7.3 Instrument analogues

VariousAirbornespectrometerscanbeusedtomakesupportingmeasurementsforSAGEIII.

3.7.4 Airborne science support activities

In2000,theASPflewtheSAGEIIIOzoneLossandValidationExperiment(SOLVE)missioninsupportofthecurrentSAGEIIIoperationalsatellite.ThismajormissionmadeuseofboththeDC-8andtheER-2,carryingatotalof34instruments,aslistedinFigures4.aand4.b(page24).

3.7.5 Gap assessment

Nocal/valplansforthenewSAGEIIImissionhavebeenprovidedatthistime,butitispossiblethataSOLVE-likemissionmaybedesiredatsomepointafterlaunch.Theschedulesfortheaircraftwillneedtobeconsidered,aswellasthecurrentavailabilityforbothNASAfacilityandPIinstruments.

3.7.6 Cross-cutting requirements from other missions

Nonecurrentlyidentified.

3.8 GRACE follow-on

3.8.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:JohnLaBrecque,NASAHQProjectScientist:TBD3.8.2 Mission description

TheprimarygoaloftheGRACEmissionistomapvariationsintheEarth’sgravityfield.TheGRACEmissionhastwoidenticalspacecraftsflyingabout220kilometersapartinapolarorbit500kilometersabovetheEarth.

GRACEmapstheEarth’sgravityfieldsbymakingaccuratemeasurementsofthedistancebetweenthetwosatellites,usinggeodeticqualityGlobalPositioningSystem(GPS)receiversandamicrowaverangingsystem.

24

Table 8.a: SOLVE payload instruments on the DC-8.

Table 8.b: SOLVE payload instruments on the ER-2.

SOLVE PAYLOAD: DC-8O3 / PMS B. Anderson, LaRCTOTCAP Avallone, ColoradoFACS / NMASS Reeves, DenverLASE Brownell, LaRCUV DIAL Browell, LaRCATHOS Brune, Penn StateOC / Temp. Lidar Burris, GSFCAerosol / Solar cam Hostetler, LaRCNO / NOy Kondo, Nagoya (Japan)ASUR Kunzl, Bremen (Germany)MTP Mahoney, JPLFTTR Mankin, NCARH20 May, JPLDACOM / NDIR Sachse, LaRCSAFS Shetter, NCARCIO / BrO Toohey, ColoradoCIMS Viggiano, Phillips Lab

SOLVE PAYLOAD: ER-2HOx / H2O Anderson, HarvardCIONO2 Anderson, HarvardWAS - ATLAS Atlas, Univ. MiamiMASP Baumgardner, NCARMMS Bui, ARCACATS Elkins, NOAANO / NOy Fahey, NOAAArgus Jost, ARCMTP Mahoney, JPLH2O May, JPLCPFM McElroy, AES (Canada)O3 Richard, NOAAALIAS Webster, JPLCIMS Wennberg, CalTechFCAS / NMASS Wilson, DenverImpactor Wilson, Denver UCO2 Wofsy, Harvard

25

3.8.2.1 Objective

GRACEcontinuity

3.8.2.2 Status and launch date

Mid-2016

3.8.2.3 Payload instruments

ThekeyscienceinstrumentforGRACEistheJPLK-BandRanging(KBR)InstrumentAssembly.ItscomponentsincludetheUltraStableOscillator(USO),themicrowaveassembly,thehorn,andtheInstrumentsProcessingUnit(IPU).

3.8.3 Airborne science support activities

Nonecurrentlyproposedorprojected

3.8.4 Gap assessment and cross-cutting activities

NA

3.9 Geostationary Operational Environmental Satellite (GOES-R)

3.9.1 Points of contact

ProgramExecutive:NandkishoreTopiwala,NASAHQProgramScientist:PaulaBontempi,NASAHQProjectScientist:DennisChesters,NASAGSFC

3.9.2 Mission description

TheGeostationaryOperationalEnvironmentalSatelliteProgram(GOES)isajointeffortofNASAandtheNationalOceanicandAtmosphericAdministration(NOAA).

3.9.2.1 Objective

TheGOES-Rseriesofsatelliteswillbecomprisedofimprovedspacecraftandinstrumenttechnologiesthatwillresultinmoretimelyandaccurateweatherforecasts,andwillimprovesupportforthedetectionandobservationsofmeteorologicalphenomenathatdirectlyaffectpublicsafety,protectionofproperty,andultimately,economichealthanddevelopment.

3.9.2.2 Status and launch date

ThefirstlaunchoftheGOES-Rseriessatelliteisscheduledfor2015.

3.9.2.3 Payload instruments

ThemajorinstrumentsoftheGOES-RSystemare:theAdvancedBaselineImager(ABI);theHyperspectralEnvironmentalSuite(HES);theSpaceEnvironmentIn-SituSuite(SEISS),whichincludesaMagnetosphericParticleSensor(MPS),anEnergeticHeavyIonSensor(EHIS),andaSolarandGalacticProtonSensor(SGPS);theSolarImagingSuite(SIS),whichincludestheSolarX-RayImager(SXI),the

26

Table 9: Imager channels on GOES-R.

Current GOES (5 Channels)

Future GOES-R (16 Channels)

.64 mm 0.47 mm3.8 mm 0.64 mm6.19 mm 0.88 mm

11.3 mm 1.38 mm13.3 mm 1.61 mm

2.26 mm3.9 mm6.19 mm6.95 mm7.34 mm8.5 mm9.61 mm

10.35 mm11.2 mm12.3 mm13.3 mm

SolarX-RaySensor(SXS),andtheExtremeUltravioletSensor(EUVS);theGEOLightningMapper(GLM);andtheMagnetometer.

TheAdvancedbaselineimagerhas16channels,asindicatedinTable9.

3.9.3 Instrument analogues

AVIRIS,MASTER.

3.9.4 Airborne science support activities

Algorithmdevelopmentandcal/valforGOES-Rareanticipated,withflightsscheduledontheER-2beginningin2010.

3.9.5 Gap assessment

Theinstrumentsareavailable,pendingscheduling,andhaveflownontheER-2.

3.9.6 Cross-cutting requirements from other missions

SupportforGOES-Rwillbeonacost-reimbursablebasis,sonocollaborativeactivitiesareforeseen.

27

4.1 SMAP (Soil Moisture Active Passive)

4.1.1 Points of contact

ProgramExecutive:EricIanson,NASAHQProgramScientist:JaredEntin,NASAHQProjectScientists:EniNjoku,JPL,PeggyO’Neill,GSFCCal/valLead:TomJackson,USDA

4.1.2 Mission description: objectives and instruments

SMAPwillmeasuresoilmoistureinsupportofunderstandingofEarth’swaterandenergycycles.Bothactiveandpassiveremotesensorsareincludedinthesatellitepayload.Theinstrumentisdesignedtomakecoincidentmeasurementsofsurfaceemissionandbackscatter,withtheabilitytosensethesoilconditionsthroughmoderatevegetationcover.

Thesciencegoalistocombinetheattributesoftheradarandradiometerobservationsintermsoftheirspatialresolutionandsensitivitytosoilmoisture,surfaceroughness,andvegetation.

TheSMAPinstrumentarchitectureincorporatesanL-bandradarandanL-bandradiometerthatshareasinglefeedhornandparabolicmeshreflector.Thereflectorisoffsetfromnadirandrotatesaboutthenadiraxisat14.6rpm,providingaconicallyscanningantennabeamwithasurfaceincidenceangleofapproximately40°.Thereflectorhasadiameterof6m,providingaradiometerfootprintof40km.Thereal-apertureradarfootprintis30km,definedbythetwo-wayantennabeamwidth.

4.1.3 Mission schedule

SMAPisinPhaseBstatus.Estimatedlaunchdate:November2014

4.1.4 Instrument analogues

TheSMAPscienceteamanticipatesflyingSMAPsimulatorsoverthenext5yearsinsupportofalgorithmdevelopmentcal/valwork.Theflightsincluderadiometersandradars.RepresentativeinstrumentsarePALSandUAVSAR.

TherehasalsobeensomediscussionofCO2measurementsinnorthernlatitudes,butnospecificanalogueinstrumentshavebeenproposed.

4 DECADAL SURVEY TIER I MISSIONS

28

PALSThePassive/ActiveL-/S-band(PALS)microwaveinstrumentwasdevelopedbytheJetPropulsionLaboratory(JPL)toinvestigatethesynergismofradiometerandradarmeasurementsforsoilmoistureremotesensing.IthasflownsuccessfullyonanumberofsciencemissionsandisadesirablepayloadforSMAPfieldexperiments.

UAVSARUAVSAR,areconfigurable,polarimetricL-bandsyntheticapertureradar(SAR),isspecificallydesignedtoacquireairbornerepeattrackSARdatafordifferentialinterferometricmeasurements.Ithasflownsuccessfullyin2009foricemappinginGreenlandandIcelandandintheCANEXmissioninCanada/Alaskainearly2010.ItisalsoadesirablepayloadforSMAPfieldexperiments,althoughtherepeatpasscapabilityoftheG-IIIisnotrequired.

4.1.5 Cal/valandfieldtest

Acal/valplanisbeingdevelopedfortheprojectthataddressesbothpre-andpost-launchrequirementsidentifiedbytheSMAPprojectandScienceDefinitionTeam(SDT).TheobjectiveofSMAPcal/valistocalibrateandvalidateLevel1throughLevel4algorithmsandproductsrelativetothemissionrequirements.Elementsofthecal/valplanwillincludeinsitu,towerandaircraftsimulators,satelliteobservations,modelandsurrogatevariables,andfieldcampaigns.

Pre-launchcal/valisfocusedonvalidatingthattherearemeansinplacetofulfillthemissionobjectives.Inparticular:

• Identifiedactivitiesthatwillimprovealgorithmsandproducts

• Establishinfrastructurenecessaryforpost-launchcalibrationandvalidation

Post-launchcal/valisfocusedonvalidatingthatthescienceproductsmeettheirquantifiedrequirements,andonimprovingthealgorithmsandqualityofproductsoverthemissionlife.

4.1.6 Preliminaryfieldplansandscheduleoverview

FlightofOpportunity–AntarcticaDomeC:radiometermeasurementsfromDC-8aspartofOperationIceBridge.

TheCanEXsoilmoistureexperimentinearly2010wasahighlysuccessfuluseoftheUAV-SAR,whichwillbesoughtagainin2011forCanExfreeze-thaw.PALSisplannedasacal/valsimulatorandwillhaveacheckflightontheP-3inlate2010.

Adetailedfieldcampaignscheduleisindevelopment.DraftplansareshownintheFigure6(page30).Other,complementarylaunches,SMOS,Aquarius,andGCOM-Warealsoindicated.Notethatfocusedcampaignscontinuethrough2015.

4.1.7 Gap assessment

TheaircraftandpayloadsupportrequiredforSMAPexist.UAVSARschedulingisapotentialissue.

4.1.8 Cross-cutting requirements from other missions

Nonecurrentlyidentified,althoughdatacollectedtosupportSMAPmaybenefitthelatermissionsSWOTandSLCP.

29

4.2 ICESAT II (Ice, Cloud, and Land Elevation Satellite II)

4.2.1 Points of contact

ProgramExecutive:RichardSlonaker,NASAHQProgramScientist:TomWagner,NASAHQProjectScientist:ThorstenMarkus,NASAGSFC

4.2.2 Mission description

TheobjectivesofICESatIIare:

• Measuringicesheetmassbalance,cloudandaerosolheights.

• Measurelandtopographyandvegetationcharacteristics.

• Providemulti-yearelevationdataneededtodetermineicesheetmassbalance.

• Providecloudpropertyinformation,especiallyforstratosphericcloudscommonoverpolarareas.

• Providetopographyandvegetationdataaroundtheglobe,inadditiontothepolar-specificcoverageovertheEarth’sicesheets.

4.2.3 Mission schedule

ICESatIIiscurrentlyinPhaseA.

Estimatedlaunchdate:Late2015

4.2.4 Payload Instrument

Laseraltimeter,similartoICESat.However,incontrasttotheICESatdesign,ICESat-2willuseamicro-

Table 10: SMAP Major Field Campaigns.

Year/ Quarter

1 2 3 4

2008 SMAPVEX082009 SMOS2010 SMAPEx SMAPEx

CanEx-SMAquarius SMAPEx PALS Check

2011 GCOM-W CanEx-FT

2012 SAOCOM SMAPVEX12

20132014 SMAP2015 SMAPVEX15 SMAPVEX15 SMAPVEX15Satellite launch in red.

• SMAPVEX08 - High priority design/algorithm issues• SMAPEx (Australia) - 4 one-week campaigns to span four

seasons - Aircraft Radar/Radiometer• CanEx-SM (Canada) - Two-week soil moisture campaign - Aircraft Radar/Radiometer• CanEx-FT (Canada) - Two-week freeze/thaw campaign - Aircraft Radar Radiometer• PALS Check - New configuration tests on P-3 - RFI studies• SMAPVEX12 - Major hydrology campaign - Long duration - Aircraft Radar/Radiometer• SMAPVEX15 - Extended campaign for both SM - and FT - Long duration - Aircraft Radar/Radiometer

30

pulsemulti-beamapproach.Thisprovidesdensecross-tracksamplingtoresolvesurfaceslopeonanorbitbasis.Thesensorwillhaveahighpulserepetitionrateofapproximately10kHz,whichgeneratesdensealong-tracksamplingofabout70cm.ThisconcepthasadvantagesoverICESatofimprovedelevationestimatesoverhighslopeareasandveryrough(e.g.crevassed)areasandimprovedleaddetectionforseaicefreeboardestimates.

4.2.5 Instrument analogues

AirborneanaloguesincludethosebeingusedinOperationIceBridge:

ATM–theAirborneTopographicMapper,thelegacyinstrumentforicemapping.

LVIS–theLaserVegetationImagingSensor,amatureinstrumentcapableofhigheraltitude.

PARIS-PathfinderAirborneRadarIceSounder,anewsystembeingusedinOperationIceBridge.

SIMPL-SlopeImagingMulti-polarizationPhoton-countingLidar,anIIPpathfinderinstrumentsimulatorforICESat-2.

Inaddition,anewinstrumentdevelopedatNASAGoddard,theMultipleAltimeterBeamExperimentalLidar(MABEL)instrument,isperformingasasimulatorinstrument,flyingontheER-2.Preliminaryflightsin2010willbefollowedbyadditionalflightsin2011.

4.2.6 Flights requested: “Operation Ice Bridge”

ThescheduleforOperationIceBridgeisshowninFigure6.

MoredetailscanbefoundintheICESatGapFillerreport.[4]

Fig. 6: Schedule for Operation Ice Bridge.

Task Name 2010 2011 2012 2013 2014 2015 2015

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

Operation Ice Bridge

OIB Greenland

OIB Alaska

OIB Antarctica

OIB Greenland

OIB Alaska

OIB Antarctica

OIB Greenland

OIB Alaska

OIB Antarctica

OIB Greenland

OIB Alaska

OIB Antarctica

OIB Greenland

OIB Alaska

OIB Antarctica

OIB Greenland

OIB Alaska

OIB Antarctica

P-3

Otter

P-3

BT-67, DC-8

Otter

BT-67, DC-8

P-3

Otter

BT-67, DC-8, GH

Otter

P-3

DC-8, BT-67

DC-8, BT-67

P-3

Otter

DC-8, BT-67

P-3

Otter

31

BesidestheP-3,DC-8andGlobalHawk,currentlyidentifiedforIceBridgemissions,otherairbornesupportforICESatIIcouldbeprovidedusingaTwinOtter,DC-8,orDHC-3.

4.2.7 ASP Gap Assessment

TheaircraftsupportrequiredforICESatIIandIceBridgeexist.Potentialscheduleconflictswillneedtoberesolved.GlobalHawkcapabilitycouldincreaseAntarcticrange.

4.2.8 Cross-cutting requirements from other missions

LidarexperimentsforICESat-2supportcouldbealignedwithexperimentssupportingDESDynI.TheLVISinstrumentisidentifiedforboth,andtherearesomeregionsofcommoninterest.

4.3 DESDynI (Deformation, Ecosystem Structure and Dynamics of Ice)

4.3.1 Points of contact

ProgramExecutive:SanghamittaDutta,NASAHQProgramScientist:JohnLeBrecque,NASAHQChiefScientist:Bo-WenShen,NASAGSFCCal/valLead:ForrestHall,NASAGSFC

4.3.2 Mission description

DESDynIisadedicatedInSARandLIDARmissionoptimizedforstudyinghazardsandglobalenvironmentalchange.

Missionobjectives:

• Determinethelikelihoodofearthquakes,volcaniceruptions,andlandslides.

• Predicttheresponseoficesheetstoclimatechangeandimpactonthesealevel.

• Characterizetheeffectsofchangingclimateandlanduseonspecieshabitatsandcarbonbudget.

• Monitorthemigrationoffluidsassociatedwithhydrocarbonproductionandgroundwaterresources.

4.3.3 Mission schedule

DESDynIiscurrentlyinpre-PhaseA.Estimatedlaunchdate:2017

4.3.3.1 Payload instruments

ThecurrentplanforDESDynIistoflythepayloadontwoseparatesatellites.Thesensorsare:1)anL-bandInterferometricSyntheticApertureRadar(InSAR)systemwithmultiplepolarization;and,2)amultiplebeamlidaroperatingintheinfrared(~1064nm)with~25mspatialresolutionand1mverticalaccuracy.

Separatingthetwosensorsprovidesanopportunityforeachtousethemostoptimumpointingvectorandorbitcharacteristics.

32

4.3.4 Instrument analogues

ForDESDynIfieldcampaigns,thefollowinginstrumentsandactivitiesareanticipated:

LVIShasbeenandwillcontinuetobeusedforvegetationmeasurementsrelatedtoalgorithmdevelopment.

UAVSARhasbeenandwillcontinuetobeusedfortopographymeasurementsneededforcorrectionstothevegetationdataandforsolidearthdeformation

ESFL,thesteerableflashlidar(BallAerospace),isdesignedtosupportDESDynIbymakingforestcarbonmeasurement.WithAITTfunding,itwillbeflighttestedonaTwinOtterin2011.

4.3.5 Preliminaryfieldplansandscheduleoverview

ManyscheduledG-III/UAVSARflighthourssupportdatacollectionforDESDynIalgorithmdevelopment.

4.3.6 ASP Gap Assessment

TheaircraftandpayloadsupportrequiredforDESDynIexist.LVIScanflyonanumberofaircraft;theTwinOtteriscurrentlyidentified.UAVSARfliesonlyontheG-III,althoughthereareplanstomakeUAVSARcompatiblewithotheraircraft,particularlytheGlobalHawk.Hence,UAVSARschedulingisapotentialissue.

4.3.7 Cross-cutting requirements from other missions

MissionsusingtheUAVSARontheG-IIIare,orcouldbe,scheduledtoincludebothrepeat-passEarthsurfaceexperiments,aswellassimplerSARexperiments.ThereisalsopotentialforflightsoftheLVISinstrumenttosupportbothICESat-2andDESDynIobjectives.

4.4 CLARREO (Climate Absolute Radiance and Refractivity Observatory)

4.4.1 Points of contact

ProgramExecutive:RichardSlonaker,NASAHQProgramScientist:KenJucks,NASAHQChiefScientist:DavidYoung,NASALaRC

4.4.2 Mission description

TheCLARREOimperativeisto:

• Initiateanunprecedented,highaccuracyrecordofclimatechangethatistested,trustedandnecessaryforsoundpolicydecisions.

• Establisharecordofdirectobservableswithhighaccuracyandinformationcontentnecessarytodetectlong-termclimatechangetrendsandtotestandsystematicallyimproveclimatepredictions.

• ObserveSystemInternationaletraceable,spectrally-resolvedradianceandatmosphericrefractivitywiththeaccuracyandsamplingrequiredtoassessandpredicttheimpactofchangesinclimateforcingvariablesonclimatechange.

33

4.4.3 Mission schedule

CLARREOiscurrentlyinPre-phaseA.ItpassedMissionConceptReview(MCR),November17,2010.CLARREO-1willlaunchin2017andCLARREO-2in2020.

4.4.3.1 Payload instruments

SpectralreflectedsolarandemittedinfraredradiancesandGlobalPositioningSystem(GPS)RadioOccultationrefractivitiesmeasuredbyCLARREOwillbeusedtodetectclimatetrendsandtotest,validate,andimproveclimatepredictionmodels.

TheCLARREOmissioniscurrentlyenvisionedtoconsistoftwoduplicateobservatorieseachcarryingapayloadofoneinfraredinstrumentsuite,onereflectedsolarinstrumentsuiteandaGlobalNavigationSatelliteSystemRadioOccultation(GNSS-RO)instrumentsystem.

TheCLARREOPayloadElementsinclude:

• A“ReflectedSolar(RS)Suite”consistingofthreepushbroomhyperspectralgratingimagerscovering320-2300nanometerscombinedintoasingleinstrumentpackageandpointedbyatwo-axisgimbal.

• An“Infrared(IR)Suite”consistingofaFourierTransformSpectrometer(FTS)covering5-50microns(2000-200cm-1)andanon-orbitcalibrationandverificationsystem.

• A“GlobalNavigationSatelliteSystem–RadioOccultation(GNSS-RO)”receivercapableofROmeasurementsusingGPS,GLONASS,andGalileonavigationsystems.

4.4.4 Instrument analogues

OneIIP-sponsoredinstrument,MartyMlynczak’sINFLAMEexperimenthasbeenflighttestedandisreadyforfurtherapplicationinalgorithmdevelopment.TheUniversityofColorado/LASPradiometerandUniversityofWisconsinIRcalibrationsystem.

4.4.5 Preliminaryfieldplansandscheduleoverview

Mostoftheproposedsatelliteinstrumentshaveheritageandwillnotneedflighttestsfortechnologyreadinessadvancement.However,theproposedsystemswillneeddemonstration.Suggestionsweremadeforsystemtestsatveryhighaltitude,forexample,onaballoon,oronaaircraft,mostlikelytheDC-8.Thedatacollectionandmanagementportionsofthesystemwillalsoneedtestingonanaircraft.Satelliteoverpassmaybedesiredforcalibration.Alikelydateforsuchtestingwouldbe2011.ThepointsofcontactforoveralldiscussionwouldbeDavidYoungatLaRC.AconceptforCLARREOcalibratedmeasurementsisshowninFigure7.

SpecificPI’swillbe:• MartyMlynczak(LaRC)fortheFar-IRsystem• HankRevercomb(UW)forIRtestingwithcoordinatedoverpasses• KurtThome(GSFC)forthesolarinstrumentsystem• AndrewLacis(GISS),ifapolarimetersuchastheAPSisselectedforthemission

34

4.4.6 ASP Gap Assessment

TheaircraftandpayloadsupportrequiredforCLARREOexist.Sincehighaltitudeisdesired,theremaybesomescheduleconflictswithotherhigh-altitudeaircraft.

4.4.7 Cross-cutting requirements from other missions

Nonecurrentlyidentified.

 Note: NMI = National Metrology Institute

Fig. 7: Concept for CLARREO calibrated measurements.

35

5 DECADAL SURVEY TIER II MISSIONS

Fig. 8: Ka-band wide swath radar

5.1 SWOT (Surface Water Ocean Topography)

5.1.1 Points of contact

ProgramScientist:EricLindstrom,NASAHQChiefScientist:ParagVaze,JPLU.S.scienceleadforhydrology:DougAlsdorf,OhioStateUniversity;Airbornesimulatordeveloper:DelwynMoller,RemoteSensingSolutions

5.1.2 Mission description

SWOTwillcombinetheconceptsofWaTER(WaterandTerrestrialElevationRecovery)andtheHydrosphereMappermissionsintoasinglemissiontoaddresstheobjectivesofbothlandhydrologyandoceanography.

5.1.3 Mission schedule

SWOTiscurrentlyinpre-phaseA,withlaunchscheduledfor2020.

5.1.4 Payload instruments

TheKa-bandRadarInterferometer(KaRIN)instrumentmakesthismissionpossible.AsindicatedinFigure8,KaRINcontainstwoKa-bandSARantennaeatoppositeendsofa10-meterboomwithbothantennaetransmittingandreceivingtheemittedradarpulsesalongbothsidesoftheorbitaltrack.Look

36

KaSPARwillnotbepod-basedandiscompletelyindependentofUAVSAR.DevelopmentoftheAirSWOTiscurrentlySBIR-fundedanddoesnotincludeflightintegrationandtest.Iffundingisfound,flighttestsoftheAirSWOTinstrumentwouldbeinitiallyontheDFRCB-200inearly2012.

EventuallydeveloperswouldliketoputKaSPARontheGlobalHawkasahigh-altitudesimulatorforalgorithmdevelopmentandcal/val.TheKaSPARobservationconceptisshowninFigure9.

5.1.6 ASP Gap Assessment

TheaircraftsupportrequiredforGLISTIN-AandKaSPAR/AirSWOTrequiresnegotiationforintegrationintothedesiredplatforms.5.1.7 Cross-cutting requirements from other missions

Nonecurrentlyidentified,althoughdatacollectedtosupportSMAP,AquariusortheoceanportionsofACEmaybenefitSWOT.

Fig. 9: Ka-SPAR concept.

anglesarelimitedtolessthan4.5°providinga120-kmwideswath.The200-MHzbandwidthachievescross-trackgroundresolutionsvaryingfromabout10minthefarswathtoabout60minthenearswath.Aresolutionofabout2metersinthealongtrackdirectionisderivedbymeansofsyntheticapertureprocessing.

5.1.5 Instrumentanaloguesandflightplans

TheAirborneGlacierandLandIceSurfaceTopographyInterferometer(GLISTEN-A),recentlyfundedbyanAITTawardisafollow-ontotheKa-bandversionofUAVSARflownontheG-IIItoGreenlandin2009.Flighttestisexpectedinmid-2012.Thispod-basedinstrumentcouldflyoneithertheG-IIIorGlobalHawkforalgorithmdevelopment.

ThemostrelevantsimulatortotheSWOTKa-bandwideswathradar(KaRIN)istheKa-bandSWOTPhenomenologyAirborneRadar(KaSPAR)system.AirSWOTistheKaSPARradaritself(Ka-bandinterferometeralso,butnadirandnear-nadirviewingandwithmorebandwidthandmorebaselines).

37

5.2 HyspIRI (Hyperspectral Infrared Imager)

5.2.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:WoodyTurner,NASAHQScienceLeads:RobGreen,SimonHook,JPL

5.2.2 Mission description

TheobjectivesoftheHyspIRImissionareto:

• Studytheprocessesthatindicatevolcaniceruption.

• Analyzethenutrientsandwaterstatusofvegetation.

• Examinesoiltypeandhealth.

• Usespectratoidentifylocationsofnaturalsources.

• Studydeforestationandchangesinvegetationtype.

• Provideearlywarningofdroughts.

• Improveexplorationfornaturalresources.

• Forecastlikelihoodofvolcaniceruptionsandlandslides.

5.2.3 Mission schedule

HyspIRIiscurrentlyinpre-PhaseA.Estimatedlaunchdate:2020

5.2.4 Payload instruments

• Visibleshort-waveinfrared(VSWIR)imagingspectrometer.

• Multispectralthermalinfrared(TIR)scanner.

5.2.5 Instrument analogues and preliminary airborne plans

TheprimaryinstrumenttoflyonHyspIRIisahyperspectralspectrometer.CommonanaloginstrumentspreviouslyflownonaircraftareMASTERandAVIRIS.

Plansincludelate2011:MASTER,AVIRISonER-2.

ESTOhassupportedthedevelopmentofinstrumentssuitableforHyspIRIwithidentifiedinstrumenttestflightsin2011.Theseare:

• HyperspectralThermalEmissionSpectrometer(HyTES).TheairbornehyperspectralthermalimagercalledHyTESwillbeflighttestedinsupportofHyspIRImission.Itisexpectedtobeavailableforroutineusein2011.

• Mineralandgasidentificationspectrometer.

5.2.6 ASP Gap Assessment

TheaircraftandpayloadsupportrequiredforHyspIRIexists,buttherecouldbescheduleissuesforAVIRIS,MASTERandtheaircrafttheyflyon.

38

5.2.7 Cross-cutting requirements from other missions

Becauseofthecommonrequirementsforspectralimagers,itmaybepossibletosupportHyspIRIandNPPorLDCMconcurrently.

5.3 ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons)

5.3.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:KenJucks,NASAHQScienceLead:TBD

5.3.2 Mission description

Missionobjectives:

• MeasurethenumberdensityofCarbonDioxide(CO2)inthecolumnofairbeneaththeaircraft.

• Measurelengthofthecolumnusingalaseraltimeter.

• Measureambientairpressureandtemperature.

5.3.3 Mission schedule

ASCENDSiscurrentlyinpre-PhaseA.Estimatedlaunch2019.

5.3.4 Payload instruments

Thesatellitewillcarryamultifrequencylaser,withprimaryobjectivetomeasureCO2.Measurementsofoxygenarealsoplanned.

5.3.5 Instrument analogues

Tosupportthedevelopmentofthepayloadandalgorithms,theASCENDSscienceteamhasbeentestflyingseveralcandidateCO2instruments.Theseinclude:

• Browell(LaRC),ModulatedCWFiberLaser-LidarSuite

• Abshire(GSFC),CO2LaserSounder

• Spiers(JPL),Airborne2micronLaserAbsorptionSpectrometer

5.3.6 Preliminaryfieldplansandscheduleoverview

Summer2009:Thethreeinstrumentswereflownonindependentaircraft,butsimultaneouslyovertheOklahomaARMsite.

Summer2010:AllthreeinstrumentswereflowntogetherontheDC-8onlocalflightsfromPalmdaleovervariouslandandoceansurfacesandonalong-rangeflightovertheOklahomaARMsite.

39

Summer2011:Flighttestsareplannedforthethreeinstrumentsovervariouslandandcloudfeaturesnotpreviouslyinvestigated;inthepresenceofsignificantCO2variabilityinthelowertroposphere;andinthepresenceofthincirrusandlow-altitudescatteredclouds.ThereisapossibilitythattheHeapsbroad-bandlidarwillalsobeflownduringthiscampaign.

Anypre-orpost-launchairborneactivitiesinsupportofOCO-2willalsosupportASCENDSeitherdirectlyorindirectly.

5.3.7 ASP Gap Assessment

TheaircraftandpayloadsupportrequiredforASCENDSexist.

5.3.8 Cross-cutting requirements from other missions

AlgorithmdevelopmentandothersupportforASCENDScouldbenefitOCO-2.

5.4 GEO-CAPE (Geostationary Coastal and Air Pollution Events)

5.4.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:JayAl-Saadi,NASAHQScienceLeads:AnnemarieElderling,JPL;LauraIraci,NASAARC

5.4.2 Mission description

Missionobjectives:

• Identificationofhumanversusnaturalsourcesofaerosolsandozoneprecursors.

• Dynamicsofcoastalecosystems,riverplumes,andtidalfronts.

• ObservationofairpollutiontransportinNorth,Central,andSouthAmerica.

• Predictionoftrackofoilspills,fires,andreleasesfromnaturaldisasters.

• Detectionandtrackingofwaterbornehazardousmaterials.

• Measurecoastalhealth.

• Forecastsofairquality.

5.4.3 Mission schedule

GEOCAPEiscurrentlyinpre-PhaseA.Estimatedlaunchdate:2013.

5.4.4 Instruments & analogues

Highandlowspatialresolutionhyperspectralimagerswillflyonthesatellite.AnaloguesincludeAVIRISandTIMS.

ESTO-sponsoredinstrumentstobetestedinclude:

40

• PanchromaticFourierTransformSpectrometer(PanFTS)

• TroposphericInfraredMappingSpectrometer(TIMS)

• WideFieldImagingSpectrometer(WIFS)

5.4.5 Preliminaryfieldplansandscheduleoverview

Fall2010:Fouriertransformspectrometer(FTS)simulatortoflyontheWB-57outofHoustontoimagetheshippingareatothecoast.

2010-2011:DC-8atmosphericsamplingfromoceantocoast;possiblejointmissionwithACE.

5.4.6 ASP Gap Assessment

TBD

5.4.7 Cross-cutting requirements from other missions

AjointmissionwithACEtocollectocean/coastdatacouldbenefitbothmissions.

5.5 ACE (Aerosol - Cloud – Ecosystems)

5.5.1 Points of contact

ProgramExexutive:SteveNeeck,NASAHQProgramScientist:HalMaring,NASAHQCal/valLeadforaerosols:JensRedemann,NASAARCCal/valLeadforoceanography:ChuckMcClain,NASAGSFC

5.5.2 Mission description

Missionobjectives:

• Cloudandaerosolheight.

• Organicmaterialinsurfaceoceanlayers.

• Aerosolandcloudtypesandproperties.

• Improvedclimatemodels.

• Predictionoflocalclimatechange.

• Measureoceanproductivityandhealth.

• Air-qualitymodelsandforecasts.

5.5.3 Mission schedule

ACEiscurrentlyinpre-PhaseA.Pre-ACE(PACE)isscheduledforlaunchin2017,ACEisscheduledforlaunchinthepost2020time-frameFigure10illustratesthemissionconceptforPre-ACEandACE.

41

Fig. 10: ACE and Pre-ACE concepts.

5.5.4 Payload instruments

ACEPayloadcurrentlyconsidersthefollowinginstrumentscandidates:

• Lidarforassessingaersol/cloudheightsandaerosolproperties.(TRL4-6)

• Dualfrequencycloudradarforcloudpropertiesandprecipitation.(TRL4-6)

• Multi-angle,swathpolarimeterforimagingaersolandclouds.(TRL4-60

• Oceancolorradiometerforoceanecosystems.(TRL5)

• IRimagerforcloudtemperaturesandheights.(TRL6)

• Highfrequencymicrowaveradiometerforcloudicemeasurements.(TRL6)

• Lowfrequencymicrowaveradiometerforprecipitationmeasurements.(TRL6)

• Microwavetemperature/humiditysounder.(ATMS,TRL9)

5.5.5 Instruments analogues

SeveralpolarimeterinstrumentsarecandidatesforACE,includingRSP,AirMSPI,PACS/OMI.

5.5.6 Preliminaryfieldplansandscheduleoverview

Acharacterizationexperimenttocomparethreealternativepolarimeterconceptswillbeflowninsummer2011.ThepolarimetersontheER-2willoverflyP-3withupward-lookingradiometer.ThisistheACEPolarimeterDefinitionExperiment(PODEX).

42

Fig. 11: Concept for ACE algorithm development mission.

• DaveDiner(JPL)isPIfortheAirMSPIinstrument.

• VanderleiMartins(U.Maryland)isPIforthePassiveAerosolandCloudSuite(PACS).

• BrianCairns(ColumbiaU./GISS)isPIfortheResearchScanningPolarimeter(RSP)instrument.

EachinstrumentisinvariousstageswithrespecttobeingabletoflyontheER-2,andallwillneedtoflytogether.Finally,thereistobeacoordinatedunder-flightoftheP-3duringthisexperiment.JensRedemann,wholeadsthefieldstudiesteamforACEaerosols,isthepointofcontactfortheflightrequest.AnillustrationoftheexperimentisshowninFigure11.

TheoverallfieldcampaignscheduleisshowninFigure12.Thedatesmayvary,butthelevelofdesiredactivityisconstant.

TheACEteamisinterestedinflyingalow-altitudeUASforchemistrymeasurementsattheoceansurfaceinconjunctionwithothership-boardandbuoymeasurements.Currently,thereisnochemistryimperative,andhence,nofundingintheACEprogramforthistypeofmeasurement.However,itwouldbeagoodcollaborationwithGEO-CAPEoceanrequirements.

5.5.7 ASP Gap Assessment

Theaircraftandsensorsfortheearlymeasurementsexist.AUASoceansurfaceexperimentwillrequiredevelopmentofsensorsandcontrolsystem.

5.5.8 Cross-cutting requirements from other missions

AjointmissionwithACEtocollectocean/coastdatacouldbenefitbothmissions.

43

Fig. 12: Schedule of ACE.

Sciencefocus: Aerosols Clouds OceanEcosystems

Year/Qtr 1 2 3 42010 10

2011

2012

2013

2014

2015

2016

2017 ACE-launch

2018

2019

PACE

ACE-PoDEX10

ACE-PEX 12

ACE-ALDEX13A

ACE-VEX17BACE-SVEX17ACE-VEX17A

ACE-SVEX18A ACE-VEX18A ACE-SVEX18B ACE-VEX18A

ACE-VEX19BACE-SVEX19BACE-VEX19BACE-SVEX19A

ACE-ALDEX13B

MACPEX

ACE Major Suborbital Field Campaigns

• MACPEX- Mid-latitude Airborne Cirus Properties

Experiment- WB-57, Houston, TX

• ACE- PoDEX10Polarmeter Definition Experiment

- High priority design/algorithm issues- ER-2 + P-3B, Wallops or Dryden

• PACE - Pacific Atmospheric Composition, Cloud, and Climate Experiment- Instrument design, combination algorithm

issues specific to ACE science question- DC-8, ER-2, SE Asia• ACE-PEX12 (ACE Precursor Experiment)- Study aerosol properties near clouds and

DARF as function of distance from clouds-ER-2, P-3B, + in-situ a/c Wallops?• ACE- ALDEX- Algorithm Development Experiment

to support multi-sensor algorithm development

- ER-2 + P-3B, Wallops or Dryden• ACE- VEX17-19 (Validation Experiment)

- ACE product and algorithm validation• ACE- SEVEX17-19 (Science and Validation

Exp.)- ACE product and algorithm validation- Suborbital measurements as necessitated

by ACE science questions requirements

45

6 DECADAL SURVEY TIER III MISSION SUPPORT

AllTier3missionsareinearlyplanningstages,pre-PhaseA.

Tier 3 Missions launch dates

Mission Launch DateLIST >2020PATH >2020GACM >2020SCLP >2020GRACE-II >20203-D Winds >2020

6.1 LiST (Lidar Surface Topography)

6.1.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:CraigDobson,NASAHQProjectScientist:TBD

6.1.2 Mission description

Missionobjectives:Landsurfacetopographyforhazardsandwaterrunoff.

6.1.3 Instrument & analogues

LaserAltimeter.

ESTO-sponsoredinstrumentstobetestedinclude:Swath-mappinglidar(Yu).

6.1.4 Preliminaryflightplansandscheduleoverview

Flighttestoflidarin2012timeframe.

6.2 PATH (Precision and All-weather Temperature and Humidity)

6.2.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:RameshKakar,NASAHQProjectScientist:TBD

46

6.2.2 Mission description

Missionobjectives:Highfrequency,all-weathertemperatureandhumiditysoundingsforweatherforecastingandSST.

6.2.3 Instrument & analogues

Microwavearrayspectrometer.

6.2.4 Preliminaryfieldplansandscheduleoverview

TBD.

6.3 GACM (Global Atmospheric Composition Mission)

6.3.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:KenJucks,NASAHQScienceLead:L.Watkins,NASAGSFC

6.3.2 Mission description

Missionobjectives:Ozoneandrelatedgasesforintercontinentalairqualityandstratosphericozonelayerprediction.

6.3.3 Instruments & analogues

• UVspectrometer• IRspectrometer• Microwavelimbsounder

ESTO-sponsoredinstrumentstobetestedincludemicrowavelimbsounderforatmosphericcomposition(Stek).

6.3.4 Preliminaryfieldplansandscheduleoverview

Flighttestoflimbsounderin2012timeframe.

6.4 SCLP (Snow and Cold Land Processes)

6.4.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:JaredEntin,NASAHQProjectScientist:TBD

6.4.2 Mission description

Missionobjectives:Snowaccumulationforfreshwateravailability.

47

6.4.3 Instruments & analogues

KuandX-bandradarsKandKa-bandradiometers

ESTO-sponsoredinstrumentstobetestedinclude:X-bandphasedarrayforsnow-waterequivalentmeasurements.

6.4.4 Preliminaryflightplansandscheduleoverview

FlighttestofKaSPAR(SWOTinstrument)ispossibleinsupportofSCLP.FlighttestoftheX-bandarrayinthe2013timeframe.BotharebeingdesignedforGlobalHawk.

6.5 GRACE-II (Gravity Recovery and Climate Experiment-II)

6.5.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:JohnLebrecque,NASAHQProjectscientist:TBD

6.5.2 Mission description

Missionobjectives:Hightemporalresolutiongravityfieldsfortrackinglarge-scalewatermovement.

6.5.3 Instruments & analogues

Microwaveorlaserrangingsystem.

6.5.4 Preliminaryfieldplansandscheduleoverview

JustastheGRACEfollow-onmaynothaveanyairbornerequirements,GRACE-IImayalsonothaveanyairbornesupportrequirements.

6.6 3-D Winds (Three-Dimensional Tropospheric Winds from Space-based Lidar)

6.6.1 Points of contact

ProgramExecutive:SteveNeeck,NASAHQProgramScientist:RameshKakar,NASAHQProjectScientist:TBD

6.6.2 Mission description

Missionobjectives:Troposphericwindsforweatherforecastingandpollutiontransport.

6.6.3 Instrument analogues

DopplerLidar.

48

ESTO-sponsoredinstrumentstobetestedinclude:• TWiLiTE(Gentry)• CoherentDopplerLidar(Diner)

6.6.4 Preliminaryfieldplansandscheduleoverview

Summer2010:SimultaneousflightoftwoAITTinstrumentsonDC-8.

6.6.5 ASP Gap Assessment

TheDC-8integrationisunderstood.Theschedulemayrequirenegotiation.

6.7 TIER 3 Missions SummaryAsummaryofsupportforTier3missionsisshowninFigure13.

Fig. 13: Tier III missions.

49

7.1 Cross-cutting requirements and gaps

Atthisearlystageinthedevelopmentoffieldtestandcal/valplansforDecadalSurveymissions,itappearsthattheAirborneScienceProgramiswellpositionedtomeettheneedsofmostmissionteams.BecauseofEV-1requirementsforGlobalHawk,andOperationIceBridgerequirementsfortheP-3andDC-8,schedulingoftheseaircraftmustbeconsideredasfarinadvanceaspossible.

ForthesakeoftheaircraftschedulingandcostsavingstothePIs,itwouldbebeneficial,wherepossible,foranairbornemissiontobedesignedtomeettherequirementsofmorethanoneDSMissionteam.Someoverlapexists,forexample,betweentheneedsoftheACEmissionandtheGEO-CAPEmission.

Thesensorandsciencesupportteamsarealsosufficientlyflexibletomeetthepotentialneeds,exceptforUAVSAR.Forthatinstrumentscheduleconflictsalreadyexist.

7.2 Recommendations

1. ContinueplanstobuildanotherUAVSARandmakeitavailableonanadditionalplatform.

2. Workwiththemissionscienceteamstorefineairbornerequirementsandmissionoverlapstomaximizeuseofairborneresources.

7 Synthesis and Recommendations

8 References

[1] NRCReport,“EarthScienceandApplicationsfromSpace:NationalImperativesfortheNextDecadeandBeyond,”15January2007.

[2] “NASAEarthScienceRequirementsforSuborbitalObservations,”availableathttp://airbornescience.nasa.gov.

[3] NPR7120.5D(NASASpaceFlightProgramandProjectManagementRequirements).

[4] “AsummaryandanalysisofoptionsforcollectingICESat-likedatafromaircraftthrough2014,”NASAinternalreport,April2009.

51

53

Appendix A: The Airborne Science Program

A.1 Airborne Science Program – types of support

TheoverallobjectivesoftheNASA’sAirborneScienceProgramare:

• Satellite Calibration and Validation:ProvideplatformstoenableessentialcalibrationmeasurementsfortheEarthobservingsatellites,andthevalidationofdataretrievalalgorithms.

• NewSensorDevelopment:Providesub-orbitalflightopportunitiestotestandrefinenewinstrumenttechnologies/algorithms,andreduceriskpriortocommittingsensorsforlaunchintospace.

• Process Studies:Obtainhigh-resolutiontemporalandspatialmeasurementsofcomplexlocalprocessesthatcanbecoupledtoglobalsatelliteobservationsforabetterunderstandingofthecompleteEarthsystem.

• Development of Next-Generation Scientists and Engineers:Fosterthedevelopmentofourfutureworkforcewiththehands-oninvolvementofgraduatestudentsandyoungscientists/engineersinallaspectsofongoingEarthscienceinvestigations.

Consideringthoseprogramobjectives,ASPcansupporttheDecadalSurveymissionsinanumberofwaysincludinginstrumentflighttesting,supportforfieldstudiestoaidcollectionofdataforpre-launchalgorithmdevelopment,fieldcampaignstosupportsatellitecalibrationandvalidationactivitiespost-launch,andscientificprocessstudiesbothlargeandsmall.

A.2 Instrument testing

NASA’sAirborneScienceProgramhaslongprovidedtestplatformsforinstrumentsthatsimulatethoseplannedforsatelliteuse.TheseanaloginstrumentsincludetheThematicMapperSimulatorusedinthe1970stoprepareforandvalidateLandsatdatasets,throughtotheMODISandASTERsimulatorsthatcontinuetoflyontheER-2andTwinOtterinsupportoftheAquaandTerramissions.

Highaltitudeaircraft,inparticular,canprovideenvironmentssimilartospaceconditionsfortestingobservationsandalsoinstrumentoutput.

RecentawardsfromtheEarthScienceTechnologyOffice(ESTO)werefocusedontechnologydevelopmentsforDecadalSurveymissions,asindictedbystarsininTableA.1(page54).

54

A.3 Calibration/validation

Thecalibration&validation(cal/val)ofdatafromsatellitepayloadsplaysacriticalroleinensuringthathighqualitydataproductsaregeneratedandarchivedtomeetsciencemissiongoalsandobjectives.Calibrationtypicallyreferstotheuseofairborneinstrumentsforcharacterizingtheon-orbitconditionofspaceinstrumentswhilevalidationreferstothesetofmeasurementsthatareusedtodeterminetheprecisionandaccuracyofalgorithmsemployedtointerpretthedata.

TheAirborneScienceProgramhasplayedamajorroleinthecalibrationofdatafromNASAsatellitesandalsothevalidationofresults.ItisanticipatedthataircraftfieldmissionswillsupportmanyoftheDecadalSurveymissions,especiallyintheearlyyearsofthosemissions.

A.4 Process studies

Inadditiontotheothertypesofairbornemissionsthataredirectlytiedtosatellitemissions,ASPoperatesmajorfieldcampaignsorprocessstudiesrelevanttothecriticalsciencequestionsraisedbytheEarthSciencefocusareas.Thesestudiescomplementdataacquisitionfromspacebyproviding

Table A.1: IIP Instruments supporting Decadal Survey Missions; red stars indicate instruments requiring test flights.

2007 Instrument Incubator Awardsversus

Decadal Survey Missions

Abshire/GSFC-column CO2, lidar

Diner/JPL-aerosols and clouds, polarimetric imager

Durden/JPL -clouds and precipitation, profiling radar

Folkner/JPL-time-varying gravity, laser frequency stabilization

Fu/JPL-surface water and ocean topography, interferometric SAR

Grund/Ball-tropospheric winds, Doppler lidar

Hackwell/Aerospace-mineral and gas, TIR spectrometer

Heaps/GSFC-column CO2, lidar

Hook/JPL-mineral/water resources, hyperspectral TIR spectrometer

Kavaya/LaRC-tropospheric winds, Doppler lidar

Kopp/CU-radiation balance, UV-SWIR hyperspectral imager

Lambrigtsen/JPL-T, water vapor, precipitation; microwave sounder

McClain/GSFC-ocean color, UV-SWIR radiometer

Mlynczak/LaRC-radiation balance far-IR spectrometer

Neil/LaRC-boundary laser CO, gas correlation radiometer

Papapolymerou/GT-snow-water equivalent, X-band phased array

Revercomb/UWM-radiation balance, SI-traceable IR calibration

Sander/JPL-air pollution and coastal imaging, panchromatic FTS

Stek/JPL-atmospheric composition, microwave limb sounder

Weimer/Ball-vegetation canopy, steerable lidar

Yu/GSFC-topography and vegetation structure, swath-mapping lidar

CLA

RR

EO

SM

AP

ICE

Sat

II

DE

SD

ynI

Hys

pIR

I

AS

CE

ND

S

SW

OT

AC

E

LIS

T

PATH

GR

AC

E-II

SC

LP

GA

CM

3D-W

inds

CLA

RR

EO

-NO

AA

GP

SR

O

XO

VW

M

GE

O-C

AP

E

55

measurementsatspatialortemporalscalesnotachievedfromsatellitemeasurements.Inaddition,insitumeasurementsareusedtoprovidemeasurementsthatcannotbemadefromspaceinordertodeveloporvalidatenewmodelsofatmosphericphenomenonandprocesses.

A.5 Airborne Science Program – capabilities to support upcoming satellite missions

Table A.2: ASP Fleet.

Airborne Science Program Resources Platform Name Center

Duration(Hours)

Useful Payload(lbs.)

GTOW(lbs.)

Max Altitude(ft.)

Airspeed(knots)

Range(Nmi)

Internet and Document References

Core Aircraft ER-2 NASA-DFRC 12 2,900 40,000 >70,000 410 >5,000http://www.nasa.gov/centers/dryden/research/AirSci/ER-2/

WB-57 NASA-JSC 6.5 8,000 72,000 65,000 410 2,500http://jsc-aircraft-ops.jsc.nasa.gov/wb57/

DC-8 NASA-DFRC 12 30,000 340,000 41,000 450 5,400http:///.nasa.gov/centers/dryden/research/AirSci/DC-8/

P-3B NASA-WFF 12 16,000 135,000 30,000 330 3,800 http://wacop/wff.nasa.gov

GulfstreamIII (G-III)(mil: C-20A) NASA-DFRC 7 2,610 45,000 45,000 459 3,400

http://airbornescience.nasa.gov/platforms/aircraft/g3.html

NASA CatalogAircraft

King Air B-200 AND UC-12B NASA-LARC 6.2 4,100 12,500 35,000 260 1250

http://airbornescience.nasa.gov/platforms/aircraft/b-200.html

DHC-6 Twin Otter NASA-GRC 3.5 3,600 11,000 25,000 100-140 420

http://www.grc.nasa.gov/WWW/AircraftOps/

Learjet 25 NASA-GRC 3 3,200 15,000 45,000350(.81

Mach) 1,100http://www.grc.nasa.gov/WWW/AircraftOps/

S-3B Viking NASA/GRC 6 12,000 52,500 40,000 120-420 2,300http://www.grc.nasa.gov/WWW/AircraftOps/

Ikhana(Predator-B) NASA-DFRC 30 3,000 10,000 52,000 171 3,500

http://airbornescience.nasa.gov/platforms/aircraft/predator-b.html

New Technology Global Hawk NASA-DFRC 30 1500 26,750 65,000 335 10,000http://airbornescience.nasa.gov/platforms/aircraft/globalhawk.html

SIERRA NASA-ARC 11 100 445 12,000 60 550http://airbornescience.nasa.gov/platforms/aircraft/sierra.html

A.6 Aircraft

NASA’sAirborneScienceProgramoperatesafleetofcoreaircraftandcontractsforadditional“catalog”aircraftservices.TheplatformcapabilitiesarelistedinTableA.2.InformationaboutalltheaircraftcanbefoundontheAirborneScienceProgramwebsiteathttp://airbornescience.nasa.gov.

TheASPfleethasoperatedfrombasesallovertheworld.FigureA.3indicatesmissionlocationsin2008.

56

Sensor Flies onAVIRIS (Airborne Visible and Infrared Imaging Spectrometer - JPL) ER-2, WB-57, Twin OtterMODIS Airborne Simulator (MAS) ER-2MASTER (MODIS/ASTER Airborne Simulator) ER-2, B-200, WB-57, DC-8Autonomous Modular Sensor (AMS) Ikhana, Global HawkUAV-SAR (UAV-Synthetic Aperture Radar - JPL) G-III

Science Support SystemsDigital Cirrus Camera (DCS) and Georectification of DCS Imagery ER-2, WB-57, Twin OtterApplanix Position and Orientation System for Airborne Vehicles (POS AV) B-200, WB-57, DC-8, Ikhana,

Global Hawk

Fig. A.3: 2008 NASA Airborne Science Mission Locations.

Table A.3: NASA ASP Facility Instruments.

A.7 Payloads and Accommodations

TheASPcanarrangefortheuseofseveralNASAfacilitysensorsoperatedbyJPLandtheAmesAirborneSensorFacility(ASF.)Fundingfortheuseofthesesystemsiseitheronacost-reimbursablebasis,orbypriorarrangementwithaNASAProgramManager.TableA.3listsfacilityinstruments.

TheASPhasalsointegratedandflownnumerousPI-developedpayloads,includingbothremotesensingandinsitusamplinginstruments,andprovidesintegrationservicesfornewsystemsaswell.TheASPplatformsareequippedwithwindows,ports,andotheraccommodationsforcustominstruments.

57

A.8 Data Handling

Generally,payloadsflownonNASAaircrafthavetheirowndatarecordersforstoringsciencedata.Informationonaircraftposition,roll/pitch/yaw,andotheraircraftparametersarestoredonflightdatarecordersthatcanthenbeaccessedbytheinstrumentPIsfordataprocessing.ASPisintheearlystagesofbuildinganewgenerationofflightdatarecordersandexperiementinterfacepanelstostandardizethesesubsystemsacrossthecorefleetofaircraft.Investmentsarealsobeingmadetoenablehighbandwidthtelemetryusingsatellitelinkswherenearrealtimedataisdesirablewhetherforcheckingoninstrumenthealthorforresponsiveflightre-taskingduringagivenflight.

A.9 Mission Planning and Cross-cutting Capabilities

ASPoffersmissionplanningthroughtheplatformproviderteamstheEarthScienceProgramOffice(ESPO).ASPalsooffersvisualizationcapabilitiesformissionscientiststotracktheirexperiments.

ASPmissionshavethecapabilitytomeetmanyadditionalscienceneeds,including:

• Carryingmultiplepayloads.

• Coordinatingmultipleplatforms.

• Flyingverticalprofilesorstackedplatforms.

• Longdistancesorlongduration.

• Under-flightofsatelliteoverpasses.

• Real-timedataaccessibility.

• Portabilityandintegrationofpayloadsbetweenplatforms.

59

Appendix B: Decadal Survey Missions

B.1 Master Schedule

TheTier1andTier2missionsappearonthemasterschedulebelowinTableB.1.

Project Life Cycle

Project Pre-Formulation Project Formulation Project Implementation

Pre-Phase A Phase A Phase B Phase C Phase D Phase E Phase F

NASA:DESDynI CLARREOSWOTASCENDSACEGEO

NASA:ICESat-2SAGE III

NASA:SMAPOCO-2VentureEV-1

NASA:NPPGloryAquarius GPM LDCM

NASA Prime:AuraOSTM

NASA Extended:Aqua Terra TRMM Jason EO-1QuikSCAT SORCE Acrimsat CALIPSO CloudSat GRACE

Approval

TheTier3missionsarenotyetonthemasterschedule.Theseare:• LIST(LidarSurfaceTopography)• PATH(Precisionandall-weathertemperatureandhumidity)• GACM(GlobalAtmosphericCompositionMission)• SCLP(SnowandColdLandProcesses)• GRACE-II(GravityRecoveryandClimateExperiment-II• 3-DWinds(Three-DimensionalTroposphericWindsfromSpace-basedLidar)

B.2 Mission Terminology: Key Decision Points

InpreparingtolaunchtheDecadalSurveymissions,eachmustgothroughallthefollowingstepsoftheNASAprojectlifecycle,showninFigureB.1.(SeeNPR7120.5D[3]).Allthemissionsstartin“pre-Phase

Table B.1: Status of New Generation Missions.

60

A”asconceptstudies.Toreach“PhaseA,”whereformalScienceDefinitionTeams(SDT)areformedandfundingbecomesavailableforactivitiesinadditiontostudies,theprojectmustpassthrough“KeyDecisionPoint–KDP”A.ThismeanspassingaMissionConceptReview(MCR).SMAPpassedMCRin2008isinPhaseA.TheremainingTier1missionsareexpectedtopassMCRin2009.Untilthen,allmissionsare“pre-PhaseA.”

ThemissionstudyprocessleadingtoMCRinvolvesthefollowingactivities:

• ConductstudiesandanalysestoderivetheLevel1requirements(Science,engineering,costandschedule).

• Completeananalysisofalternativesresultinginaconceptualdesign,andconductMissionConceptReview.

• PrepareforapprovalalldocumentsrequiredinNPR7120.5D(NASASpaceFlightProgramandProjectManagementRequirements).

Fig. B.1: NASA project life cycle.

61

Appendix C: Acronyms

ACE: Aerosol–Cloud–Ecosystems

ACCLAIM: AdvancedCO2andClimateLAserInternationalMission

AITT: AirborneInstrumentTechnologyTransition

AMS: AutonomousModularSensor

APMIR: Airbornepolarimetricmicrowaveimagingradiometer

APS: AerosolPolarimetrySensor

ASCENDS: ActiveSensingofCO2EmissionsoverNights,Days,andSeasons

ASTER: AdvancedSpaceborneThermalEmissionandReflectionRadiometer

ATMS: AdvancedTechnologyMicrowaveSounder

ATS: ApplicationsTechnologySatellite

AVIRIS: AirborneVisible/InfraredImagingSpectrometer

CAMEX: ConvectionandMoistureExperiment

CLARREO: ClimateAbsoluteRadianceandRefractivityObservatory

CrIS: Cross-trackInfraredSounder

DESDynI: Deformation,EcosystemStructureandDynamicsofIce

DPR: Dual-frequencyPrecipitationRadar

EOS: EarthObservationSystem

ESTO: EarthScienceandTechnologyOffice

FTS: FourierTransformSpectrometer

GACM: GlobalAtmosphericCompositionMission

GEO-CAPE: GeostationaryCoastalandAirPollutionEvents

GMI: GPMMicrowaveImager

GPM: GlobalPrecipitationMeasurement

GRACE: GravityRecoveryandClimateExperiment

HAMSR: HighAltitudeMMICSoundingRadiometer

HyspIRI: HyperspectralInfraredImager

ICESat: Ice,Cloud,andLandElevationSatelliteII

IIP: InstrumentIncubatorProgram

JAXA: JapaneseAerospaceExplorationAgency

KaSPAR: Ka-bandSWOTPhenomenologyAirborneRadar

62

LAS: LaserAbsorptionSpectrometer

LDCM: LandsatDataContinuityMission

LIST: LidarSurfaceTopography

LVIS: LaserVegetationImagingSensor

MABEL: MultipleAltimeterBeamExperimentalLidar

MAS: MODISAirborneSimulator

MASTER: MODIS/ASTERAirborneSimulator

MFLL: MultifrequencyFiberLaserLidar

MMIC: Monolithicmicrowaveintegratedcircuit

MODIS: ModerateResolutionImagingSpectroradiometer

NAMMA: NASAAfricanMonsoonMultidisciplinaryAnalysis

NAST: NPOESSAircraftSounderTestbed

NPOESS: NationalPolar-orbitingOperationalEnvironmentalSatelliteSystem

NPP: NPOESSPrepatoryProject

OCO: OrbitingCarbonObservatory

OES: OceanEcosystemSpectrometer

OMPS: OzoneMappingandProfilerSuite

ORCA: OceanRadiometerforCarbonAssessment

PACE: Pre-ACE

PALS: Passive/ActiveL-andS-bandSensor

PARIS: PathfinderAirborneRadarIceSounder

PATH: PrecisionandAll-weatherTemperatureandHumidity

PODEX: Polarimeterdefinitionexperiment

PolSCAT: PolarimetricScatterometer

PSR: PolarimetricScanningRadiometer

RSP: ResearchScanningPolarimeter

SAGEIII: StratosphericAerosolandGasExperimentIII

SAR: SyntheticApertureRadar

S-HIS: ScanningHighResolutionInterferometricSounder

SIMPL: SlopeImagingMulti-polarizationPhoton-countingLidar

SLCP: SnowandColdLandProcesses

SMAP: SoilMoistureActivePassive

SOLVE: SAGEIIIOzoneLossandValidationExperiment

SWOT: SurfaceWaterandOceanTopography

TIM: TotalIrradianceMonitor

UAVSAR: UnmannedAerialVehicleSyntheticApertureRadarVisible/InfraredImager/RadiometerSuite

63

Appendix D: Program Executives and Scientists

Mission Program Executive

email address Program Scientist

email address

Foundational MissionsGlory Bretthauer [email protected] Maring [email protected] Eric Ianson [email protected] Lindstrom eric.j.lindstrom@nasa.

govNPP Carson [email protected] Wickland diane.e.wickland@nasa.

govLDCM Jarrett [email protected] Wickland diane.e.wickland@nasa.

govOCO 2 Ianson [email protected] Jucks kenneth.w.jucks@nasa.

govGPM Neeck [email protected] Kakar [email protected] Topiwala Nandkishore.N.Topiwala@

nasa.govConsidine david.b.considine@nasa.

govGRACE follow on Neeck [email protected] LaBrecque John.LaBrecque@nasa.

govGOES-R Topiwala Nandkishore.N.Topiwala@

nasa.govBontempi paula.s.bontempi@nasa.

govDecadal Survey Tier 1 MissionsSMAP Ianson [email protected] Entin [email protected] II Slonaker [email protected] Wagner thomas.wagner@nasa.

govCLARREO-1 Slonaker [email protected] Jucks kenneth.w.jucks@nasa.

govCLARREO-2 Slonaker [email protected] Jucks kenneth.w.jucks@nasa.

govDESDynI Dutta Sanghamitra.b.Dutta@nasa.

govLaBrecque John.LaBrecque@nasa.

govDecadal Survey Tier II MissionsSWOT Neeck [email protected] Lindstrom eric.j.lindstrom@nasa.

govASCENDS Neeck [email protected] Jucks kenneth.w.jucks@nasa.

govHyspIRI Neeck [email protected] Turner [email protected] Neeck [email protected] Maring [email protected] Neeck [email protected] Maring [email protected] Neeck [email protected] Al-Saadi [email protected]

Mission Program Executive

email address Program Scientist

email address

Decadal Survey Tier III MissionsSLCP Neeck [email protected] Entin [email protected] Neeck [email protected] Dobson [email protected] Neeck [email protected] Jucks kenneth.w.jucks@nasa.

govPATH Neeck [email protected] Kakar ramesh.k.kakar@nasa.

govGRACE II Neeck [email protected] LaBrecque John.LaBrecque@nasa.

gov3-D WINDS Neeck [email protected] Maring [email protected] Venture - 1 missions

Avery [email protected] Maring [email protected]

64