2014 pv distribution system modeling workshop: determining recommended settings for smart inverters:...

44
Jeff Smith, Matt Rylander, Huijuan Li EPRI EPRI Smart Inverter Workshop, Santa Clara, CA 5/7/2014 Determining Recommended Settings for Smart Inverters

Upload: sandia-national-laboratories-energy-climate-renewables

Post on 07-May-2015

359 views

Category:

Business


1 download

DESCRIPTION

2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

TRANSCRIPT

Page 1: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

Jeff Smith, Matt Rylander, Huijuan LiEPRI

EPRI Smart Inverter Workshop, Santa Clara, CA5/7/2014

Determining Recommended Settings for Smart Inverters

Page 2: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

2© 2014 Electric Power Research Institute, Inc. All rights reserved.

Overview

Objective Determine recommended settings for field site demonstration

Evaluate the effectiveness of various smart inverter functions and settings for improving feeder voltage performance as load and PV vary over time

Approach Time-series simulations in OpenDSS comparing feeder performance with and without smart inverter functions

Sites Three different feeders, each with unique characteristics and overall objectives for use of smart inverters

Page 3: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

3© 2014 Electric Power Research Institute, Inc. All rights reserved.

Which Smart Inverter Setting is Most Appropriate for My Situation?

0 5 10 15 20 25

1.024

1.026

1.028

1.03

1.032

1.034

1.036

1.038

1.04

1.042

1.044

Hour

Vol

tage

(pu)

Voltages with different voltvar settings

---- Voltvar

---- No PV---- PV base

115 unique volt/var control settings

Page 4: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

4© 2014 Electric Power Research Institute, Inc. All rights reserved.

Site Characteristics

Site kWdc(Panel size)

kWac(inverter rating

Short-circuit MVA @ POI

X/R @ POI

J1 1900 1700 30-36* 1.8-2.6

E1 605 566 38 1.8

H1 1000 1000 71 1.7

*multiple POI

Page 5: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

5© 2014 Electric Power Research Institute, Inc. All rights reserved.

Overall Approach

• Solar variability conditions– Clear day– Overcast day– Highly variable day

• Load variability conditions– Peak load day– Minimum load day

• Smart inverter settings– Volt-var– Volt-watt– Off-unity power factor 0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25

Power (M

W)

Local Time (Hour)

Offpeak

Peak

Sandia’s variability index (VI) and clearness index (CI) to classify days

Consideration for Different Feeder Load Profiles

Page 6: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

6© 2014 Electric Power Research Institute, Inc. All rights reserved.

Smart Inverter Settings

Power Factor Settings (inductive)0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9

Sample volt/var curves shown: see Video for complete set of curves

Similar range of curves used for volt/watt control

Page 7: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

7© 2014 Electric Power Research Institute, Inc. All rights reserved.

Feeder Model Validation

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

0

100

200

300

400

500

600

1 14 27 40 53 66 79 92 105

118

131

144

157

170

183

196

209

222

235

248

261

274

287

300

313

326

339

352

365

378

391

404

417

430

443

456

469

482

495

per‐un

it volta

ge

P (kW)

P (kW)

V_model (pu)

V_measure (pu)

E1

J1 H1

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

0

200

400

600

800

1000

1200

1 16 31 46 61 76 91 106

121

136

151

166

181

196

211

226

241

256

271

286

301

316

331

346

361

376

391

406

421

436

451

466

481

496

per‐un

it volta

ge

P (kW)

P (kW)

V_measure (pu)

V_model(pu)

0

50

100

150

200

250

1.02

1.03

1.04

1.05

1.06

1.07

0 50 100 150 200 250 300

PV (k

W)

Volta

ge (V

pu)

Time (sec)

Measured

Simulated

PV (kW)

Page 8: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

8© 2014 Electric Power Research Institute, Inc. All rights reserved.

Smart Inverter Model ValidationOpenDSS Simulations

260

265

270

275

280

285

290

295

Volta

ge (V

ln)

Time (s)

Measured

Simulated

‐400

‐300

‐200

‐100

0

100

200

300

400

Reactiv

e Po

wer (k

var)

Time (s)

Measured

Simulated

Page 9: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

9© 2014 Electric Power Research Institute, Inc. All rights reserved.

Selecting the “Best” Smart Inverter Settings

• Objectives– Each feeder analysis has unique set of objectives– Voltage– Efficiency– Control

• Metrics– Approximately 20 conditions are monitored for each feeder– Only daylight impact is analyzed– Mean voltage at the point of common coupling (PCC)– Voltage variability index at the PCC– Tap operations– Losses

• Rank objective impact based on the metrics for each scenario– Solar– Load

6 combinations all weighted equally (for now…)

Page 10: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

10© 2014 Electric Power Research Institute, Inc. All rights reserved.

Demo Site J1: Objectives & Metrics

Objective Metric Weight

1. Avoid overvoltage conditions

100

2. Improve customer efficiency

100

3. Reduce line regulator tap changes

100

4. Combined 1, 2, and 3 33/33/33

Page 11: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

11© 2014 Electric Power Research Institute, Inc. All rights reserved.

Sample PlotsClear Day Overcast day

Highly variable day

PC

C v

olta

ge

hour

PC

C v

olta

ge

hour

PC

C v

olta

ge

hour

0 5 10 15 20 25 30

1.02

1.025

1.03

1.035

1.04

1.045

1.05

0 5 10 15 20 25 30

1.02

1.025

1.03

1.035

1.04

1.045

1.05

0 5 10 15 20 25 301.01

1.02

1.03

1.04

1.05

1.06

1.07

Page 12: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

12© 2014 Electric Power Research Institute, Inc. All rights reserved.

Circuit Performance Characterization

Page 13: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

13© 2014 Electric Power Research Institute, Inc. All rights reserved.

Volt/Var ResultsDemo Site J1

Lesson Learned“best” settings can be difficult to identify

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

1 9 17 25 33 41 49 57 65 73 81 89 97 105

113

Feeder Head Voltage

Max Feeder HeadVoltage (pu)

Min Feeder HeadVoltage (pu)

0

100

200

300

400

500

600

700

800

900

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

109

115

Reg/LTC Tap Operations

Tap Operations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

113

Cap Operations

Cap Operations

1400

1450

1500

1550

1600

1650

1700

1 9 17 25 33 41 49 57 65 73 81 89 97 105

113

Feeder Losses (kWh)

Feeder Losses (kWh)

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1 9 17 25 33 41 49 57 65 73 81 89 97 105

113

PCC Voltage

Max PCC Voltage (pu)

Min PCC Voltage (pu)

0

2

4

6

8

10

12

14

16

18

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

109

115

VI at PCC

VI at PCC

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

113

Feeder End Voltage

Max Feeder EndVoltage (pu)

Min Feeder EndVoltage (pu)

0

1000

2000

3000

4000

5000

6000

7000

1 9 17 25 33 41 49 57 65 73 81 89 97 105

113

Time Above ANSI (sec)

Time Above ANSI (sec)

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

109

Overall Feeder Min/Max Voltage

Max Feeder Voltage(pu)

Min Feeder Voltage(pu)

Peak load day

Page 14: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

14© 2014 Electric Power Research Institute, Inc. All rights reserved.

Demo Site J1Combined Objective 4 Best Settings• Objective

– Avoids overvoltage– Improves efficiency– Reduces tap operations

• Metrics– Lower mean voltage– Flatter voltage profile – Less tap operations

General trends in rank are due to rolling through different setting

characteristics

Lesson LearnedOverall best settings have similar curves

Page 15: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

15© 2014 Electric Power Research Institute, Inc. All rights reserved.

Sample Results – Volt/var controlDemo Site J1

‐1.2

‐1

‐0.8

‐0.6

‐0.4

‐0.2

00.95 0.97 0.99 1.01 1.03 1.05

% Avail vars

per‐unit voltage1.01

1.02

1.03

1.04

1.05

1.06

1.07

0 5 10 15 20 25 30

per‐un

it vo

ltage

Hour

no_PV

PV base

voltvar

‐100

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30

tap op

erations

hour

Tap_noPV

Tap_Pvbase

Tap_voltvar

‐1.5

‐1

‐0.5

0

0.5

1

1.5

0.95 0.97 0.99 1.01 1.03 1.05 1.07 1.09

Negative impact on voltage and line regulator operations

Positive impact on voltage and line regulator operations

1.01

1.02

1.03

1.04

1.05

1.06

1.07

0 5 10 15 20 25 30

per‐un

it volta

ge

hour

no_PV

PV_base

Voltvar

Volt/var curveDaily voltage profile

Regulator tap operations

Volt/var curveDaily voltage profile

Regulator tap operations

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30tap op

erations

Tap_noPV

Tap_Pvbase

Tap_voltvar

Lesson LearnedSlight variation in settings can yield significantly different responses

Page 16: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

16© 2014 Electric Power Research Institute, Inc. All rights reserved.

Demo Site J1Trends in Volt/var Characteristics

Best curves begin absorbing reactive power at 1.02 Vpu

Best curves have a steep volt-varslope

Lesson LearnedInitial results indicate trends can be seen

Page 17: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

17© 2014 Electric Power Research Institute, Inc. All rights reserved.

Demo Site J1Best Setting Impact for Objective 4 • Each smart inverter function has one “Best” setting• Totalized metric for each “Best” setting in Objective 4 is

shown• The Volt-var function and setting has the best impact for

each metric

PV volt/var volt/watt power factor

PCC Mean Voltage (pu) 1.031 1.027 1.031 1.031

PCC VVI 18.88 8.39 15.56 8.41Tap Operations 675 418 603 523

Page 18: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

18© 2014 Electric Power Research Institute, Inc. All rights reserved.

Metric Improvement Based on Objective

PV volt/var volt/watt power factor

PCC Mean Voltage 1.031 1.027 1.031 1.031PCC VVI 18.88 8.39 15.56 8.41Tap Operations 675 418 603 523

PCC Mean Voltage 1.031 1.025 1.031 1.031PCC VVI 18.88 30.21 15.56 14.18Tap Operations 675 1727 603 485

PCC Mean Voltage 1.031 1.033 1.032 1.031PCC VVI 18.88 6.02 9.92 8.41Tap Operations 675 437 533 523

PCC Mean Voltage 1.031 1.034 1.032 1.032PCC VVI 18.88 6.60 9.92 9.599Tap Operations 675 401 533 485

Obj 4Overall

Obj 1Reduce

Overvoltage

Obj 2Improve

Efficiency

Obj 3Reduce

Taps

Page 19: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

19© 2014 Electric Power Research Institute, Inc. All rights reserved.

Demo Site J1 Best Curves

• Best volt/var and volt/watt curves shown for each objective

• Each objective optimized with different curve characteristics

Objective 1Objective 2Objective 3Objective 4

Best Power Factor SettingObjective 1 2 3 4

power factor

0.90 0.97 0.94 0.97

Page 20: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

20© 2014 Electric Power Research Institute, Inc. All rights reserved.

Impact of Load Level on Best Settings

Peak LoadOffpeak Load

Page 21: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

21© 2014 Electric Power Research Institute, Inc. All rights reserved.

Sample Day – Comparing “Best” Setting Responses

Offpeak day, highly variable solar

1.02

1.025

1.03

1.035

1.04

1.045

1.05

0 5 10 15 20

per‐un

it vo

ltage

hour

PCC Voltage

0

10

20

30

40

50

60

70

80

0 5 10 15 20

#

hour

Tap Operations

Lesson LearnedPower factor and proper volt/varsettings can be effective

Page 22: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

22© 2014 Electric Power Research Institute, Inc. All rights reserved.

Demo Site E1: Objectives & Metrics

Objective Metric Weight

1. Reduce voltageflicker/voltage variations

100

2. Reduce losses 1003. Combined 1 and 2 50/50

Page 23: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

23© 2014 Electric Power Research Institute, Inc. All rights reserved.

Sample Plots

0 5 10 15 20 25 300.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

0 5 10 15 20 25 300.985

0.99

0.995

1

1.005

1.01

1.015

0 5 10 15 20 25 300.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

Clear Day Overcast day

Highly variable day

PC

C v

olta

ge

hour

PC

C v

olta

ge

hour

PC

C v

olta

ge

hour

Page 24: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

24© 2014 Electric Power Research Institute, Inc. All rights reserved.

Demo Site E1 Best Curves

• 3 best volt/var and volt/watt curves shown for each objective

• Each objective optimized with different curve characteristics

Objective 1Objective 2Objective 3

Best Power Factor SettingObjective 1 2 3

power factor 0.92 0.99 0.93

Page 25: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

25© 2014 Electric Power Research Institute, Inc. All rights reserved.

Metric Improvement Based on Objective

PV volt/var volt/watt power factor

PCC VVI 9.1787 7.4029 8.9498 6.8539Losses (kWh) 3079 3038 3078 3124

PCC VVI 9.1787 7.0951 8.9498 6.8480Losses (kWh) 3079 3082 3078 3129

PCC VVI 9.1787 7.4029 8.9498 8.1283Losses (kWh) 3079 3038 3078 3091

Obj 3

Obj 1

Obj 2

power factor does not reduce losses

Page 26: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

26© 2014 Electric Power Research Institute, Inc. All rights reserved.

Demo Site H1: Objectives & Metrics

Objective Metric Weight

1. Flatter voltage and improved customer efficiency

5050

2. Reduced LTC tap changes

100

3. Combined 1 and 2 25/25/50

Page 27: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

27© 2014 Electric Power Research Institute, Inc. All rights reserved.

Demo Site H1: Best Curves

• 1 best volt/var and volt/watt curves shown for each objective

• Each objective optimized with different curve characteristics

Best Power Factor SettingObjective 1 2 3

power factor 0.92 0.96 0.96

Objective 1Objective 2Objective 3

Page 28: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

28© 2014 Electric Power Research Institute, Inc. All rights reserved.

Metric Improvement Based on Objective

PV volt/var volt/watt power factor

PCC Mean Voltage 1.008 1.008 1.008 1.007PCC VVI 11.5798 10.7196 11.0827 8.0583Tap Operations 54 53 54 55

PCC Mean Voltage 1.008 1.006 1.008 1.007PCC VVI 11.5798 11.0533 11.0827 8.0391Tap Operations 54 57 54 55

PCC Mean Voltage 1.008 1.009 1.008 1.007PCC VVI 11.5798 9.4340 10.1347 8.0583Tap Operations 54 50 53 55

Obj 3

Obj 1

Obj 2

Page 29: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

29© 2014 Electric Power Research Institute, Inc. All rights reserved.

Summary

• Overall “best” setting depends upon objective– Improve voltage– Increase efficiency– Regulator operations– Increase hosting

• Preliminary analysis indicates trends in recommended settings can be found

• Caution: Minor changes in settings (volt/var) can have significantly different impacts

• Less “aggressive” settings work– Less risk, less potential benefit

(e.g., increasing hosting capacity)

• Results shown today are based upon site-specific conditions

• Future work for determining recommended settings– Other locations– Other feeders– Combined inverters

Page 30: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

Jeff Smith, Huijuan LiEPRI

EPRI Smart Inverter Workshop, Santa Clara, CA5/7/2014

Potential Interaction Between Smart Inverters

Page 31: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

31© 2014 Electric Power Research Institute, Inc. All rights reserved.

Overview

Objective ApproachEvaluating potential inverter interaction

Investigate possible inverter interaction resulting from smart inverter control on multiple PV systems

Time-domain analysis in Matlab/Simulink to investigate possible inverter interaction

Page 32: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

32© 2014 Electric Power Research Institute, Inc. All rights reserved.

Studied System

PV1: 400 kW, 475 kVAPV2: 1000 kW, 1235 kVA20 s simulation widow 1.2 Mvar Cap is switched on at 10 s, which causes voltage rise

Page 33: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

33© 2014 Electric Power Research Institute, Inc. All rights reserved.

Interactions Between the Two InvertersSingle PV providing vars Both PVs providing vars

4 6 8 10 12 14 16 18 200.95

0.96

0.97

0.98

0.991

1.01

1.02

1.03

1.04

1.05

Time(s)

Vol

tage

(pu)

4 6 8 10 12 14 16 18 200.95

0.96

0.97

0.98

0.991

1.01

1.02

1.03

1.04

1.05

Time(s)

Vol

tage

(pu)

V1

V2

4 6 8 10 12 14 16 18 200.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

4 6 8 10 12 14 16 18 200.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

V1

V2

OscillationsObserved !

Page 34: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

34© 2014 Electric Power Research Institute, Inc. All rights reserved.

What May Impact Var Control Var control flow

VoltVar CurveInverter

Averagingwindow

VReference Q

Average V

QPI

controller

(Kp Ki)

Switching Command

Factors may impact var control:• Volt-var curve parameters• PI controller parameters: Kp and Ki

• Voltage average window length

Page 35: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

35© 2014 Electric Power Research Institute, Inc. All rights reserved.

Impact of Volt-var Parameters

Volt/var 1 Volt/var 2

% AvailableVars

voltage (pu)

‐100

Capacitive100

Inductive

0.95 1.05

% AvailableVars

voltage (pu)

‐100

Capacitive100

Inductive

0.99 1.01

Controller parameters for both cases:

Kp Ki0.3 3

Page 36: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

36© 2014 Electric Power Research Institute, Inc. All rights reserved.

4 6 8 10 12 14 16 18 200.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

4 6 8 10 12 14 16 18 200.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

Volt/var 1

Voltages

4 6 8 10 12 14 16 18 200.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Time(s)

Vol

tage

(pu)

V1 V1

4 6 8 10 12 14 16 18 200.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Time(s)

Vol

tage

(pu)

V2 V2

Volt/var 2

High ratio may cause oscillations

Page 37: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

37© 2014 Electric Power Research Institute, Inc. All rights reserved.

Volt/var 1

4 6 8 10 12 14 16 18 20-100

-80

-60

-40-20

0

2040

60

80100

Time (s)

% o

f Ava

ilabl

e V

ar

Actual varVar reference

Vars

Var 1 Var 1

Var 2 Var 2

4 6 8 10 12 14 16 18 20-100

-80

-60

-40-20

0

2040

60

80100

Time(s)

% A

vaila

ble

Var

s

Actual VarVar reference

4 6 8 10 12 14 16 18 20-100

-80

-60

-40-20

0

2040

60

80100

Time(s)

% A

vaila

ble

Var

s

Actual varVar reference

4 6 8 10 12 14 16 18 20-100

-80

-60

-40-20

0

2040

60

80100

Time (s)

% A

vaila

ble

Var

s

Actula varVar reference

Volt/var 2

Page 38: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

38© 2014 Electric Power Research Institute, Inc. All rights reserved.

Impact of Controller Parameters

Volt/var 2 Volt/var 2: slower response

% AvailableVars

voltage (pu)

‐100

Capacitive100

Inductive

0.99 1.01

Controller parameters for case 1:

Kp Ki0.3 3

% AvailableVars

voltage (pu)

‐100

Capacitive100

Inductive

0.99 1.01

Kp Ki0.1 1

Controller parameters for case 2:

Page 39: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

39© 2014 Electric Power Research Institute, Inc. All rights reserved.

4 6 8 10 12 14 16 18 200.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

Volt/var 2

4 6 8 10 12 14 16 18 200.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

Voltages

V1 V1

V2 V24 6 8 10 12 14 16 18 20

0.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

Volt/var 2: slower response

4 6 8 10 12 14 16 18 200.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

Smaller control parameters, which means smaller adjustments at each step, reduce

the oscillations

Page 40: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

40© 2014 Electric Power Research Institute, Inc. All rights reserved.

4 6 8 10 12 14 16 18 20-100

-80

-60

-40-20

0

2040

60

80100

Time(s)

% A

vaila

ble

Var

s

Actual varVar reference

Volt/var 2

4 6 8 10 12 14 16 18 20-100

-80

-60

-40-20

0

2040

60

80100

Time(s)

% A

vaila

ble

Var

s

Actual VarVar reference

4 6 8 10 12 14 16 18 20-100

-80

-60

-40-20

0

2040

60

80100

Time(s)

% A

vaila

ble

Var

s

Actual varVar reference

Vars

Var 1Var 1

Var 2 Var 24 6 8 10 12 14 16 18 20

-100

-80

-60

-40-20

0

2040

60

80100

Time(s)

% A

vaila

ble

Var

s

Actual varVar reference

Volt/var 2: slower response

Page 41: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

41© 2014 Electric Power Research Institute, Inc. All rights reserved.

Impact of Window Length of Averaging Voltage

Volt/var 2 Volt/var 2: larger avg window

% AvailableVars

voltage (pu)

‐100

Capacitive100

Inductive

0.99 1.01

% AvailableVars

voltage (pu)

‐100

Capacitive100

Inductive

0.99 1.01

Controller parameters for both cases:

Kp Ki0.3 3

Length of average window= 0.05s Length of average window= 1 s

Page 42: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

42© 2014 Electric Power Research Institute, Inc. All rights reserved.

Volt/var 2

4 6 8 10 12 14 16 18 200.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

Voltages

V1 V1

V2 V24 6 8 10 12 14 16 18 20

0.950.96

0.97

0.980.99

1

1.011.02

1.03

1.041.05

Time(s)

Vol

tage

(pu)

Volt/var 2: larger avg window

4 6 8 10 12 14 16 18 200.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Time(s)

Vol

tage

(pu)

4 6 8 10 12 14 16 18 200.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Time(s)

Vol

tage

(pu)

Longer voltage averaging window increases oscillation magnitude, but

improved dampening occurs

Page 43: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

43© 2014 Electric Power Research Institute, Inc. All rights reserved.

Volt/var 2

4 6 8 10 12 14 16 18 20-100

-80

-60

-40-20

0

2040

60

80100

Time(s)

% A

vaila

ble

Var

s

Actual VarVar reference

4 6 8 10 12 14 16 18 20-100

-80

-60

-40-20

0

2040

60

80100

Time(s)

% A

vaila

ble

Var

s

Actual varVar reference

Vars

Var 1 Var 1

Var 2 Var 2

Volt/var 2: slower avg window

4 6 8 10 12 14 16 18 20-100

-80

-60

-40

-20

0

20

40

60

80

100

Time(s)

% A

vaila

ble

Var

s

Actual varVar reference

4 6 8 10 12 14 16 18 20-100

-80

-60

-40

-20

0

20

40

60

80

100

Actual varVar reference

Page 44: 2014 PV Distribution System Modeling Workshop: Determining Recommended Settings for Smart Inverters: Jeff Smith, EPRI

44© 2014 Electric Power Research Institute, Inc. All rights reserved.

Conclusions

• Interactions exist between the two close by inverters• High ratio may cause oscillations• Smaller adjustments at each step as a result of smaller

control parameters reduces oscillations• Longer voltage averaging window increases magnitude of

oscillations, although dampening does occur