2012 intro organologam

43
 Mekanisme Reaksi Kimia Anorganik  Reaksi Organologam Referensi: James E.Huheey, Ellen A.Keither, Richard L. Keiter. 1993. Inorganic Chemistry: Principles of Structure and Reactivity Fourth Edition. Harper Collins College, New York (Bab 13, 15) Miessler, Tarr , “Inorganic Chemistry ,” 2nd Edition, 1999. Shr iver , Atki ns, “Inorg ani c Che mistry ,” 3r d Ed itio n, 19 99. RH Crabtree, The Organometallic Chemistry of the Transition Metals, Wiley 2001 Online : http:/ /www .chem.ox.ac.uk/icl/dermot.html Lecture Notes online: www.ocw.mit.edu Lecture Note yang telah dibagikan (Mencakup 2/3 materi, bahasa Indonesia) Help : ruang dosen, e-mail, phone Pertemuan I- tugas terstruktur 2

Upload: jodhi-hartono-putra

Post on 02-Nov-2015

311 views

Category:

Documents


6 download

DESCRIPTION

kimia

TRANSCRIPT

  • Mekanisme Reaksi Kimia Anorganik Reaksi Organologam

    Referensi:

    James E.Huheey, Ellen A.Keither, Richard L. Keiter. 1993. Inorganic Chemistry: Principles of Structure and Reactivity Fourth Edition. Harper

    Collins College, New York (Bab 13, 15)

    Miessler, Tarr, Inorganic Chemistry, 2nd Edition, 1999.

    Shriver, Atkins, Inorganic Chemistry, 3rd Edition, 1999.

    RH Crabtree, The Organometallic Chemistry of the Transition Metals, Wiley 2001

    Online : http://www.chem.ox.ac.uk/icl/dermot.html

    Lecture Notes online: www.ocw.mit.edu

    Lecture Note yang telah dibagikan (Mencakup 2/3 materi, bahasa Indonesia)

    Help : ruang dosen, e-mail, phone

    Pertemuan I- tugas terstruktur

    2

  • Kimia Organologam

    Definisi Kimia Organologam

    Aturan 18 elektron: Electron Counting (pertemuan I)

    Ligan Organometal (pertemuan II)

    Reaksi Kompleks Organologam (pertemuan III-V)

    Adisi Oksidatif

    Eliminasi Reduktif

    Proses Substitusi

    Reaksi Insersi

    Eliminasi Alfa-Hidrida dan Abstraksi

    Eliminasi Beta-Hidrida

    Aplikasi dalam reaksi katalitik (pertemuan 5-7) (Dengan Luasnya Kajian Kimia Organologam-hanya ada 7 pertemuan,

    Bahasan per minggu dan slide power point dapat sedikit berubah

    dari rencana pembelajaran)

    3

  • Mekanisme Reaksi Kimia Anorganik Reaksi Organologam

    Organometallic compounds are compounds wherein the metal is bonded through carbon to an organic molecule, radical or ion.

    senyawaan yang mengandung ikatan LOGAM KARBON

    Dari yang telah anda pelajari:Cr(CO)6 Hingga: senyawa sandwich dengan sistem ligan organik tak jenuh pi terdelokalisasi

    4

  • BASED ON ORGANOMETALLICS JOURNAL:

    "organometallic" compound will be defined as one in which there is a bonding interaction (ionic or covalent, localized or delocalized) between one or more carbon atoms of an organic group or molecule and a main group, transition, lanthanide, or actinide metal atom (or atoms).

    organic derivatives of the metalloids (boron, silicon, germanium, arsenic, and tellurium) will be included in this definition.

    metal-containing compounds which do not contain metal-carbon bonds will be considered as well. Such compounds may include, inter alia, representatives from the following classes: molecular metal hydrides; metal alkoxides, thiolates, amides, and phosphides; metal complexes containing organo-group 15 and 16 ligands; metal nitrosyls...."

    5

  • Historical Perspective

    1827 Zeises Salt Na[PtCl3C2H4]-seny org.logam pertama

    1847 Frankland, Zn(Et)2, first metal alkyl

    1900 Grignard, organomagnesium halides

    1907 Pope and Peachey, PtMe3I, first transition metal s-alkyl

    1917. Schenk, lithium alkyls

    1931 Heiber, Fe(CO)4H2 first transition metal hydride

    1951. Pauson and Miller, ferrocene

    1955 Fisher, bis arene metal complex

    1973. Fisher, Cr(CO)4(CR), first carbyne complex

    1983. Bergman, Graham, C-H bond activation

    1983 Green, Brookhart, agostic metal-hydrogen interaction

    6

  • 7

  • The Nobel Prize in Chemistry 2010

    Richard F. Heck, Ei-ichi Negishi, Akira Suzuki

    Richard

    F. Heck

    American

    citizen.

    Born

    1931

    Ei-ichi

    Negishi

    Japanese

    citizen.

    Born

    1935

    Akira

    Suzuki

    Japanese

    citizen.

    Born

    1930

  • Why the Heck Bother with the Heck Reaction: Applications in Industry and Total Synthesis

    Non-Steroidal

    Anti-inflammatory drugs

    Sunscreen Agents

    Flavourings

    Cosmetic Additives

    Key Steps in Total Synthesis O

    O O

    ACB

    L.F. Tietze and T. Grote,

    J. Org. Chem., 1994, 59, 192

    J.J. Masters, D.K. Jung,

    W.G. Bornmann and

    S.J. Danishefsky,

    Tetrahedron Lett., 1993, 34, 7253

    O

    NH

    NSO2Ph

    Taxol

    Skeleton

    CC-1065

    Skeleton

    MeO

    O

    O

    2-Ethylhexyl trans-4-methoxycinnamate

    MeO

    O

    O

    Isoamyltrans-4-methoxycinnamate

    COOH

    CH3

    MeO(s)-Naproxen

    Br

    MeO

    MeO

    Heck reaction

  • The Nobel Prize in Chemistry 2010

    The Suzuki reaction

    Suzuki reaction to

    develop organic

    polymers that emit

    light when a current

    runs through them.

    The goal is to

    improve super-thin

    OLED (organic light-

    emitting diode)

    displays.

    Suzuki reaction to

    develop new light-

    capturing

    molecules. These

    can be spray-

    painted onto a

    surface and could

    become a part of

    future flat solar cell

    The Suzuki reaction

    has been used to

    develop variants of the

    antibiotic vancomycin.

    These variants are

    effective against

    strains of bacteria that

    are otherwise resistant

    (MRSA)

  • Ligan Organik tidak jenuh

    Dapat berikatan dengan logam melalui lebih dari 1 cara Contoh Allyl

    * Sbg alkil berikatan dgn logam melalui satu atom karbon

    * melalui sistem elektron , ketiga atom karbonnya

    berikatan dengan logam (hapticity, h)

    M

    M

    12

  • Hapto (h) Number

    Jumlah atom terkonjugasi pada ligan yang terikat ke logam

    h5-C5H5 pentahaptosiklopentadienil

    Sebagai ligan C5H5 disebut siklopentadienil (Cp)

    13

  • eta-x was originally developed to indicate how many contiguous donor atoms of a -system were coordinated to a metal center. Hapticity is another word

    used to describe the bonding mode of a ligand to a metal center. An h5-

    cyclopentadienyl ligand, for example, has all five carbons of the ring bonding to the

    transition metal center.

    hx values for all-carbon based ligands where the x value is odd usually

    indicate anionic carbon ligands (e.g., h5-Cp, h1-CH3, h1-allyl or h3-allyl, h1-

    CH=CH2). The # of electrons donated (ionic method of electron counting) by the

    ligand is usually equal to x + 1. Even hx values usually indicate neutral carbon -

    system ligands (e.g., h6-C6H6, h2-CH2=CH2, h4-butadiene, h4-cyclooctadiene).

    The # of electrons donated by the ligand in the even (neutral) case is usually just

    equal to x.

    hx

    14

  • .

    15

  • 17

  • mu-x is the nomenclature used to indicate the presence of a bridging ligand between two or more metal centers. The x refers to the number of metal

    centers being bridged by the ligand. Usually most authors omit x = 2 and just use

    m to indicate that the ligand is bridging the simplest case of two metals.

    mx

    There are two different general classes of bridging ligands:

    1) Single atom bridges

    2) Two donor atoms separated by a bridging group (typically organic)

    Ta2 (m-t-Bu-CC-t-Bu) (m-Cl)2Cl2(THF)2 Mo2(m-CH2P(Me)2CH2)4

  • Ordering Inorganic/organometallic chemists generally do NOT use IUPAC naming rules.

    There are some qualitative rules that most authors seem to use in American

    Chemical Society (ACS) publications:

    in formulas with Cp (cyclopentadienyl) ligands, the Cp usually comes first, followed by the metal center: Cp2TiCl2

    other anionic multi-electron donating ligands are also often listed in front of the metal, e.g., trispyrazolylborate anion (Tp)

    in formulas with hydride ligands, the hydride is sometimes listed first. Rules # 1 & 2, however, take precedence over this rule: HRh(CO)(PPh3)2 and

    Cp2TiH2

    bridging ligands are usually placed next to the metals in question, then followed by the other ligands (note that rules 1 & 2 take precedence):

    Co2(m-CO)2(CO)6 , Rh2(m-Cl)2(CO)4 , Cp2Fe2(m-CO)2(CO)2

    anionic ligands are often listed before neutral ligands: RhCl(PPh3)3, CpRuCl(=CHCO2Et)(PPh3) (neutral carbene ligand), PtIMe2(CCR)(bipy).

  • Ordering Inorganic/organometallic chemists generally do NOT use IUPAC naming rules.

    There are some qualitative rules that most authors seem to use in American

    Chemical Society (ACS) publications:

    in formulas with Cp (cyclopentadienyl) ligands, the Cp usually comes first, followed by the metal center: Cp2TiCl2

    other anionic multi-electron donating ligands are also often listed in front of the metal, e.g., trispyrazolylborate anion (Tp)

    in formulas with hydride ligands, the hydride is sometimes listed first. Rules # 1 & 2, however, take precedence over this rule: HRh(CO)(PPh3)2 and

    Cp2TiH2

    bridging ligands are usually placed next to the metals in question, then followed by the other ligands (note that rules 1 & 2 take precedence):

    Co2(m-CO)2(CO)6 , Rh2(m-Cl)2(CO)4 , Cp2Fe2(m-CO)2(CO)2

    anionic ligands are often listed before neutral ligands: RhCl(PPh3)3, CpRuCl(=CHCO2Et)(PPh3) (neutral carbene ligand), PtIMe2(CCR)(bipy).

  • Problem: Sketch structures for the following:

    a) CpRuCl(=CHCO2Et)(PPh3)

    b) Co2(m-CO)2(CO)6 (Co-Co bond, several possible structures)

    c) trans-HRh(CO)(PPh3)2 [Rh(+1) = d8]

    d) Ir2(m-Cl)2(CO)4 [Ir(+1) = d8]

    e) Cp2TiCl2

  • Aturan 18 elektron

    Mirip dengan aturan Oktet, analogi s2p6d10

    Sering dilanggar

    Berguna untuk penghitungan dan perkiraan reaktivitas

    Terdapat dua cara: ionik dan kovalen

    Yang harus diketahui : muatan formal, d electron count

    Metode ionik: menghilangkan ligan daril ogam dan jika perlu menambah elektron ke tiap ligan adar terbentuk kulit valensi tertutup (closed valence shell).

    Contoh jika kompleks memenuhi oktet, mengambil NH3 berarti mengambil NH3-

    gugus metil sebagai 2 elektron donor., berhubung logam bermuatan positif maka

    nantinya d-electron countnya harus dikurangi satu. Lihat contoh

    Metode kovalen: menghilangkan seluruh ligan dalam bentuk netral. Misal amonia dihilangkan sebagai molekul netral dengan sepasang elektron bebas. Mana amonia

    adalah 2 elektron donor netral. Jika ligannya NH3 maka yang diambil berbentuk NH3

    radikal, sebagai satu donor elektron, kemana yang satunya pergi? Dihitung pada

    logam, kedudukan logam dihitung sebagai d-electron terisi penuh, misal Fe selalu 8.

    23

  • 24

  • 25

  • 26

  • 27

  • ATURAN 18 ELEKTRON, WHY?

    Contoh Cr(CO)6. interaksi d orbital Cr Ligan CO merupakan ligan s-

    donor (HOMO) dan -akseptor (LUMO)

    28

  • Penambahan 1 elektron akan memberikan populasi pada orbital eg-antibonding-destabilisasi

    Pengurangan 1 el akan mengurangi t2g (bonding karena pengaruh CO sebagai - akseptor )-destabilisasi, maka 18e paling stabil

    Sifat s-donor CO meninggikan energi eg

    Sifat - akseptor CO menurunkan t2g

    Selain s-donor - akseptor bisa jadi tidak mematuhi aturan 18 elektron

    29

  • Perkecualian untuk Zn(en)32+ (spesies dgn 22 elektron)

    * orbital t2g dan eg terisi.

    * en merupakan s-donor yg tdk sekuat ligan CO maka elektron

    pada orbital eg tidak cukup antibonding, dan bisa ditempati dengan

    stabil dengan penambahan 4 elektron

    30

  • TiF62- (Spesies dengan 12 elektron)

    Ligan F- merupakan ligan dengan -donor sebaik s-donor.

    -donor pada F- mendestabilisasi orbital t2g sehingga agak antibonding

    Spesie TiF62- mempunyai 12 elektron pada orbital s bonding dan tidak ada

    elektron pada orbital antibonding t2g dan eg

    Konfigurasi 18 elektron kompleks stabil dengan ligan -akseptor yang kuat .

    Termasuk utk geometri trigonal bipyramida (Fe(CO)5) dan geometri

    tetragonal (Ni(CO)4).

    Untuk geometri square planar, konfigurasi yg stabil adalah 16 elektron.

    Khususnya utk kompleks logam d8

    31

  • Kompleks dengan aturan 16 e

    Biasanya unsur blok d diseb. kanan khususnya group 9 dan 10

    Tabel senyawaan organologam dgn aturan 16 dan 18

    Biasanya < 18 e Biasanya 18 e 16 atau 18 e

    Sc

    Y

    La

    Ti

    Zr

    Hf

    V

    Nb

    Ta

    Cr

    Mo

    W

    Mn

    Tc

    Re

    Fe

    Ru

    Os

    Co

    Rh

    Ir

    Ni

    Pd

    Pt

    32

  • PERHITUNGAN ELEKTRON DLM KOMPLEKS

    Cr(CO)6

    Fe(CO)4PPh3

    Cr

    6 CO

    Total

    Fe

    4CO

    PPh3

    Total

    6 e

    12 e

    18 e

    8 e

    8 e

    2 e

    18 e

    36

  • .

    Ni(PF3)4

    [Mn(CO)5]-

    [Co(CO)4]-

    Mn2(CO)10

    Ni

    4 PF3

    Total

    Mn

    5 CO

    Muatan

    Total

    Co

    4 CO

    Muatan

    2 Mn

    10 CO

    Mn Mn

    Total

    10 e

    8 e

    18 e

    7 e

    10 e

    1 e

    18 e

    9 e

    8 e

    1 e

    14 e

    20 e

    2 e

    36 e

    Co2(CO)8

    [PtCl4]2-

    HMn(CO)5

    2 Co

    8 CO

    Co Co

    Total

    Pt

    4 Cl

    Muatan

    Total

    Mn

    5 CO

    H

    Total

    18 e

    16 e

    2 e

    36 e

    10 e

    4 e

    2 e

    16 e

    7 e

    10 e

    1 e

    18 e

    37

  • .

    38

  • .

    39

  • Tentukan electron counts dengan kedua metode untuk

    a. [Fe(CO)42-

    b. [(5-C5H5)2Co]+

    c. (3-C5H5)(5-C5H-5-)Fe(CO)

    d. Co2(CO)8 (satu ikatan bridging Co-Co)

    e. IrCl(CO)(PPh3)2

    dengan membandingkan beda hasil kedua metode perhitungan

    electron tentukan logam transisi deret pertama untuk kompleks 18

    elektron (kecuali e. 16 elektron)berikut

    a. [M(CO)3PPh3]-

    b. HM(CO)5

    c. (4-C8H8)M(CO)3

    d. [(5-C5H5)2(Co)3]2

    e. [M(CN)4]2-

    40

  • Aturan 18 Elektron

    Q : Ngapain repot-repot ngitung elektron?

    A : Dasar untuk mempelajari struktur dan reaktivitas reaksi organologam.

    Tidak beda jauh dari struktur Lewis.

    Maka,perhitungan seharusnya otomatis, perhitungan seharusnya bukan dengan menghapal ligan tapi memahami karakteristik sharing elektron dalam kompleks

    41

  • Perkiraan Reaktivitas

    (C2H4)2PdCl2 (C2H4)(CO)PdCl2

    (C2H4)PdCl2

    (C2H4)2(CO)PdCl2

    ?

    CO- C2H4

    - C2H4CO

    dissociative

    associative

    Most likely associative:

    16-e PdII

    18-e PdII

    16-e PdII

    42

  • 43

    Cr(CO)6 Cr(CO)5(MeCN)

    Cr(CO)5

    Cr(CO)6(MeCN)

    ?

    MeCN- CO

    - COMeCN

    dissociative

    associative

    Perkiraan Reaktivitas

    Almost certainly dissociative:

    18-e Cr(0)

    16-e Cr(0)

    18-e Cr(0)

  • Electron counting Q : Terus kalo saya ngitung elektron hasilnya 16

    atau 14 artinya apa?

    A : Struktur dengan elektron count dibawah ideal disebut kekurangan elektron (electron-deficient )atau tidak jenuh (coordinatively unsaturated).

    Mempunyai valence orbitals(orbital kosong) .

    Membuatnya bersifat elektrofilik, bisa diserang nukleofilik.

    Bisa sangat reaktif, menyerang hidrokarbon atau mengikat gas mulia

    44

  • Reactivity of electron-deficient compounds

    Fe(CO)5h

    - COFe(CO)4

    THF Fe(CO)4(THF)

    18-e Fe(0)

    unreactive

    16-e Fe(0)

    very reactive 18-e Fe(0)

    45

  • Q : Trus kalo electron counting ketemunya lebih dari 18, terlalu banyak maksudnya apa?

    A : Jumlah net kovalen bonds kecil valenceorbital tidak cukup tersedia untuk elektron ini

    An ionic model is required to explain part of the bonding.

    Ikatan bersifat lemah Relatif jarang untuk logam transisi, biasanyaterjadi

    karena reduksi (= penambahan elektron).

    Elektron bisa berada pada L-M bonding orbitals atau pada metal-centered lone pairs.

    Metal-centered orbitals punya energi tinggi atom metal dengan suatu lone pair adalah s-donor

    (nucleophile).

    46

  • Belajar mengenal muatan dan donor untuk ligan umum

    Cationic 2e- donor: NO+ (nitrosil)

    Neutral 2e- donors: PR3 (phosphines), CO (carbonyl), R2C=CR2 (alkenes), RCCR (alkynes, can also donate 4 e-), NCR (nitriles)

    Anionic 2e- donors: Cl- (chloride), Br- (bromide), I- (iodide), CH3

    - (methyl), CR3- (alkyl), Ph- (phenyl), H-

    (hydride) bisa donor 4 e- tapi untuk perhitungan awal hitung sebagai2e- donors (kecuali jadi bridging ligands): OR- (alkoxide), SR- (thiolate), NR2

    - (inorganic amide), PR2-

    (phosphide)

    Anionic 4e- donors: C3H5- (allyl), O2

    - (oxide), S2- (sulfide), NR2

    - (imido), CR2

    2- (alkylidene) and from the previous list: OR- (alkoxide), SR- (thiolate), NR2

    - (inorganic amide), PR2-

    Anionic 6e- donors: Cp- (cyclopentadienyl), N3- (nitride)

    Cara Mempercepat Electron Counting

    47

  • Ligands, Charges, and Donor #s

    48

  • Ligands, Charges, and Donor #s

    49

  • Lewis Base Ligands -- Halides

    X

    XX X

    F , , , Cl Br I

    Increasing polarizability

    Primary Halides

    Strongest nucleophilefor low oxidation statemetals centers

    MM

    M

    MM

    M

    2e- terminal 4e- -bridgingm 6e- -bridgingm3

    Common Misconception: The halides are anionic ligands, so they are NOT

    electron-withdrawing ligands. In organic chemistry the halogens can be

    considered neutral ligands and do drain electron density from whatever they are

    attached to. But here they are anionic and are perfectly happy with that charge.

    Their electronegativity makes the halides poor donor ligands. As one moves from F- to I-, the donor ability increases as the electro-negativity drops.

    50