copyrightpsasir.upm.edu.my/39926/1/fbsb 2013 19r.pdfcopyright upm iii identify and isolate a...

17
© COPYRIGHT UPM UNIVERSITI PUTRA MALAYSIA NOR AZIZAH BINTI PARMIN FBSB 2013 19 EXPRESSION OF TRUNCATED CHALCONE SYNTHASE FROM Boesenbergia rotunda L. MANSF. IN Escherichia coli

Upload: others

Post on 12-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • © CO

    PYRI

    GHT U

    PM

    UNIVERSITI PUTRA MALAYSIA

    NOR AZIZAH BINTI PARMIN

    FBSB 2013 19

    EXPRESSION OF TRUNCATED CHALCONE SYNTHASE FROM Boesenbergia rotunda L. MANSF. IN Escherichia coli

  • © CO

    PYRI

    GHT U

    PM

    EXPRESSION OF TRUNCATED CHALCONE

    SYNTHASE FROM Boesenbergia rotunda L. MANSF.

    IN Escherichia coli

    NOR AZIZAH BINTI PARMIN

    MASTER OF SCIENCE

    UNIVERSITI PUTRA MALAYSIA

    2013

  • © CO

    PYRI

    GHT U

    PM

    EXPRESSION OF TRUNCATED CHALCONE SYNTHASE FROM Boesenbergia

    rotunda L. MANSF. IN Escherichia coli

    By

    NOR AZIZAH BINTI PARMIN

    Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in

    Fulfillment of the Requirement for the Degree of Master of Science

    March 2013

  • © CO

    PYRI

    GHT U

    PM

    ii

    Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

    the requirement for the degree of Master Science

    EXPRESSION OF TRUNCATED CHALCONE SYNTHASE FROM Boesenbergia

    rotunda L. MANSF. IN Escherichia coli

    By

    NOR AZIZAH BINTI PARMIN

    March 2013

    Chairman: Prof. Raja Noor Zaliha Raja Abd. Rahman, PhD

    Faculty: Biotechnology and Biomolecular Sciences

    Chalcone synthase (CHS) is an entrance enzyme in the biosynthetic pathway of different

    flavonoids compound and become a critical regulatory enzyme. Truncated CHS was

    isolated from Boesenbergia rotunda (B. rotunda), also known as Chinese ginger, which

    is a medicinal and culinary herb from China and Southeast Asia. The popularity of its

    medicinal usage has drawn the attention of scientists to investigate on its medicinal

    properties. This research is a fundamentals works to study on the mechanism of

    truncated CHS from B. rotunda in E. coli. This study is new for this plant but CHS has

    been studied by many researchers in other plants. Optimization of B. rotunda specific

    CTAB RNA extraction method developed in this study was able to produce high yield of

    RNA with minimum polysaccharide contamination. The value of RNA yield for

    optimization of B. rotunda specific CTAB RNA extraction method was 2.0 µg/g. A

    reverse transcriptase-polymerase chain reaction (RT-PCR) based approach was used to

  • © CO

    PYRI

    GHT U

    PM

    iii

    identify and isolate a partial-length cDNA coding for CHS gene. The gene encoding

    truncated CHS from B. rotunda was cloned into pTrcHis2 expression vector and placed

    under the control of the trc promoter for high level expression in E. coli. The effect of

    inducer concentration and induction time on CHS production from inducible system was

    evaluated. The recombinant truncated CHS protein was characterized and optimized for

    higher expression. The optimization of the recombinant truncated CHS production of

    inducible system in 50 ml culture was done for the best clone truncated CHS from E.

    coli TOP10. The effect of IPTG concentration and induction time on truncated CHS

    production from inducible system was evaluated. A time course profile of recombinant

    truncated CHS production with the optimized condition was performed and produced

    after 16 h of induction time from recombinant truncated CHS5, while optimal IPTG

    concentration was 0.5 mM.

    The recombinant truncated CHS was purified by using affinity chromatography and Ion-

    Exchange Chromatography (IEX). The expressed CHS protein had a molecular weight

    of about 21 kDa, a size that matched with the prediction by bioinformatic analysis.

    Truncated CHS was highly active at 40oC, pH 8.0 with a half-life of 1 h 10 min at 30

    oC.

    3D structure of truncated CHS from B. rotunda was predicted using CHS from alfalfa

    (Medicago sativa) as a template with sequence identity 74.87%. Tyr-42, His-130 and

    Asp-163 were assigned as catalytic triad residues. Truncated CHS was evaluated with

    Ramachandran plot, Verify 3D and ERRAT to validate the structure. This study may

    provide useful information on this enzyme and its function in the flavonoids biosynthetic

  • © CO

    PYRI

    GHT U

    PM

    iv

    pathway in B. rotunda that offers significant pharmaceutical properties for human

    health.

  • © CO

    PYRI

    GHT U

    PM

    v

    Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

    memenuhi keperluan untuk Ijazah Master Sains

    PENGEKSPRESSAN SEPARA CHALCONE SYNTHASE DARIPADA

    Boesenbergia rotunda L. MANSF. DI DALAM Escherichia coli

    Oleh

    NOR AZIZAH BINTI PARMIN

    Mac 2013

    Pengerusi: Prof. Raja Noor Zaliha Raja Abd. Rahman, PhD

    Fakulti: Bioteknologi dan Sains Biomolekular

    Chalcone synthase (CHS) merupakan enzim pintu masuk ke dalam tapak jalan

    biosintesis sebatian flavonoid berbeza menjadi enzim pengawalatur yang kritikal. CHS

    separa diasingkan daripada Boesenbergia rotunda (B. rotunda), juga dikenali sebagai

    halia Cina yang merupakan herba perubatan dan masakan dari China dan Asia Tenggara.

    Populariti nilai perubatan yang terkandung di dalam B. rotunda telah menarik minat para

    saintis untuk mengkaji nilai perubatan yang tersembunyi di dalamnya. Penyelidikan ini

    bertujuan untuk mengetahui mekanisme CHS separa daripada B. rotunda di dalam

    sistem E. coli. Kaedah penyelidikan ke atas enzim separa CHS adalah baru untuk

    tumbuhan B. rotunda tetapi CHS daripada tumbuh-tumbuhan yang lain telah banyak

    dibuat kajian. Bagi mengeksploitasikan potensi B. rotunda sebagai herba perubatan ke

    arah kajian saintifik, kaedah pengekstrakan CTAB RNA spesifik B. rotunda yang

    dioptimumkan dilakukan dalam kajian ini telah dapat menghasilkan RNA yang tinggi

    dengan polisakarida yang minima. Hasil RNA untuk pengoptimuman kaedah

  • © CO

    PYRI

    GHT U

    PM

    vi

    pengekstrakan CTAB RNA spesifik ialah 2.0 µg/g. Enzim penjujukan berbalik

    tindakbalas rantai berpolimer (RT-PCR) yang telah digunakan untuk mengenal pasti dan

    mengasingkan cDNA separa panjang bagi gen CHS. Gen yang membawa CHS separa

    daripada B. rotunda diklonkan ke dalam vektor pengekspressan pTrcHis2 vektor dan

    diletakkan di bawah kawalan promoter trc untuk pengekspressan yang tinggi dalam E.

    coli. Kesan kepekatan pengaruh dan masa induksi bagi penghasilan CHS daripada

    sistem perangsangan telah dinilai. Protein rekombinan CHS separa dicirikan dan

    dioptimumkan untuk penghasilannya yag lebih tinggi. Pengoptimuman pengeluaran

    rekombinan CHS separa daripada sistem aruhan dalam 50 ml kultur telah dilakukan

    untuk klon separa CHS5D dari E. coli TOP10. Kesan kepekatan IPTG dan masa induksi

    untuk penghasilan separa CHS dari sistem aruhan telah dinilai. Profil masa penghasilan

    rekombinan CHS separa keadaan optimum telah dijalankan dan dihasilkan selepas 16

    jam daripada masa induksi manakala kepekatan pengaruh terbaik IPTG adalah pada 0.5

    mM.

    Rekombinan CHS separa rekombinan telah ditulenkan dengan menggunakan

    kromatografi afiniti dan IEX. Protein CHS separa yang mempunyai berat molekul lebih

    kurang 21 kDa, saiz yang sepadan dengan ramalan oleh analisis bioinformatik. CHS

    separa adalah sangat aktif pada 40oC dan pH 8.0 dengan separa hayatnya daripada 1 j 10

    minit pada 30oC. Struktur 3D CHS separa daripada B. rotunda telah diramalkan dengan

    menggunakan CHS daripada alfalfa (Medicago sativa) sebagai templat dengan urutan

    identiti 74.87%. Tyr42, His130 dan Asp163 telah bertindak sebagai tapak pemangkin

    enzim. CHS separa dinilai dengan plot Ramachandran dan 3D ERRAT untuk

  • © CO

    PYRI

    GHT U

    PM

    vii

    mengesahkan strukturnya. Kajian ini boleh memberikan maklumat berguna untuk enzim

    ini dan fungsinya dalam tapak jalan biosintesis flavonoid dalam B. rotunda yang

    mempunyai banyak ciri-ciri farmaseutikal untuk kesihatan manusia.

  • © CO

    PYRI

    GHT U

    PM

    viii

    ACKNOWLEDGEMENTS

    All praises are due to Allah, Lord of the universe for strength, wisdom and grace in

    times when human abilities fail. Only by His grace and mercy this thesis can be

    completed.

    I would like to express my gratitude to individuals who played an important roles in

    completion of this study. First and foremost, thank you to my supervisor Professor Dr.

    Raja Noor Zaliha Raja Abd. Rahman for giving me the opportunity to enter a post-

    graduate career, having faith in my progress and supporting, advising and inspiring me

    throughout. Also, most sincere thanks to my cosupervisor, Professor Dato’ Dr. Abu

    Bakar Salleh and Professor Dr. Mahiran Basri for their valuable advice and teachings

    concerning both moral and scientific issues.

    A special word of thanks to the following people for their generous contributions and

    technical assistance regarding the experimental procedures: Dr Adam Leow Thean Chor,

    Dr Mohd Shukuri Mohamad Ali, Dr Wong Chee Fah and Dr. Fairolniza Mohd Shariff

    for their unlimited guidance, advice, and suggestion.

    Thanks to everyone in Enzyme and Microbial Technology Research group who have

    either given me advice or showed me friendship. I will miss all of you when I look back

    on my time in this group. I would like to thank my parents; Parmin bin Kiram and Siti

    Aissah bt Haji Masturi and also my family for their unlimited love and constant support.

  • © CO

    PYRI

    GHT U

    PM

    I certify that an Examination Committee has met to date of viva to conduct the final

    examination of Nor Azizah bt Parmin on her degree of Masters of Science thesis

    entitled, “Expression of truncated chalcone synthase from Boesenbergia rotunda (L.)

    Mansf. in Escherichia coli” in accordance with Universiti Pertanian Malaysia (Higher

    Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981.

    The Committee recommends that the candidate be awarded the Degree of Masters of

    Science.

    Members of the Examination Committee were as follows:

    Chairman, Ph.D.

    Dr. Mohd Puad bin Abdullah

    Associate Professor

    Faculty of Biotechnoogy and Biomolecular Sciences

    Universiti Putra Malaysia

    (Chairman)

    Examiner 1, Ph.D.

    Dr. Janna Ong binti Abdullah

    Associate Professor

    Faculty of Biotechnoogy and Biomolecular Sciences

    Universiti Putra Malaysia

    (Internal Examiner)

    Examiner 2, Ph.D.

    Dr. Nor’aini bt. Abd Rahman

    Faculty of Biotechnoogy and Biomolecular Sciences

    Universiti Putra Malaysia

    (Internal Examiner)

    External Examiner, Ph.D.

    Dr. Ainon Hamzah

    Associate Professor

    Faculty of Sciences and Technology

    Universiti Kebangsaan Malaysia

    (External Examiner)

    __________________________________

    NORITAH OMAR, PhD

    Assoc. Professor and Deputy Dean

    School of Graduate Studies

    Universiti Putra Malaysia

    Date:

  • © CO

    PYRI

    GHT U

    PM

    ix

    This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

    accepted as fulfilment of the requirement for the degree of Masters of Science. The

    members of the Supervisory Committee were as follows:

    Raja Noor Zaliha Raja Abd. Rahman, PhD

    Professor

    Faculty of Biotechnology and Biomolecular Sciences

    Universiti Putra Malaysia

    (Chairman)

    Abu Bakar Salleh, PhD

    Professor

    Faculty of Biotechnology and Biomolecular Sciences

    Universiti Putra Malaysia

    (Member)

    Mahiran Basri, PhD Professor

    Faculty of Science

    Universiti Putra Malaysia

    (Member)

    ________________________________

    BUJANG BIN KIM HUAT, PhD

    Professor and Dean

    School of Graduate Studies

    Universiti Putra Malaysia

    Date:

  • © CO

    PYRI

    GHT U

    PM

    x

    DECLARATION

    I declare that the thesis is my original work except for quotations and citations which have been

    duly acknowledged. I also declare that it has not been previously, and is not concurrently,

    submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

    _______________________________

    NOR AZIZAH BINTI PARMIN

    Date: 14 March 2013

  • © CO

    PYRI

    GHT U

    PM

    xi

    TABLE OF CONTENTS

    Page

    ABSTRACT ii

    ABSTRAK iv

    ACKNOWLEDGEMENTS vi

    APPROVAL vii

    DECLARATION x

    LIST OF TABLES xv

    LIST OF FIGURES xvii

    LIST OF APPENDICES xx

    LIST OF ABBREVIATIONS xxi

    CHAPTER

    1.0 INTRODUCTION 1

    2.0 LITERATURE REVIEW 4

    2.1 Chalcone synthase 4

    2.1.1 Application of CHS 6

    2.1.3 Hexanoyl-CoA as aliphatic substrate 7

    2.2 Flavonoid 8

    2.3 Prokaryotic cell expression 12

    2.4 Expression of truncated gene from eukaryote in prokaryotic

    system 13

    2.5 Analysis of secretory expression with SDS-PAGE 14

    2.6 Detection of recombinant protein in E. coli 15

    2.7 Purification strategy of recombinant protein in E. coli 16

    2.7.1 Polyhistidine tag 18

    2.7.2 Ion Exchange Chromatography (IEX) 19

    2.8 Characterization study of CHS 19

    2.8.1 Byproducts from the reaction of CHS 21

    2.8.2 Substrate Promiscuity 22

    2.9 Protein structure modeling 23

    2.10 Homology modeling 24

    2.10.1 Fold assignment and template selection 26

    2.10.2 Template-target alignment 26

    2.10.3 Model building 27

    2.10.4 Model evaluation 28

    2.11 Circular dichroism (CD) of protein 31

  • © CO

    PYRI

    GHT U

    PM

    xii

    3.0 MATERIALS AND METHODS

    3.1 Materials 32

    3.2 General method 32

    3.3 Sample collection and preparation 33

    3.4 Modified CTAB method 33

    3.5 Quantification of total RNA 34

    3.6 Formaldehyde-agarose gel electrophoresis 35

    3.7 The first strand cDNA synthesis 36

    3.8 Amplification of cDNA encode truncated CHS gene with degenerate

    primer 37

    3.9 Purification of PCR product 38

    3.10 Cloning of RT-PCR products into cloning vector 39

    3.10.1 Preparation of E. coli competent cell 39

    3.10.2 Cloning of RT-PCR products into pGEMT cloning vector 40

    3.10.3 Heat shock transformation of E. coli 40

    3.10.4 Analysis of recombinant plasmids 41

    3.10.5 Plasmid extraction 41

    3.10.6 Sequencing of recombinant truncated CHS gene. 42

    3.11 Phylogenetic analysis 43

    3.12 Transformation of the expression vector pTrcHis-truncated CHS in

    E. coli 44

    3.12.1 Amplification of truncated CHS gene with specific primer 44

    3.12.2 Ligation reaction into expression vector 45

    3.13 Heterologous expression in E. coli 46

    3.13.1 Small scale expression 46

    3.13.2 Scale-up of expression 47

    3.14 Optimization studies of inducible truncated CHS expression 46

    3.14.1 Effect of IPTG concentration on truncated CHS

    expression 48

    3.14.2 Effect of induction time on truncated CHS expression 48

    3.14.3 Effect of induction Abs600nm on protein expression 49

    3.15 Analysis of recombinant truncated CHS expression 49

    3.15.1 Quantitative determination of truncated CHS

    activity 49

    3.15.1.1 Truncated CHS assay 50

    3.15.1.2 Standard curve 4-hydroxy-6-methyl-2-

    pyrone 50

    3.15.2 High performance liquid chromatography (HPLC)

    analysis 51

    3.15.3 Determination of protein concentration 51

    3.15.4 Sodium dodecyl sulfate-polyacrylamide gel

    electrophoresis (SDS-PAGE) analysis 52

    http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&showAddButton=true&productID=K441001&_bcs_=H4sIAAAAAAAAAM2P0WqDQBBFH7ufsRDwIWDGTQORNDaEtlBIIQHtc5B1ogvruuyOWv%2B%2BWpIWSj%2Bg%0Ab3eGO8M5oWAn1xStJM8DnqLrlET%2F564ishuAvu8XynSKXFOiWcimBq8IofWABqqmRrhdh7kpwts9%0A7K3VSuakGuMXFdWazWaMXIvsTrALnYWIBFzOy%2Fh%2BHYk5s5mTr8rz8Qe%2F5iXPjqfj1rf2MXBYPmxh%0Aijzb85cP69D78TU%2FKPpmtVeQX8CbOALVlWYCfk8hL5RDSfBT2sm6SEbUZ%2BWtzoeUBo3BNHylJFWm%0A1PiGHeqnnLBs3BCM7QMOyegwaV1y7W9eqziKR6%2FVWqyieM4mhV2Y7f8J4yeWXbQAAQIAAA%3D%3D&returnURL=http%3A%2F%2Fproducts.invitrogen.com%3A80%2Fivgn%2Fen%2FUS%2Fadirect%2Finvitrogen%3Fcmd%3DcatDisplayStyle%26catKey%3D101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_4808%252Ff_471408*

  • © CO

    PYRI

    GHT U

    PM

    xiii

    3.15.5 Western Blot analysis 53

    3.16 Purification of recombinant truncated CHS 54

    3.16.1 Affinity Chromatography using Ni Sepharose 6 Fast

    Flow 54

    3.16.2 Ion Exchange Chromatography (IEX) 55

    3.16.3 Native polyacrylamide gel electrophoresis

    (Native-PAGE) 55

    3.17 Characterization of purified truncated CHS 56

    3.17.1 Effect of pH on truncated CHS activity 56

    3.17.2 pH stability of enzyme activity 56

    3.17.3 Effect of temperature truncated CHS activity 56

    3.17.4 Thermostability of enzyme activity 57

    3.17.5 Substrate specificity of truncated CHS from B. rotunda 57

    3.18 Sequence analysis of truncated CHS of B. rotunda 58

    3.19 Comparative protein modeling of truncated CHS 58

    3.20 Circular Dichroism (CD) spectral analysis of truncated CHS 59

    3.20.1 Denatured protein analysis 59

    3.20.2 Weight of truncated CHS of various temperature 60

    4.0 RESULTS AND DISCUSSION 61

    4.1 Total RNA extraction method 61

    4.2 Sequence aligment of CHS genes 63

    4.3 Analysis result of degenerate primer design 66

    4.4 RNase H Digestion before PCR 68

    4.5 Analysis of recombinant plasmid contain insert gene

    encoding truncated CHS from B. rotunda 71

    4.6 Sequencing analysis of recombinant truncated CHS from

    B. rotunda 75

    4.7 Phylogenetic tree of truncated CHS 78

    4.8 Secretory expression of truncated CHS from B. rotunda in prokaryotic

    system 81

    4.8.1 Effect of inducer concentration on truncated CHS

    secretion 81

    4.8.2 Effect of induction time on truncated CHS secretion 83

    4.8.3 Effect of induction Abs600nm on truncated CHS secretion 85

    4.9 Standard curve of 4-hydroxy-6-methyl-2-pyrone 86

    4.10 Identification of truncated CHS end product 87

    4.11 Relation between incubation period and enzyme

    concentration 90

    4.12 Western blot 91

    4.13 Purification of recombinant truncated CHS 92

    4.13.1 Purification of recombinant truncated CHS by using

    Ni-Sepharose 6 Fast Flows 92

    4.13.2 Ion Exchange Chromatography (IEX) 102

  • © CO

    PYRI

    GHT U

    PM

    xiv

    4.13.3 Native polyacrylamide gel electrophoresis

    (Native-PAGE) 108

    4.14 Characterization of purified CHS 109

    4.14.1 Effect of pH on truncated CHS activity 109

    4.14.2 pH stability of enzyme activity 111

    4.14.3 Effect of temperature for truncated CHS activity 112

    4.14.4 Thermostability of enzyme activity 113

    4.14.5 Substrate specificity of truncated CHS from B. rotunda 116

    4.15 Sequence analysis of truncated CHS from B. rotunda 118

    4.16 Comparative modeling, structure analysis of truncated CHS and

    activity of recombinant CHS protein 119

    4.17 Catalytic triads of truncated CHS from B. rotunda 124

    4.17.1 Tyrosine 124

    4.17.2 Histidine 124

    4.17.3 Asparagine 126

    4.18 Structure validation of predicted truncated CHS of B. rotunda 127

    4.19 Circular Dichroism (CD) spectra analysis of truncated CHS 134

    5.0 CONCLUSION AND RECOMMENDATIONS 136

    5.1 Conclusion 136

    5.2 Recommendations 138

    REFERENCES 140

    APPENDICES 147

    BIODATA OF STUDENT 159

    EXPRESSION OF TRUNCATED CHALCONESYNTHASE FROM Boesenbergia rotunda L. MANSF.IN Escherichia coliABSTRACTTABLE OF CONTENTSCHAPTERSREFERENCES