2012 role of ct in detection of plaque

Upload: muhammad-rusydi

Post on 03-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 2012 Role of CT in Detection of Plaque

    1/8

    Research Article Open Access

    Youssef and Budoff, Angiol 2013, 1:2

    http://dx.doi.org/10.4172/2329-9495.1000111

    Review Article Open Access

    Angiology: Open Access

    Volume 1 Issue 2 1000111Angiol

    ISSN: 2329-9495 AOA, an open access journal

    Introduction

    Atherosclerotic cardiovascular diseases are still the leading causeo deaths in industrialized Countries and Coronary Artery Disease(CAD) accounts or the majority o this toll [1]. Cardiac events aretypically caused by disruption o coronary plaques where plaquerupture occurs in about two thirds o cases, while the remaining thirdo cases are caused by plaque erosion with subsequent ormation ooccluding thrombus [2]. Tus, a clinically relevant definition o arupture-prone (or what has been termed the vulnerable) plaque, isa lesion that places a patient at risk or uture major adverse cardiacevents, including death, myocardial inarction, or progressive angina.

    On the other hand, the histopathological eatures that have beenassociated with vulnerable plaques and dened them, include: 1) A largeeccentric necrotic lipid core, occupying approximately one-quarter othe plaque area [3], 2) A thin brous cap (

  • 8/11/2019 2012 Role of CT in Detection of Plaque

    2/8

    Citation: Youssef G, Budoff M (2013) Role of Computed Tomography Coronary Angiography in the Detection of Vulnerable Plaque, Where Does it

    Stand Among Others? Angiol 1: 111. doi: 10.4172/2329-9495.1000111

    Page 2 of 8

    Volume 1 Issue 2 1000111Angiol

    ISSN: 2329-9495 AOA, an open access journal

    Modality Mechanism Spatial resolution Strengths Limitations Relevant Studies

    Invasive Modalities

    Intravascular ultrasound

    (IVUS) [8-11]

    The intensity of the backscattered

    signalis processed into gray scale

    differs among different plaque

    components

    150 m

    Provides information on

    plaque anatomical features

    and composition to lesser

    extent [12]

    -Invasiveness

    -Limited temporalresolution

    -Limited spatial resolution

    so cannot recognize thin

    cap brotheroma (TCFA)

    -Gray scale IVUS cannot

    accurately differentiate

    elements of plaque

    composition

    -Features of plaquevulnerability include:

    eccentric pattern,

    echolucent core, positive

    remodeling, presence of

    thrombi, plaque length,

    lumen narrowing and

    spotty calcication [13,14]

    IVUS-RF (radiofrequency)

    analysis e.g. Virtual

    histology (VH) [8-11]

    RF data are more in direct

    relation to the interaction of

    ultrasound with tissue

    100-200 m

    -Ability to differentiate

    between 4different tissue

    types in plaques; dense

    calcium, brous, bro-fatty

    and necrotic core [15]

    -Identication of TCFA

    -Invasiveness

    -Limited spatial resolution

    -When compared to

    histology, sensitivity,

    specicity and predictive

    accuracy of VH to

    detect necrotic core,

    a vulnerability feature

    were 67%, 93% and 88%

    respectively [16]

    -PROSPECT study showeda correlation between

    presence of TCFA and

    future major adverse

    cardiac events (hazard

    ratio: 3.35) [17,18]

    Palpography

    (intravascular

    elastography)

    [8,10]

    Measures the local strain rate of

    vessel wall and plaque (brous

    plaques are stiffer than lipid-rich

    ones) high strain regions denote

    more vulnerable plaques

    200-400 mIdentication of thin brous

    caps

    -Invasiveness

    -Limited spatial resolution

    -Cardiac motion

    Human studies have

    shown a strong correlation

    between number of highly

    deformable plaques

    and both the clinical

    presentation (ACS Vs.

    stable patients) [18]

    Intravascular MRI (IV-MRI)

    [8]

    Calculates the water diffusion

    coefcient: lipid-rich < brous

    plaques

    120 mDetection of plaque

    composition-Invasiveness

    There was a good

    correlation between

    MRI and histology with

    sensitivity and specicity of

    100% and 89% [19]

    Angioscopy [8-11]

    Direct visualization of the

    endothelial surface. The intensity

    of the yellow color detected is

    used for plaque characterization

    200 m

    Precise visualization of

    plaque surface detecting

    disrupted plaques (ulcers,

    ssures)

    -Invasiveness

    -Limited

    tissue penetration and

    spatial resolution

    Number of yellow plaques

    were shown to be a strong

    predictor of ACS [20]

    Optical coherent

    tomography (OCT) [8-11]

    Light-based imaging, measures

    the amplitude of backscattered

    light (optical echoes) from a

    sample as a function of time

    delay

    4-20 m

    -Highest spatial resolution,

    able to resolve thin brous

    caps

  • 8/11/2019 2012 Role of CT in Detection of Plaque

    3/8

    Citation: Youssef G, Budoff M (2013) Role of Computed Tomography Coronary Angiography in the Detection of Vulnerable Plaque, Where Does it

    Stand Among Others? Angiol 1: 111. doi: 10.4172/2329-9495.1000111

    Page 3 of 8

    Volume 1 Issue 2 1000111Angiol

    ISSN: 2329-9495 AOA, an open access journal

    Systematic comparison between invasive and non-invasivemodalities or coronary plaque characterization in ex-vivo specimensdemonstrated that CCA and IVUS are reasonably associated withplaque composition and lesion grading according to histopathologicndings, while Optical Frequency Domain Imaging (a secondgeneration o OC) was strongly associated.

    Imaging eatures that were associated with advanced lesions were,mixed plaque at CCA, calcication at IVUS and lipid-rich plaqueat OFDI). Moreover, OFDI showed a better diagnostic accuracydifferentiating early rom advanced coronary lesions, with area underthe curve (AUC) o 0.8 compared to AUC o 0.63 and 0.68 or IVUSand CCA respectively [21].

    Multi-detector Computed TomographyFirst-generation scanners, or conventional C, utilized a single

    X-ray source and single X-ray detector cell. Over the past two decadeswith the tremendous advances in technology, MDC presented abreakthrough in cardiac C imaging technology by 1) increasing thenumber o detector rows rom 4 to 320 thus increasing the coveragein the Z-axis up to 16 cm in a single heart beat with a single gantryrotation, 2) speeding up the gantry rotation, enough to reeze thecardiac motion by capturing images within the relatively brie periodo cardiac diastasis. the use o dual-source MDC system has markedlyimproved the temporal resolution to approximately 85 msec, resultingin a shorter scan time and 3) decreasing the thickness o the detectorsto 0.5-0.625 mm thus increasing the spatial resolution to image sub-

    millimeter structures. Tis has allowed more accurate and detailedimaging o coronary plaques morphology and composition.

    MDC has caught up with coronary angiography, showing an

    excellent diagnostic accuracy in diagnosis o obstructive CAD whencompared to coronary angiography as the gold standard. In a recentmeta-analysis o 188 studies (rom 2004 to 2011), the mean sensitivityand specicity o MDC were 97% and 87% respectively [31].

    Role of MDCT in Detection of Vulnerable Plaque;Morphology and Composition

    Te potential or MDC evaluation o coronary plaques is

    enormous, given its noninvasive nature and its ability to evaluatethe entire coronary arterial tree in contrast to IVUS.MDC can helpdetect the suggested triad o the main eatures associated with plaque

    vulnerability namely; positive remodeling, low attenuation (

  • 8/11/2019 2012 Role of CT in Detection of Plaque

    4/8

    Citation: Youssef G, Budoff M (2013) Role of Computed Tomography Coronary Angiography in the Detection of Vulnerable Plaque, Where Does it

    Stand Among Others? Angiol 1: 111. doi: 10.4172/2329-9495.1000111

    Page 4 of 8

    Volume 1 Issue 2 1000111Angiol

    ISSN: 2329-9495 AOA, an open access journal

    conrmed when Pflederer et al. [37] showed a signicantly higher

    remodeling index in ACS patients when compared to those with stable

    angina (1.6 0.4 Vs. 0.97 0.17, P0.9with

    excellent sensitivity and specicity o 100% and 90% respectively [38].

    Interestingly, in a recent paper that used coronary artery simulation

    models, vessel wall stress concentrations were always predicted to be

    higher in the fibrous cap o plaques with positive remodeling compared

    to those with negative remodeling independent o the fibrous cap and

    the degree o stenosis [39].

    Invasive coronary imaging is the gold standard or detection o

    disrupted plaques, the angiographic hallmark o complex lesions was

    characterized by Ambrose criteria including haziness, ulceration,

    intraplaque dye penetration and intraluminal lling deects, theseeatures correlated with both histology and IVUS [40]. Tere are only

    scant data regarding the ability o Computed omography Coronary

    Angiography (CCA) to identiy eatures o plaque disruption;

    ulceration and/orintraplaque dye penetration. When compared to

    IVUS, MDC was less accurate or the detection o plaque disruption

    in coronary arteries; sensitivity 57%, specicity 71% [41]. A more

    recent study that used the invasive angiography as the gold standard,

    MDC has shown a good specicity (82-95%) but modest to good

    sensitivity (53%-58%). Te lower sensitivity is likely attributable to the

    lower spatial resolution o CCA compared with invasive angiography

    and presence o plaque calcication [42].

    On the other hand, in carotid arteries, the introduction o MDCdid improve the detection o ulceration improving the sensitivity o

    single slice C rom 60 to 87% and specicity rom 74 to 98% [43-46].

    Plaque composition

    By virtue o MDC ability to measure local tissue attenuation,MDC also allows imaging o the vessel wall, potentially providing

    insights into plaque composition rather than the physiology [47].

    Identification o plaque composition is based on measuring the

    attenuation coefficient which is displayed as a C number relative to

    the attenuation o water (0 Hounseld units HU) and air (1000 HU)

    [48]. Calcications appear as hyperdense, brous tissue as isodense

    and lipid core, intra-plaque hemorrhage and thrombus as hypodense.

    However, using the absolute C numbers to dene different plaque

    constituents, especially o sof plaques, is influenced by various actors

    that could limit its accurate assessment, rendering the exact denition

    o low attenuation plaque values with the currently available techniques

    more challenging. Tese actors include; attenuation o intracoronary

    contrast medium, tube voltage, degree o stenosis, use o differentreconstruction lters [49]. able 2 shows some studies that reported

    C attenuation values o various coronary plaque types in relation to

    IVUS. O note, the reported C numbers showed signicant differences

    in densities o plaque components, yet, with substantial overlap.

    Coronary artery calcium (CAC) is dened as a hyper-attenuatinglesion >130 HU within an area o 3 pixels. Agatston score has beenwidely used to quantiy CAC scoreby multiplying the lesion area (mm2)by a density actor (between 1 and 4) [54]. CAC score with its clinicaland prognostic implications will be discussed later.

    Different classications o morphological patterns o calcicationhave been used in previous reports, one classication was as: speckled(calcied nodules), ragmented (shell-like, linear, or wide, single

    ocus o calcium >2 mm in diameter), or diffuse ( 5-mm segmento continuous calcication) [55]. Calcied nodules have been welldescribed on IVUS studies and identied as a less common cause o

    Figure 1:A straight-vessel view for the left anterior descending artery with a

    proximal plaque. The vessel lumen is measured at the plaque site (B = 4mm)

    as well as the proximal (A=3.4mm) and distal (C=3mm) reference segments

    demonstrating positive remodeling.

    Figure 2: Fig 2A shows a curved multi-planar reformation (MPR) image to the

    left anterior descending artery with a proximal plaque. Figs 2B, C and D are

    cross section images of the vessel at the plaque site, the criteria of plaque

    vulnerability shown are: spotty calcication (arrow 1), low attenuation plaque,

    ranging between 14-23 HU (arrow 2) and napkin ring sign (arrow 3).

    http://dx.doi.org/10.4172/2329-9495.1000111http://dx.doi.org/10.4172/2329-9495.1000111
  • 8/11/2019 2012 Role of CT in Detection of Plaque

    5/8

    Citation: Youssef G, Budoff M (2013) Role of Computed Tomography Coronary Angiography in the Detection of Vulnerable Plaque, Where Does it

    Stand Among Others? Angiol 1: 111. doi: 10.4172/2329-9495.1000111

    Page 5 of 8

    Volume 1 Issue 2 1000111Angiol

    ISSN: 2329-9495 AOA, an open access journal

    plaque disruption (2-7%). On CCA, Calcied nodules were observedin association with only 6% o obstructive stenotic lesions (>50%),whereas 44% o non-obstructive lesions showed this calcication

    pattern [55].

    Other studies described classication patterns as spotty anddense calcification. Spotty calcication was dened and sub-classiedaccording to their length on curved multiplanar reconstruction into:small spotty (

  • 8/11/2019 2012 Role of CT in Detection of Plaque

    6/8

    Citation: Youssef G, Budoff M (2013) Role of Computed Tomography Coronary Angiography in the Detection of Vulnerable Plaque, Where Does it

    Stand Among Others? Angiol 1: 111. doi: 10.4172/2329-9495.1000111

    Page 6 of 8

    Volume 1 Issue 2 1000111Angiol

    ISSN: 2329-9495 AOA, an open access journal

    subjects with one or more vulnerability criterion, Moreover; there wasa signicantly higher number o low attenuation plaques and positiveremodeling per subject [75].

    Technical Limitations of CTCA

    As previously highlighted in table 1, some technical actors might

    affect the role o CCA in characterization o coronary plaques.

    Tese limitations include: 1) Radiation exposure; typical effective

    dose o radiation or retrospectively gated reconstruction is about 15

    mSv, radiation doses delivered have markedly reduced to less than 2

    mSv with the advent o newer prospective gating and ultra-low-dose

    protocols, these advances in technology are expected to urther expand

    the CCA applications and would permit ollow-up studies to evaluate

    the progression o atherosclerotic plaques over time and with the use

    o interventional drugs like statins. 2) contrast agents; currently used

    contrast media in CCA are considerably sae, however, there is a

    minimal risk that should be anticipated and dealt with in patients with

    contrast allergy or those with advanced renal insufficiency. 3) artiacts;

    various C artiacts could limit the accuracy o CCA in studying the

    plaque composition. O note, dense calcication is a major limiting

    actor that could result in the blooming artiact phenomenon where

    calcium looks bigger than it actually is and 4) the signicant overlap

    between tissue densities as previously discussed, rendering the accurate

    denition o plaque constituents more challenging [76].

    Future Perspectives and Conclusions

    Te concept o vulnerable plaque has been introduced with theintention o detection o those high risk plaques that are potentiallycapable o causing acute cardiac events. Further risk stratication oasymptomatic or previously assumed low risk population is a complexprocess that goes ar and beyond the mere use o risk score calculatorsor blood biomarkers. Tis process has been recently supported bythe rapidly advancing imaging modalities that have shown somecapabilities in visualizing various physical, chemical and biologicalaspects o atherosclerotic plaques that could dene their vulnerability.

    Among non-invasive modalities, MDC seems to have the

    highest possibility o ullling the expectations o researchers and

    clinicians. In addition to its role in assessment o signicant coronary

    obstruction with excellent diagnostic accuracy, it is getting popular

    as a promising non-invasive tool in detection o vulnerable eatures.

    Tis has been supported by studies that showed MDC to have a good

    diagnostic accuracy and correlation when compared to histology and

    IVUS.A bigger role is expected rom MDC with the development o

    higher resolution scanners with lower radiation dose and the use o

    novel contrast media that could be targeted towards specic plaque

    constituents.

    A major question afer the identication o a vulnerable coronary

    plaque, should it be treated and how? At present there are no data to

    prove that interventional treatment strategies or those high risk but

    asymptomatic plaques are superior to conventional medical treatment.

    Data rom large prospective studies will be needed to determine which

    approach will be benecial.

    Finally, we always should remember looking at the big picture

    accepting the idea that the pathogenesis o ACS does not involve only

    actors operating at the plaque level, but rather there is a concurrence olocal and extra-coronary actors that involve coagulation, neuroendocrine,

    inflammatory and immune response o the vascular tissue.

    References

    1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, et al. (2010)

    Executive summary: heart disease and stroke statistics--2010 update: a report

    from the American Heart Association. Circulation 121: 948-954.

    2. Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, et al. (2008) Arithmetic

    of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med

    5 Suppl 2: S2-S10.

    3. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable

    plaque. J Am Coll Cardiol 47: C13-C18.

    4. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, et al. (1997) Coronary

    risk factors and plaque morphology in men with coronary disease who died

    suddenly. N Engl J Med 336: 1276-1282.

    5. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from

    sudden coronary death: a comprehensive morphological classication scheme

    for atherosclerotic lesions. Arterioscler Thromb Vasc B iol 20: 1262-1275.

    6. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, et al. (2003)

    Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med

    349: 2316-2325.

    7. Fishbein MC, Siegel RJ (1996) How big are coronary atherosclerotic plaques

    that rupture? Circulation 94: 2662-2666.

    8. Vancraeynest D, Pasquet A, Roelants V, Gerber BL, Vanoverschelde JL (2011)

    Imaging the vulnerable plaque. J Am Coll Cardiol 57: 1961-1979.

    9. Kato K, Yasutake M, Yonetsu T, Kim SJ, Xing L, et al. (2011) Intracoronary

    imaging modalities for vulnerable plaques. J Nippon Med Sch 78: 340-351.

    10. Toutouzas K, Stathogiannis K, Synetos A, Karanasos A, Stefanadis C (2012)

    Vulnerable atherosclerotic plaque: from the basic research laboratory to the

    clinic. Cardiology 123: 248-253.

    11. Uemura S (2013) Invasive imaging of vulnerable atherosclerotic plaques in

    coronary artery disease. Circ J 77: 869-875.

    12. DeMaria AN, Narula J, Mahmud E, Tsimikas S (2006) Imaging vulnerable

    plaque by ultrasound. J Am Coll Cardiol 47: C32-C39.

    13. Fujii K (2003) intravascular ultrasound assessment of ulcerated ruptured

    plaques: a comparison of culprit and non-culprit lesions of patients with acute

    coronary syndromes and lesions in patients without acute coronary syndromes.

    Circulation 108(20): p. 2473-2478.

    14. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, et al. (2004)

    Spotty calcication typies the culprit plaque in patients with acute myocardial

    infarction: an intravascular ultrasound study. Circulation 110: 3424-3429.

    15. Konig A (2008) Technology insight: in vivo coronary plaque classication

    by intravascular ultrasonography radiofrequency analysis. Nat Clin Pract

    Cardiovasc Med 5: p. 219-29.

    16. Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, et al. (2006) Accuracy

    of in vivo coronary plaque morphology assessment: a validation study of in

    vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol

    47: 2405-2412.

    17. Maehara A, Cristea E, Mintz GS, Lansky AJ, Dressler O, et al. (2012) Denitionsand methodology for the grayscale and radiofrequency intravascular ultrasound

    and coronary angiographic analyses. JACC Cardiovasc Imaging 5: S1-S9.

    18. Schaar JA, Regar E, Mastik F, McFadden EP, Saia F, et al. (2004) Incidence

    of high-strain patterns in human coronary arteries: assessment with three-

    dimensional intravascular palpography and correlation with clinical presentation.

    Circulation 109: 2716-2719.

    19. Schneiderman J, Wilensky RL, Weiss A, Samouha E, Muchnik L, et al. (2005)

    Diagnosis of thin-cap broatheromas by a self-contained intravascular magnetic

    resonance imaging probe in ex vivo human aortas and in situ coronary arteries.

    J Am Coll Cardiol 45: 1961-1969.

    20. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, et al. (2008) Implication

    of plaque color classication for assessing plaque vulnerability: a coronary

    angioscopy and optical coherence tomography investigation. JACC Cardiovasc

    Interv 1: 74-80.

    21. Maurovich-Horvat P, Schlett CL, Alkadhi H, Nakano M, Stolzmann P, et al.

    (2012) Differentiation of early from advanced coronary atherosclerotic lesions:

    systematic comparison of CT, intravascular US, and optical frequency domain

    http://dx.doi.org/10.4172/2329-9495.1000111http://www.ncbi.nlm.nih.gov/pubmed/20177011http://www.ncbi.nlm.nih.gov/pubmed/20177011http://www.ncbi.nlm.nih.gov/pubmed/20177011http://www.ncbi.nlm.nih.gov/pubmed/18641603http://www.ncbi.nlm.nih.gov/pubmed/18641603http://www.ncbi.nlm.nih.gov/pubmed/18641603http://www.ncbi.nlm.nih.gov/pubmed/16631505http://www.ncbi.nlm.nih.gov/pubmed/16631505http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/14668457http://www.ncbi.nlm.nih.gov/pubmed/14668457http://www.ncbi.nlm.nih.gov/pubmed/14668457http://www.ncbi.nlm.nih.gov/pubmed/8921814http://www.ncbi.nlm.nih.gov/pubmed/8921814http://www.ncbi.nlm.nih.gov/pubmed/21565634http://www.ncbi.nlm.nih.gov/pubmed/21565634http://www.ncbi.nlm.nih.gov/pubmed/22197866http://www.ncbi.nlm.nih.gov/pubmed/22197866http://www.ncbi.nlm.nih.gov/pubmed/23221921http://www.ncbi.nlm.nih.gov/pubmed/23221921http://www.ncbi.nlm.nih.gov/pubmed/23221921http://www.ncbi.nlm.nih.gov/pubmed/23470850http://www.ncbi.nlm.nih.gov/pubmed/23470850http://www.ncbi.nlm.nih.gov/pubmed/16631508http://www.ncbi.nlm.nih.gov/pubmed/16631508http://www.ncbi.nlm.nih.gov/pubmed/15557374http://www.ncbi.nlm.nih.gov/pubmed/15557374http://www.ncbi.nlm.nih.gov/pubmed/15557374http://www.ncbi.nlm.nih.gov/pubmed/16781367http://www.ncbi.nlm.nih.gov/pubmed/16781367http://www.ncbi.nlm.nih.gov/pubmed/16781367http://www.ncbi.nlm.nih.gov/pubmed/16781367http://www.ncbi.nlm.nih.gov/pubmed/22421222http://www.ncbi.nlm.nih.gov/pubmed/22421222http://www.ncbi.nlm.nih.gov/pubmed/22421222http://www.ncbi.nlm.nih.gov/pubmed/15159286http://www.ncbi.nlm.nih.gov/pubmed/15159286http://www.ncbi.nlm.nih.gov/pubmed/15159286http://www.ncbi.nlm.nih.gov/pubmed/15159286http://www.ncbi.nlm.nih.gov/pubmed/15963393http://www.ncbi.nlm.nih.gov/pubmed/15963393http://www.ncbi.nlm.nih.gov/pubmed/15963393http://www.ncbi.nlm.nih.gov/pubmed/15963393http://www.ncbi.nlm.nih.gov/pubmed/19393149http://www.ncbi.nlm.nih.gov/pubmed/19393149http://www.ncbi.nlm.nih.gov/pubmed/19393149http://www.ncbi.nlm.nih.gov/pubmed/19393149http://www.ncbi.nlm.nih.gov/pubmed/23012461http://www.ncbi.nlm.nih.gov/pubmed/23012461http://www.ncbi.nlm.nih.gov/pubmed/23012461http://www.ncbi.nlm.nih.gov/pubmed/23012461http://www.ncbi.nlm.nih.gov/pubmed/23012461http://www.ncbi.nlm.nih.gov/pubmed/23012461http://www.ncbi.nlm.nih.gov/pubmed/19393149http://www.ncbi.nlm.nih.gov/pubmed/19393149http://www.ncbi.nlm.nih.gov/pubmed/19393149http://www.ncbi.nlm.nih.gov/pubmed/19393149http://www.ncbi.nlm.nih.gov/pubmed/15963393http://www.ncbi.nlm.nih.gov/pubmed/15963393http://www.ncbi.nlm.nih.gov/pubmed/15963393http://www.ncbi.nlm.nih.gov/pubmed/15963393http://www.ncbi.nlm.nih.gov/pubmed/15159286http://www.ncbi.nlm.nih.gov/pubmed/15159286http://www.ncbi.nlm.nih.gov/pubmed/15159286http://www.ncbi.nlm.nih.gov/pubmed/15159286http://www.ncbi.nlm.nih.gov/pubmed/22421222http://www.ncbi.nlm.nih.gov/pubmed/22421222http://www.ncbi.nlm.nih.gov/pubmed/22421222http://www.ncbi.nlm.nih.gov/pubmed/16781367http://www.ncbi.nlm.nih.gov/pubmed/16781367http://www.ncbi.nlm.nih.gov/pubmed/16781367http://www.ncbi.nlm.nih.gov/pubmed/16781367http://www.ncbi.nlm.nih.gov/pubmed/15557374http://www.ncbi.nlm.nih.gov/pubmed/15557374http://www.ncbi.nlm.nih.gov/pubmed/15557374http://www.ncbi.nlm.nih.gov/pubmed/16631508http://www.ncbi.nlm.nih.gov/pubmed/16631508http://www.ncbi.nlm.nih.gov/pubmed/23470850http://www.ncbi.nlm.nih.gov/pubmed/23470850http://www.ncbi.nlm.nih.gov/pubmed/23221921http://www.ncbi.nlm.nih.gov/pubmed/23221921http://www.ncbi.nlm.nih.gov/pubmed/23221921http://www.ncbi.nlm.nih.gov/pubmed/22197866http://www.ncbi.nlm.nih.gov/pubmed/22197866http://www.ncbi.nlm.nih.gov/pubmed/21565634http://www.ncbi.nlm.nih.gov/pubmed/21565634http://www.ncbi.nlm.nih.gov/pubmed/8921814http://www.ncbi.nlm.nih.gov/pubmed/8921814http://www.ncbi.nlm.nih.gov/pubmed/14668457http://www.ncbi.nlm.nih.gov/pubmed/14668457http://www.ncbi.nlm.nih.gov/pubmed/14668457http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/10807742http://www.ncbi.nlm.nih.gov/pubmed/16631505http://www.ncbi.nlm.nih.gov/pubmed/16631505http://www.ncbi.nlm.nih.gov/pubmed/18641603http://www.ncbi.nlm.nih.gov/pubmed/18641603http://www.ncbi.nlm.nih.gov/pubmed/18641603http://www.ncbi.nlm.nih.gov/pubmed/20177011http://www.ncbi.nlm.nih.gov/pubmed/20177011http://www.ncbi.nlm.nih.gov/pubmed/20177011http://dx.doi.org/10.4172/2329-9495.1000111
  • 8/11/2019 2012 Role of CT in Detection of Plaque

    7/8

    Citation: Youssef G, Budoff M (2013) Role of Computed Tomography Coronary Angiography in the Detection of Vulnerable Plaque, Where Does it

    Stand Among Others? Angiol 1: 111. doi: 10.4172/2329-9495.1000111

    Page 7 of 8

    Volume 1 Issue 2 1000111Angiol

    ISSN: 2329-9495 AOA, an open access journal

    imaging with histopathologic examination in ex vivo human hearts. Radiology

    265: 393-401.

    22.Sanon S, Dao T, Sanon VP, Chilton R (2013) Imaging of vulnerable plaques

    using near-infrared spectroscopy for risk stratication of atherosclerosis. CurrAtheroscler Rep 15: 304.

    23.Moreno PR, Lodder RA, Purushothaman KR, Charash WE, OConnor WN, et al.

    (2002) Detection of lipid pool, thin brous cap, and inammatory cells in human

    aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105:

    923-927.

    24. Wainstein M (2007) Vulnerable plaque detection by temperature heterogeneity

    measured with a guidewire system: clinical, intravascular ultrasound and

    histopathologic correlates. J Invasive Cardiol 19: p. 49-54.

    25.Leong-Poi H (2009) Molecular imaging using contrast-enhanced ultrasound:

    evaluation of angiogenesis and cell therapy. Cardiovasc Res 84: 190-200.

    26.Sharif F, Lohan DG, Wijns W (2011) Non-invasive detection of vulnerable

    coronary plaque. World J Cardiol 3: 219-229.

    27.Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, et al. (2000)

    Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102: 506-510.

    28.Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, et al. (2006) In

    vivo 18F-uorodeoxyglucose positron emission tomography imaging provides

    a noninvasive measure of carotid plaque inammation in patients. J Am Coll

    Cardiol 48: 1818-1824.

    29.Coli S, Magnoni M, Sangiorgi G, Marrocco-Trischitta MM, Melisurgo G, et al.

    (2008) Contrast-enhanced ultrasound imaging of intraplaque neovascularization

    in carotid arteries: correlation with histology and plaque echogenicity. J Am Coll

    Cardiol 52: 223-230.

    30.Xiong L, Deng YB, Zhu Y, Liu YN, Bi XJ (2009) Correlation of carotid plaque

    neovascularization detected by using contrast-enhanced US with clinical

    symptoms. Radiology 251: 583-589.

    31.Schueler S, Walther S, Schuetz GM, Schlattmann P, Dewey M (2013)

    Methodological quality of diagnostic accuracy studies on non-invasive coronary

    CT angiography: inuence of QUADAS (Quality Assessment of DiagnosticAccuracy Studies included in systematic reviews) items on sensitivity and

    specicity. Eur Radiol 23: 1603-1622.

    32.Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, et al. (2006)

    Noninvasive assessment of plaque morphology and composition in culprit and

    stable lesions in acute coronary syndrome and stable lesions in stable angina

    by multidetector computed tomography. J Am Coll Cardiol 47: 1655-1662.

    33.Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadehara F, et al. (2009)

    Characterization of noncalcied coronary plaques and identication of culprit

    lesions in patients with acute coronary syndrome by 64-slice computed

    tomography. JACC Cardiovasc Imaging 2: 153-160.

    34.Leber AW, Knez A, Becker A, Becker C, von Ziegler F, et al. (2004) Accuracy

    of multidetector spiral computed tomography in identifying and differentiating

    the composition of coronary atherosclerotic plaques: a comparative study with

    intracoronary ultrasound. J Am Coll Cardiol 43: 1241-1247.

    35.Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, et al. (2007) Multislicecomputed tomographic characteristics of coronary lesions in acute coronary

    syndromes. J Am Coll Cardiol 50: 319-326.

    36.Kashiwagi M, Tanaka A, Shimada K, Kitabata H, Komukai K, et al. (2013)

    Distribution, frequency and clinical implications of napkin-ring sign assessed by

    multidetector computed tomography. J Cardiol 61: 399-403.

    37.Pederer T, Marwan M, Schepis T, Ropers D, Seltmann M, et al. (2010)

    Characterization of culprit lesions in acute coronary syndromes using coronary

    dual-source CT angiography. Atherosclerosis 211: 437-444.

    38.Schoenhagen P, Tuzcu EM, Stillman AE, Moliterno DJ, Halliburton SS, et

    al. (2003) Non-invasive assessment of plaque morphology and remodeling

    in mildly stenotic coronary segments: comparison of 16-slice computed

    tomography and intravascular ultrasound. Coron Artery Dis 14: 459-462.

    39.Cilla M, Pea E, Martnez MA, Kelly DJ (2013) Comparison of the vulnerability

    risk for positive versus negative atheroma plaque morphology. J Biomech 46:

    1248-1254.

    40.Ambrose JA (1991) Prognostic implications of lesion irregularity on coronary

    angiography. J Am Coll Cardiol 18: 675-676.

    41. Caussin C, Ohanessian A, Ghostine S, Jacq L, Lancelin B, et al. (2004)

    Characterization of vulnerable nonstenotic plaque with 16-slice computed

    tomography compared with intravascular ultrasound. Am J Cardiol 94: 99-104.

    42. Madder RD, Chinnaiyan KM, Marandici AM, Goldstein JA (2011) Features ofdisrupted plaques by coronary computed tomographic angiography: correlates

    with invasively proven complex lesions. Circ Cardiovasc Imaging 4: 105-113.

    43. Walker LJ, Ismail A, McMeekin W, Lambert D, Mendelow AD, et al. (2002)

    Computed tomography angiography for the evaluation of carotid atherosclerotic

    plaque: correlation with histopathology of endarterectomy specimens. Stroke

    33: 977-981.

    44. Kagawa R, Moritake K, Shima T, Okada Y (1996) Validity of B-mode

    ultrasonographic ndings in patients undergoing carotid endarterectomy in

    comparison with angiographic and clinicopathologic features. Stroke 27: 700-705.

    45. Oliver TB, Lammie GA, Wright AR, Wardlaw J, Patel SG, et al. (1999)

    Atherosclerotic plaque at the carotid bifurcation: CT angiographic appearance

    with histopathologic correlation. AJNR Am J Neuroradiol 20: 897-901.

    46. Wintermark M, Jawadi SS, Rapp JH, Tihan T, Tong E, et al. (2008) High-

    resolution CT imaging of carotid artery atherosclerotic plaques. AJNR Am J

    Neuroradiol 29: 875-882.

    47. Goldstein JA (2009) Coronary plaque characterization by computed

    tomographic angiography: present promise and future hope. JACC Cardiovasc

    Imaging 2: 161-163.

    48. Kalender (2006) Fundamentals, system technology, image quality, applications,

    in Fundamentals, system technology, image quality, applications. 29.

    49. Morsbach F, Berger N, Desbiolles L, Poropat T, Leschka S, et al. (2013)

    Systematic analysis on the relationship between luminal enhancement,

    convolution kernel, plaque density, and luminal diameter of coronary artery

    stenosis: a CT phantom study. Int J Cardiovasc Imaging 29: 1129-1135.

    50. Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, et al. (2001)

    Noninvasive detection and evaluation of atherosclerotic coronary plaques with

    multislice computed tomography. J Am Coll Cardiol 37: 1430-1435.

    51. Rasouli ML, Shavelle DM, French WJ, McKay CR, Budoff MJ (2006)

    Assessment of coronary plaque morphology by contrast-enhanced computedtomographic angiography: comparison with intravascular ultrasound. Coron

    Artery Dis 17: 359-364.

    52. Motoyama S, Kondo T, Anno H, Sugiura A, Ito Y, et al. (2007) Atherosclerotic

    plaque characterization by 0.5-mm-slice multislice computed tomographic

    imaging. Circ J 71: 363-366.

    53. Pohle K, Achenbach S, Macneill B, Ropers D, Ferencik M, et al. (2007)

    Characterization of non-calcied coronary atherosclerotic plaque by multi-

    detector row CT: comparison to IVUS. Atherosclerosis 190: 174-180.

    54.Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, et al.

    (1990) Quantication of coronary artery calcium using ultrafast computed

    tomography. J Am Coll Cardiol 15: 827-832.

    55. Friedrich GJ, Moes NY, Mhlberger VA, Gabl C, Mikuz G, et al. (1994)

    Detection of intralesional calcium by intracoronary ultrasound depends on the

    histologic pattern. Am Heart J 128: 435-441.

    56. van der Hoeven BL, Liem SS, Oemrawsingh PV, Dijkstra J, Jukema JW, et al.

    (2006) Role of calcied spots detected by intravascular ultrasound in patients

    with ST-segment elevation acute myocardial infarction. Am J Cardiol 98: 309-313.

    57. Van Velzen JE (2011) Comprehensive assessment of spotty calcications

    on computed tomography angiography: comparison to plaque characteristics

    on intravascular ultrasound with radiofrequency backscatter analysis. J Nucl

    Cardiol. 18: 893-903.

    58. Maldonado N, Kelly-Arnold A, Vengrenyuk Y, Laudier D, Fallon JT, et al. (2012)

    A mechanistic analysis of the role of microcalcications in atherosclerotic

    plaque stability: potential implications for plaque rupture. Am J Physiol Heart

    Circ Physiol 303: H619-628.

    59. Moselewski F (2004) Comparison of measurement of cross-sectional coronary

    atherosclerotic plaque and vessel areas by 16-slice multidetector computed

    tomography versus intravascular ultrasound. Am J Cardiol, 94: 1294-1297.

    60.Achenbach S, Ropers D, Hoffmann U, MacNeill B, Baum U, et al. (2004)Assessment of coronary remodeling in stenotic and nonstenotic coronary

    atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll

    Cardiol 43: 842-847.

    http://dx.doi.org/10.4172/2329-9495.1000111http://www.ncbi.nlm.nih.gov/pubmed/23012461http://www.ncbi.nlm.nih.gov/pubmed/23012461http://www.ncbi.nlm.nih.gov/pubmed/23299644http://www.ncbi.nlm.nih.gov/pubmed/23299644http://www.ncbi.nlm.nih.gov/pubmed/23299644http://www.ncbi.nlm.nih.gov/pubmed/11864919http://www.ncbi.nlm.nih.gov/pubmed/11864919http://www.ncbi.nlm.nih.gov/pubmed/11864919http://www.ncbi.nlm.nih.gov/pubmed/11864919http://www.ncbi.nlm.nih.gov/pubmed/19628466http://www.ncbi.nlm.nih.gov/pubmed/19628466http://www.ncbi.nlm.nih.gov/pubmed/21860703http://www.ncbi.nlm.nih.gov/pubmed/21860703http://www.ncbi.nlm.nih.gov/pubmed/10920061http://www.ncbi.nlm.nih.gov/pubmed/10920061http://www.ncbi.nlm.nih.gov/pubmed/10920061http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/18617072http://www.ncbi.nlm.nih.gov/pubmed/18617072http://www.ncbi.nlm.nih.gov/pubmed/18617072http://www.ncbi.nlm.nih.gov/pubmed/18617072http://www.ncbi.nlm.nih.gov/pubmed/19304920http://www.ncbi.nlm.nih.gov/pubmed/19304920http://www.ncbi.nlm.nih.gov/pubmed/19304920http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/16631006http://www.ncbi.nlm.nih.gov/pubmed/16631006http://www.ncbi.nlm.nih.gov/pubmed/16631006http://www.ncbi.nlm.nih.gov/pubmed/16631006http://www.ncbi.nlm.nih.gov/pubmed/19356549http://www.ncbi.nlm.nih.gov/pubmed/19356549http://www.ncbi.nlm.nih.gov/pubmed/19356549http://www.ncbi.nlm.nih.gov/pubmed/19356549http://www.ncbi.nlm.nih.gov/pubmed/15063437http://www.ncbi.nlm.nih.gov/pubmed/15063437http://www.ncbi.nlm.nih.gov/pubmed/15063437http://www.ncbi.nlm.nih.gov/pubmed/15063437http://www.ncbi.nlm.nih.gov/pubmed/17659199http://www.ncbi.nlm.nih.gov/pubmed/17659199http://www.ncbi.nlm.nih.gov/pubmed/17659199http://www.ncbi.nlm.nih.gov/pubmed/23452399http://www.ncbi.nlm.nih.gov/pubmed/23452399http://www.ncbi.nlm.nih.gov/pubmed/23452399http://www.ncbi.nlm.nih.gov/pubmed/20189568http://www.ncbi.nlm.nih.gov/pubmed/20189568http://www.ncbi.nlm.nih.gov/pubmed/20189568http://www.ncbi.nlm.nih.gov/pubmed/20189568http://www.ncbi.nlm.nih.gov/pubmed/12966267http://www.ncbi.nlm.nih.gov/pubmed/12966267http://www.ncbi.nlm.nih.gov/pubmed/12966267http://www.ncbi.nlm.nih.gov/pubmed/12966267http://www.ncbi.nlm.nih.gov/pubmed/23523380http://www.ncbi.nlm.nih.gov/pubmed/23523380http://www.ncbi.nlm.nih.gov/pubmed/23523380http://www.ncbi.nlm.nih.gov/pubmed/1869730http://www.ncbi.nlm.nih.gov/pubmed/1869730http://www.ncbi.nlm.nih.gov/pubmed/15219516http://www.ncbi.nlm.nih.gov/pubmed/15219516http://www.ncbi.nlm.nih.gov/pubmed/15219516http://www.ncbi.nlm.nih.gov/pubmed/21262981http://www.ncbi.nlm.nih.gov/pubmed/21262981http://www.ncbi.nlm.nih.gov/pubmed/21262981http://www.ncbi.nlm.nih.gov/pubmed/11935047http://www.ncbi.nlm.nih.gov/pubmed/11935047http://www.ncbi.nlm.nih.gov/pubmed/11935047http://www.ncbi.nlm.nih.gov/pubmed/11935047http://www.ncbi.nlm.nih.gov/pubmed/8614934http://www.ncbi.nlm.nih.gov/pubmed/8614934http://www.ncbi.nlm.nih.gov/pubmed/8614934http://www.ncbi.nlm.nih.gov/pubmed/10369363http://www.ncbi.nlm.nih.gov/pubmed/10369363http://www.ncbi.nlm.nih.gov/pubmed/10369363http://www.ncbi.nlm.nih.gov/pubmed/18272562http://www.ncbi.nlm.nih.gov/pubmed/18272562http://www.ncbi.nlm.nih.gov/pubmed/18272562http://www.ncbi.nlm.nih.gov/pubmed/19356550http://www.ncbi.nlm.nih.gov/pubmed/19356550http://www.ncbi.nlm.nih.gov/pubmed/19356550http://www.ncbi.nlm.nih.gov/pubmed/23329389http://www.ncbi.nlm.nih.gov/pubmed/23329389http://www.ncbi.nlm.nih.gov/pubmed/23329389http://www.ncbi.nlm.nih.gov/pubmed/23329389http://www.ncbi.nlm.nih.gov/pubmed/11300457http://www.ncbi.nlm.nih.gov/pubmed/11300457http://www.ncbi.nlm.nih.gov/pubmed/11300457http://www.ncbi.nlm.nih.gov/pubmed/16707959http://www.ncbi.nlm.nih.gov/pubmed/16707959http://www.ncbi.nlm.nih.gov/pubmed/16707959http://www.ncbi.nlm.nih.gov/pubmed/16707959http://www.ncbi.nlm.nih.gov/pubmed/17322636http://www.ncbi.nlm.nih.gov/pubmed/17322636http://www.ncbi.nlm.nih.gov/pubmed/17322636http://www.ncbi.nlm.nih.gov/pubmed/16494883http://www.ncbi.nlm.nih.gov/pubmed/16494883http://www.ncbi.nlm.nih.gov/pubmed/16494883http://www.ncbi.nlm.nih.gov/pubmed/2407762http://www.ncbi.nlm.nih.gov/pubmed/2407762http://www.ncbi.nlm.nih.gov/pubmed/2407762http://www.ncbi.nlm.nih.gov/pubmed/8074002http://www.ncbi.nlm.nih.gov/pubmed/8074002http://www.ncbi.nlm.nih.gov/pubmed/8074002http://www.ncbi.nlm.nih.gov/pubmed/16860014http://www.ncbi.nlm.nih.gov/pubmed/16860014http://www.ncbi.nlm.nih.gov/pubmed/16860014http://www.ncbi.nlm.nih.gov/pubmed/22777419http://www.ncbi.nlm.nih.gov/pubmed/22777419http://www.ncbi.nlm.nih.gov/pubmed/22777419http://www.ncbi.nlm.nih.gov/pubmed/22777419http://www.ncbi.nlm.nih.gov/pubmed/14998627http://www.ncbi.nlm.nih.gov/pubmed/14998627http://www.ncbi.nlm.nih.gov/pubmed/14998627http://www.ncbi.nlm.nih.gov/pubmed/14998627http://www.ncbi.nlm.nih.gov/pubmed/14998627http://www.ncbi.nlm.nih.gov/pubmed/14998627http://www.ncbi.nlm.nih.gov/pubmed/14998627http://www.ncbi.nlm.nih.gov/pubmed/14998627http://www.ncbi.nlm.nih.gov/pubmed/22777419http://www.ncbi.nlm.nih.gov/pubmed/22777419http://www.ncbi.nlm.nih.gov/pubmed/22777419http://www.ncbi.nlm.nih.gov/pubmed/22777419http://www.ncbi.nlm.nih.gov/pubmed/16860014http://www.ncbi.nlm.nih.gov/pubmed/16860014http://www.ncbi.nlm.nih.gov/pubmed/16860014http://www.ncbi.nlm.nih.gov/pubmed/8074002http://www.ncbi.nlm.nih.gov/pubmed/8074002http://www.ncbi.nlm.nih.gov/pubmed/8074002http://www.ncbi.nlm.nih.gov/pubmed/2407762http://www.ncbi.nlm.nih.gov/pubmed/2407762http://www.ncbi.nlm.nih.gov/pubmed/2407762http://www.ncbi.nlm.nih.gov/pubmed/16494883http://www.ncbi.nlm.nih.gov/pubmed/16494883http://www.ncbi.nlm.nih.gov/pubmed/16494883http://www.ncbi.nlm.nih.gov/pubmed/17322636http://www.ncbi.nlm.nih.gov/pubmed/17322636http://www.ncbi.nlm.nih.gov/pubmed/17322636http://www.ncbi.nlm.nih.gov/pubmed/16707959http://www.ncbi.nlm.nih.gov/pubmed/16707959http://www.ncbi.nlm.nih.gov/pubmed/16707959http://www.ncbi.nlm.nih.gov/pubmed/16707959http://www.ncbi.nlm.nih.gov/pubmed/11300457http://www.ncbi.nlm.nih.gov/pubmed/11300457http://www.ncbi.nlm.nih.gov/pubmed/11300457http://www.ncbi.nlm.nih.gov/pubmed/23329389http://www.ncbi.nlm.nih.gov/pubmed/23329389http://www.ncbi.nlm.nih.gov/pubmed/23329389http://www.ncbi.nlm.nih.gov/pubmed/23329389http://www.ncbi.nlm.nih.gov/pubmed/19356550http://www.ncbi.nlm.nih.gov/pubmed/19356550http://www.ncbi.nlm.nih.gov/pubmed/19356550http://www.ncbi.nlm.nih.gov/pubmed/18272562http://www.ncbi.nlm.nih.gov/pubmed/18272562http://www.ncbi.nlm.nih.gov/pubmed/18272562http://www.ncbi.nlm.nih.gov/pubmed/10369363http://www.ncbi.nlm.nih.gov/pubmed/10369363http://www.ncbi.nlm.nih.gov/pubmed/10369363http://www.ncbi.nlm.nih.gov/pubmed/8614934http://www.ncbi.nlm.nih.gov/pubmed/8614934http://www.ncbi.nlm.nih.gov/pubmed/8614934http://www.ncbi.nlm.nih.gov/pubmed/11935047http://www.ncbi.nlm.nih.gov/pubmed/11935047http://www.ncbi.nlm.nih.gov/pubmed/11935047http://www.ncbi.nlm.nih.gov/pubmed/11935047http://www.ncbi.nlm.nih.gov/pubmed/21262981http://www.ncbi.nlm.nih.gov/pubmed/21262981http://www.ncbi.nlm.nih.gov/pubmed/21262981http://www.ncbi.nlm.nih.gov/pubmed/15219516http://www.ncbi.nlm.nih.gov/pubmed/15219516http://www.ncbi.nlm.nih.gov/pubmed/15219516http://www.ncbi.nlm.nih.gov/pubmed/1869730http://www.ncbi.nlm.nih.gov/pubmed/1869730http://www.ncbi.nlm.nih.gov/pubmed/23523380http://www.ncbi.nlm.nih.gov/pubmed/23523380http://www.ncbi.nlm.nih.gov/pubmed/23523380http://www.ncbi.nlm.nih.gov/pubmed/12966267http://www.ncbi.nlm.nih.gov/pubmed/12966267http://www.ncbi.nlm.nih.gov/pubmed/12966267http://www.ncbi.nlm.nih.gov/pubmed/12966267http://www.ncbi.nlm.nih.gov/pubmed/20189568http://www.ncbi.nlm.nih.gov/pubmed/20189568http://www.ncbi.nlm.nih.gov/pubmed/20189568http://www.ncbi.nlm.nih.gov/pubmed/23452399http://www.ncbi.nlm.nih.gov/pubmed/23452399http://www.ncbi.nlm.nih.gov/pubmed/23452399http://www.ncbi.nlm.nih.gov/pubmed/17659199http://www.ncbi.nlm.nih.gov/pubmed/17659199http://www.ncbi.nlm.nih.gov/pubmed/17659199http://www.ncbi.nlm.nih.gov/pubmed/15063437http://www.ncbi.nlm.nih.gov/pubmed/15063437http://www.ncbi.nlm.nih.gov/pubmed/15063437http://www.ncbi.nlm.nih.gov/pubmed/15063437http://www.ncbi.nlm.nih.gov/pubmed/19356549http://www.ncbi.nlm.nih.gov/pubmed/19356549http://www.ncbi.nlm.nih.gov/pubmed/19356549http://www.ncbi.nlm.nih.gov/pubmed/19356549http://www.ncbi.nlm.nih.gov/pubmed/16631006http://www.ncbi.nlm.nih.gov/pubmed/16631006http://www.ncbi.nlm.nih.gov/pubmed/16631006http://www.ncbi.nlm.nih.gov/pubmed/16631006http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/23322410http://www.ncbi.nlm.nih.gov/pubmed/19304920http://www.ncbi.nlm.nih.gov/pubmed/19304920http://www.ncbi.nlm.nih.gov/pubmed/19304920http://www.ncbi.nlm.nih.gov/pubmed/18617072http://www.ncbi.nlm.nih.gov/pubmed/18617072http://www.ncbi.nlm.nih.gov/pubmed/18617072http://www.ncbi.nlm.nih.gov/pubmed/18617072http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/17084256http://www.ncbi.nlm.nih.gov/pubmed/10920061http://www.ncbi.nlm.nih.gov/pubmed/10920061http://www.ncbi.nlm.nih.gov/pubmed/10920061http://www.ncbi.nlm.nih.gov/pubmed/21860703http://www.ncbi.nlm.nih.gov/pubmed/21860703http://www.ncbi.nlm.nih.gov/pubmed/19628466http://www.ncbi.nlm.nih.gov/pubmed/19628466http://www.ncbi.nlm.nih.gov/pubmed/11864919http://www.ncbi.nlm.nih.gov/pubmed/11864919http://www.ncbi.nlm.nih.gov/pubmed/11864919http://www.ncbi.nlm.nih.gov/pubmed/11864919http://www.ncbi.nlm.nih.gov/pubmed/23299644http://www.ncbi.nlm.nih.gov/pubmed/23299644http://www.ncbi.nlm.nih.gov/pubmed/23299644http://www.ncbi.nlm.nih.gov/pubmed/23012461http://www.ncbi.nlm.nih.gov/pubmed/23012461http://dx.doi.org/10.4172/2329-9495.1000111
  • 8/11/2019 2012 Role of CT in Detection of Plaque

    8/8