2015-03-26 design for comfort.pptx

79
Design for Comfort Graham S. Wright, Ph.D. Passive House Ins:tute US

Upload: dinhlien

Post on 09-Jan-2017

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 2015-03-26 Design for Comfort.pptx

Design  for  Comfort  

Graham  S.  Wright,  Ph.D.  Passive  House  Ins:tute  US  

Page 2: 2015-03-26 Design for Comfort.pptx

Passive  House  Northwest  AIA  CEU  Provider    

Design  for  Comfort    

AIA  Course  #  phnw072  Graham  Wright  March  27,  2015  

Page 3: 2015-03-26 Design for Comfort.pptx

Credit(s)  earned  on  comple:on  of  this  course  will  be  reported  to  AIA  CES  for  AIA  members.  Cer:ficates  of  Comple:on  for  both  AIA  members  and  non-­‐AIA  members  are  available  upon  request.              This  course  is  registered  with  AIA  CES  

for  con:nuing  professional  educa:on.  As  such,  it  does  not  include  content  that  may  be  deemed  or  construed  to  be  an  approval  or  endorsement  by  the  AIA  of  any  material  of  construc:on  or  any  method  or  manner  of  handling,  using,  distribu:ng,  or  dealing  in  any  material  or  product.  ___________________________________________ Ques:ons  related  to  specific  materials,  methods,  and  services  will  be  addressed  at  the  conclusion  of  this  presenta:on.    

Page 4: 2015-03-26 Design for Comfort.pptx

This  presenta:on  is  protected  by  US  and  Interna:onal  Copyright  laws.    Reproduc:on,  distribu:on,  display  and  use  of  the  presenta:on  without  wriUen  

permission  of  the  speaker  is  prohibited.  

 

 

 

 

 ©  Graham  Wright  

Copyright  Materials  

Page 5: 2015-03-26 Design for Comfort.pptx

This  Passive  house  buildings  are  characteris:cally  designed  for  low  peak  or  annual  hea:ng  and  cooling  loads  ("very  small  furnace  size".)  One  of  the  selling  points  is  that  thermal  comfort  is  improved  (and/or  that  there  is  less  need  of  distribu:on  systems  for  hea:ng  and  cooling.)  But  to  the  extent  that  comfort  is  a  primary  concern,  it  would  be  beUer  to  design  for  it  directly  using  human  comfort  metrics,  rather  than  using  energy  metrics  as  proxies.    

Course  Descrip:on  

Page 6: 2015-03-26 Design for Comfort.pptx

Learning  Objec:ves  

1.   Know  the  factors  affec:ng  the  human  comfort  metrics  PMV  and  PPD.        

2.  Know  the  differences  between  the  human  comfort  standards  EN  ISO  7730,  EN  15251,  ASHRAE  55.  

 

3.  Apply  comfort  metrics  and  standards  in  design,  using  e.g.  WUFI  Passive.    

4.  Know  the  recent  proposed  changes  to  EN  15251.    

At  the  end  of  the  this  course,  par:cipants  will  be  able  to:  

Page 7: 2015-03-26 Design for Comfort.pptx

Overview  •  Fundamentals  &  Sohware  

–  Factors  that  affect  thermal  comfort,  and  design  guidance,  according  to  standards  ISO  7730,  ASHRAE  55,  and  EN  15251.  

– ASHRAE  Comfort  Tool,  WUFI  Passive.  •  Example  1:  Thermal  comfort  check  for  a  residence  in  Chicago.  –  Passive  design  vs.  old  building.  

•  Example  2:  Thermal  comfort  and  indoor  air  quality  for  a  sensi:ve  client.  

•  Geing  crea:ve.  

3/26/15   7  

Page 8: 2015-03-26 Design for Comfort.pptx

Introduc:on  

•  Shelton  Group  surveys:  – Frame  a  ques:on  for  the  head,  people  say  they  want  energy  savings.  

– Frame  a  ques:on  for  the  heart,  people  say  they  want  comfort.  

             Source:  “Comfort  is  in  the  eye  of  the  beholder,”  Lee  Ann  Head,  Shelton  Insights,  Feb  18,  2015.    hUp://sheltongrp.com/comfort-­‐is-­‐in-­‐the-­‐eye-­‐of-­‐the-­‐beholder  

3/26/15   8  

Page 9: 2015-03-26 Design for Comfort.pptx

Introduc:on  

•  Caveat:  The  phrase  “comfortable  home”  can  bring  to  mind  many  different  things  –  some  of  which  have  nothing  to  do  with  climate/temperature:  –  A  spacious  home  with  high  ceilings  –  A  home  with  lots  of  natural  light/big  picture  windows  –  A  home  with  lots  of  storage  and  counter  space  –  A  home  with  an  open  floor  plan  

•  Some  of  these  “comfortable”  home  features  can  actually  make  achieving  energy  efficiency  standards  more  challenging.  

 Source:  “Comfort  is  in  the  eye  of  the  beholder,”  Lee  Ann  Head,  Shelton  Insights,  Feb  18,  2015.    hUp://sheltongrp.com/comfort-­‐is-­‐in-­‐the-­‐eye-­‐of-­‐the-­‐beholder  

3/26/15   9  

Page 10: 2015-03-26 Design for Comfort.pptx

3  standards  in  a  nutshell  

•  ISO  7730                        2005  – Metrics  for  thermal  comfort,  how  to  assess  /  measure  /  predict.  

•  ASHRAE  55                      2013  – Agrees  with  7730  on  basics,  more  definite  about  criteria  for  design,  pass/fail  thresholds.  

•  EN  15251                        2007  –  Inputs  for  energy  design,  covering  the  whole  indoor  environment:    thermal,  indoor  air  quality,  ligh:ng,  acous:cs.  

3/26/15   10  

Page 11: 2015-03-26 Design for Comfort.pptx

A  state  of  mind  

•  “Thermal  comfort  is  that  condi:on  of  mind  that  expresses  sa:sfac:on  with  the  thermal  environment.”  ASHRAE  55,  C1;  ISO  7730,  7.  

3/26/15   11  

Page 12: 2015-03-26 Design for Comfort.pptx

Predicted  Mean  Vote  (PMV)  

•  “The  PMV  is  an  index  that  predicts  the  mean  value  of  the  votes  of  a  large  group  of  persons  on  the  7-­‐point  thermal  sensa:on  scale.”  ISO  7730,  4.1  – Healthy  adults  in  moderate  thermal  environments.    Steady-­‐state.  

•  Applies  for  normal  building  opera:on.    Maybe  not  that  useful  for  survivability  studies.  

•  7730  refers  to  other  standards  for  extremes  –  ISO  7243:1989  and  7933:2004,  for  hot  –  ISO  11079:1993  for  cold  weather  clothing  

3/26/15   12  

Page 13: 2015-03-26 Design for Comfort.pptx

Six  factors  found  to  affect  PMV  •  Physical  ac:vity  

–  WaUs  per  square  meter  of  skin  surface.  1.0  met  =  58.2  W/m2.  •  Clothing  

–  An  R-­‐value,  normalized  to  typical  winter:me  clothing  ensemble.  1.0  clo    =  0.155  m2K/W  =  R-­‐0.88  h  h2  F/Btu.  

•  Air  temperature  •  Mean  radiant  temperature  

–  Average  of  surrounding  surface  temps  accoun:ng  for  view  factor.  

•  Air  velocity  •  Humidity  

–  Each  +10%  RH  felt  as  about  0.5  F  warmer.  

3/26/15   13  

Page 14: 2015-03-26 Design for Comfort.pptx

Formula  for  PMV  

•  PMV  between  -­‐2  and  +2  •  0.8  to  4.0  met  

–  ASHRAE  says  1.0-­‐2.0  met  •  0  to  2  clo  •  Air  temp  50-­‐86  F  

•  Mean  radiant  50-­‐104  F  •  Air  speed  0-­‐200  h/min  

–  ASHRAE  says  0-­‐40  h/min  •  Vapor  pressure  0-­‐2700  Pa  (e.g.  85  F,  66%RH)  

•  Moderately  complex  –  62  lines  of  BASIC  to  code  it,  needs  to  iterate  on  clothing  surface  temp.  

•  Valid  ranges:  

3/26/15   14  

Page 15: 2015-03-26 Design for Comfort.pptx

1-CLO ZONE. TEMPERATURE LIMITS

CORRESPOND TO ~ PMV = 0 ± 0.5.

AT 40% RH: 69-77 F

3/26/15   15  

Page 16: 2015-03-26 Design for Comfort.pptx

Lower  humidity  limit  ASHRAE  55  has  no  lower  humidity  limit.    EN  15251  kind  of  disagrees  –  “...  very  low  humidity,  (<15-­‐20%)  causes  dryness  and  irrita:on  of  eyes  and  air  ways.”  

3/26/15   16  

Page 17: 2015-03-26 Design for Comfort.pptx

Predicted  %  dissa:sfied  (PPD)  

•  Used  for  sugges:ng  /  seing  design  criteria.  

AT LEAST 5% DISSATISFIED,

NO MATTER WHAT

3/26/15   17  

Page 18: 2015-03-26 Design for Comfort.pptx

ASHRAE  Comfort  Tool  ~  $100  Example  1  –  windowless  room.    At  1.2  met  and  1  clo,  you  really  do  need  71  F,  for  a  PMV  of  zero.  

3/26/15   18  

Page 19: 2015-03-26 Design for Comfort.pptx

met  &  clo  examples  

clo  (includes  chair,  ref.  ISO  9920)  •  0.3  –  T-­‐shirt,  shorts,  light  

socks,  sandals.  •  0.5  –  Short  sleeve  shirt,  light  

trousers,  light  socks,  shoes.  •  1.0  –  Undershirt,  shirt,  

trousers,  jacket/sweater,  socks,  shoes.  

•  1.5  –  3-­‐piece  suit  +  overcoat  •  Parka  –  add  0.7.  •  Execu:ve  chair  –  add  0.15.  

met  •  0.3  sleeping.*  •  1.0  seated,  relaxed.  •  1.2  sedentary  (office,  

dwelling,  school,  lab)  •  2.0  standing  (shop,  

machine,  domes:c)  •  0.07  –  About  minimum  for  

decency  (culture  dependent.)  

*Standards  don’t  apply  to  sleeping  people,  they  can’t  answer  PMV  survey  ques:ons.  

3/26/15   19  

Page 20: 2015-03-26 Design for Comfort.pptx

Comfort  example  2  –  room  with  large  window  Four  feet  from  a  12  h  wide  x  6  foot  high  window  at  45  F  inside  surface  temp.,  in  a  16x16x8  room.    MRT  =  66.4  F  

3/26/15   20  

Page 21: 2015-03-26 Design for Comfort.pptx

Comfort  example  2  –  room  with  large  window  Window  shihs  PMV  cooler  by  0.26.      

3/26/15   21  

Page 22: 2015-03-26 Design for Comfort.pptx

OpHon  to  use  weather-­‐dependent  clothing  model  ASHRAE  55.    Also  an  op:on  in  EnergyPlus  sohware.  

3/26/15   22  

Page 23: 2015-03-26 Design for Comfort.pptx

Local  discomfort  Unwanted  hea:ng  /  cooling  of  one  par:cular  part  of  the  body  

•  PMV/PPD  measure  comfort  overall.  There  are  four  separate  effects  and  criteria  for  local  discomfort,  that  may  need  to  be  considered.*  – Drah  (at  the  neck)  –  Drah  dissa:sfac:on  rate  DR  based  on  temperature,  speed,  turbulence.  

–  Ver:cal  air  temp  difference  (head  to  ankles).  •  Can’t  compute  this  with  fully-­‐mixed  zone  models.  

– Warm  and  cool  floors.  –  Radiant  asymmetry.  

 *ASHRAE  55  adds  requirements  only  if  clo  <  0.7  AND  met  <  1.3.      ISO  7730  says  PPD,  DR,  or  PD  from  other  local  discomfort  should  not  be  added.  

3/26/15   23  

Page 24: 2015-03-26 Design for Comfort.pptx

3/26/15   24  

Windows  enter  into  both  the  overall  PPD  (through  the  mean  radiant  temp)  and  the  radiant  asymmetry.      Cool-­‐wall  asymmetry  of  itself,  up  to  18  F  ok  per  ASHRAE.  Below  11  F,  99%  sa:sfied.  

7730 AND 55, SAME CHART.

ASHRAE

CRITERION, PD < 5.

Page 25: 2015-03-26 Design for Comfort.pptx

Temperature  varia:ons  with  :me  

•  Cyclic  varia:ons  – Short-­‐term  cyclic  varia:ons  (<15  min  period)  in  opera:ve  temperature  should  be  <  2  F  peak-­‐to-­‐peak.  

•  Drihs  or  ramps  <  4  F  per  hour,  basically.  

3/26/15   25  

Page 26: 2015-03-26 Design for Comfort.pptx

So  much  for  metrics.    Back  to  steady  state.    

Design  criteria:  how  good  is  good  enough?  

•  ISO  7730  merely  suggests  three  categories  that  one  might  choose  to  design  for.  

 3/26/15   26  

Page 27: 2015-03-26 Design for Comfort.pptx

•  EN  15251  interpreted  the  categories  as  follows,  and  renumbered  them  I,  II,  III.  (Table  1,  A.1)  

•  ASHRAE  55  basically  picked  Category  B  /  II.      3/26/15   27  

Category   ExplanaHon   PPD  %   PMV  

I  

High  level  of  expecta:on  and  is  recommended  for  spaces  occupied  by  very  sensi:ve  and  fragile  persons  with  special  requirements  like  handicapped,  sick,  very  young  children  and  elderly  persons.  

<  6   ±  0.2  

II   Normal  level  of  expecta:on  and  should  be  used  for  new  buildings  and  renova:ons.   <  10   ±  0.5  

III   An  acceptable,  moderate  level  of  expecta:on  and  may  be  used  for  exis:ng  buildings.   <  15   ±  0.7  

IV  Values  outside  the  criteria  for  the  above  categories.    This  category  should  only  be  accepted  for  a  limited  part  of  the  year.  

>  15   >  ±  0.7  

Page 28: 2015-03-26 Design for Comfort.pptx

Revenge  of  the  circula:ng  fan  

•  In  2010,  ASHRAE  55  was  revised  to  allow  higher  maximum  opera:ve  temp,  at  higher  air  speed  (than  40  fpm)*.  – Up  to  157  fpm  without  local  control  of  fan  speed.  – Up  to  236  fpm,  with  local  control.  – No  limit,  above  1.3  met.  

 The  ceiling  fan  in  my  house  is  good  for  ~110  fpm  at  most.    *For  more  info,  see  Low-­‐Tech  Magazine,  Sept  10,  2014.  

3/26/15   28  

Page 29: 2015-03-26 Design for Comfort.pptx

Elevated  air  speed  

3/26/15   29  

Page 30: 2015-03-26 Design for Comfort.pptx

Alternate  approach  to  Summer  in  naturally-­‐condi7oned  spaces  

•  Adap:ve  comfort:    ASHRAE  55  and  EN  15251  both  allow  shihing  the  indoor  temperature  range  up  with  increasing  outdoor  temp  if:  – Above  50  F  outside.  – No  mechanical  cooling  (fans  ok).  – 1.0-­‐1.3  met  – Occupants  free  to  adapt  clothing  0.5-­‐1.0  clo  or  wider.      

3/26/15   30  

Page 31: 2015-03-26 Design for Comfort.pptx

3/26/15   31  

EN 15251 CHART VERY SIMILAR, BUT RANGE IS WARMER AND LINES ARE STEEPER, SLIGHTLY.

Page 32: 2015-03-26 Design for Comfort.pptx

Design  compliance  

•  ASHRAE  55  is  the  most  specific  /  definite  about  design  criteria  and  procedure.  Takes  a  “design  condi:ons”  approach.  

•  Design  enclosure,  mechanicals  to  maintain  indoor  comfort  at  outdoor  and  indoor  design  condi:ons.  1.  Iden:fy  all  space  types.  2.  Determine  met  and  clo  for  representa:ve  occupant.      3.  For  any  space,  can  use  PMV  +  elevated  air  speed  +  

local  discomfort  +  :me  varia:on  criteria.  

3/26/15   32  

Page 33: 2015-03-26 Design for Comfort.pptx

Design  compliance  

4.  For  summer,  naturally  condi:oned  spaces,  can  design  for  climate-­‐dependent  opera:ve  temperature  range.  

5.  State  design  condi:ons,  e.g.  winter  &  summer  outdoor  extremes,  and  indoor  loads.  

6.  Explain  why  local  discomfort  won’t  be  a  problem,  or  document  calcula:on  methods.  

•  ISO  7730  makes  several  sugges:ons  for  how  to  evaluate  “long-­‐term,”  as  in  a  full-­‐year  simula:on  or  field  study.  

3/26/15   33  

Page 34: 2015-03-26 Design for Comfort.pptx

Example  1,  residence  in  Chicago  

•  Follow  the  spirit  if  not  the  exact  leUer  of  ASHRAE  55.  –  Three  spaces  –  cool  room,  warm  room,  rest-­‐of-­‐building.  

– Occupants  1.2  met,  1  clo  winter,  0.5  clo  summer.  – Has  mechanical  cooling.  –  R-­‐45  walls,  R-­‐6  windows,  R-­‐70  ceiling.  

•  Main  Finding:    68  F  /  77  F  setpoints  were  ok,  but  humidifica:on  to  35%  was  needed  for  comfort,  even  with  an  ERV.  

3/26/15   34  

Page 35: 2015-03-26 Design for Comfort.pptx

Example  1,  residence  in  Chicago  

•  68  F  /  77  F  setpoints  were  ok,  but  humidifica:on  to  35%  was  needed  for  comfort,  even  with  an  ERV.  

•  Old-­‐building  version  delivered  Category  III  winter  comfort  instead  of  II  (15%  PPD  instead  of  10%),  using  ~10x  the  hea:ng  energy.  

3/27/15   35  

Page 36: 2015-03-26 Design for Comfort.pptx

3/27/15   36  

Page 37: 2015-03-26 Design for Comfort.pptx

3/27/15   37  

Page 38: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  main  zone,  inside  temps  Opera:ve  temp  and  air  temp  very  close  together.  

3/27/15   38  

Page 39: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  main  zone,  inside  RH  Humidifier  set  to  35%  RH.  

3/27/15   39  

Page 40: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  main  zone,  PMV  68  F  air  temp  with  60  F  windows  does  give  almost  68  F  opera:ve,  which  is  right  at  the  cool  side  of  the  Cat  II  /  ASHRAE  55  comfort  limit  (-­‐0.5  PMV  /  10%  PPD)  provided  the  air  was  humidified  to  35%  minimum.  

3/27/15   40  

Page 41: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  main  zone,  PPD  68  F  air  temp  with  60  F  windows  does  give  almost  68  F  opera:ve,  which  is  right  at  the  cool  side  of  the  Cat-­‐II  /  ASHRAE-­‐55  comfort  limit  (-­‐0.5  PMV  /  10%  PPD)  provided  the  air  was  humidified  to  35%  minimum.  

3/27/15   41  

Page 42: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  main  zone,  thermal  quality  All  Category  I  or  II  achieved  –  yay.      

3/27/15   42  

Page 43: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  cool  zone,  inside  temps  Hardly  any  sun,  temps  stay  at  68  F.  

3/27/15   43  

Page 44: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  cool  zone,  PMV  Again,  68  F  is  barely  adequate  to  maintain  PMV  -­‐0.5,  if  it’s  not  too  dry.  

3/27/15   44  

Page 45: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  cool  zone,  thermal  quality  87%    Cat  II  in  the  cool  room.  

3/27/15   45  

Page 46: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  warm  zone,  inside  temps.  More  day:me  sun  warming  than  main  zone  or  cool  zone.  

3/27/15   46  

Page 47: 2015-03-26 Design for Comfort.pptx

Chicago,  winter,  warm  zone,  inside  temps.  In  the  warm  zone  the  68  F  setpoint  gave  just  enough  margin  for  upside  warming.  

3/27/15   47  

Page 48: 2015-03-26 Design for Comfort.pptx

Chicago,  july,  main  zone,  inside  temps.  Dehumidifica:on  to  0.012  humidity  ra:o.    Cooling  to  77  F.  

3/27/15   48  

SIM STARTUP TRANSIENT – INITIAL TEMPERATURE OF EVERYTHING IS 68 F, BUILDING TAKES 4 DAYS TO WARM UP.

Page 49: 2015-03-26 Design for Comfort.pptx

Chicago,  july,  main  zone,  PMV  Dehumidifica:on  to  0.012  humidity  ra:o.    Cooling  to  77  F.  

3/27/15   49  

Page 50: 2015-03-26 Design for Comfort.pptx

Chicago,  july,  main  zone,  thermal  quality  92%  Category  I  –  yay.    Would  have  been  higher  without  false  startup  transient.  

3/27/15   50  

Page 51: 2015-03-26 Design for Comfort.pptx

Chicago,  july,  warm  zone,  inside  temperatures  Almost  iden:cal  to  main  zone.  

3/27/15   51  

Page 52: 2015-03-26 Design for Comfort.pptx

Chicago,  july,  warm  zone,  PMV  Almost  iden:cal  to  main  zone.  

3/27/15   52  

Page 53: 2015-03-26 Design for Comfort.pptx

Chicago,  july,  warm  zone,  PMV  Almost  iden:cal  to  main  zone.  

3/27/15   53  

Page 54: 2015-03-26 Design for Comfort.pptx

Chicago,  april,  outside  temp  Goes  from  30  to  90  in  two  weeks.  

3/27/15   54  

Page 55: 2015-03-26 Design for Comfort.pptx

Chicago,  april,  main  zone,  inside  temps  Ten  days  or  so  of  neither  hea:ng  nor  cooling  required,  daily  fluctua:on  of  5  F  or  less.  

3/27/15   55  

Page 56: 2015-03-26 Design for Comfort.pptx

Chicago,  april,  main  zone,  inside  temps  Using  weather-­‐dependent  clothing  func:on  per  ASHRAE  55  Figure  5.2.2.2.    That  was  a  bad  idea  for  winter  or  summer,  but  helped  a  lot  in  the  swing  season.      

3/27/15   56  

Page 57: 2015-03-26 Design for Comfort.pptx

Chicago,  april,  main  zone,  inside  temps  78%  Category  I  or  II.  

3/27/15   57  

Page 58: 2015-03-26 Design for Comfort.pptx

Compare  to  old  building  

•  More  even  window  distribu:on.  •  Single  pane  windows.  •  R-­‐13  wall,  R-­‐20  ceiling.  •  Tightness  7  ACH  50.  •  Humidifica:on  to  25%  RH.  

3/27/15   58  

Page 59: 2015-03-26 Design for Comfort.pptx

3/27/15   59  

Page 60: 2015-03-26 Design for Comfort.pptx

Chicago,  old  house,  winter,  warm  zone,  inside  temps  Window  inside  surface  temps  are  off  scale  low,  but  the  opera:ve  temp  is  only  dragged  down  a  degree  or  so.  

3/27/15   60  

Page 61: 2015-03-26 Design for Comfort.pptx

Chicago,  old  house,  winter,  warm  zone,  inside  temps  Window  inside  surface  temps  are  off  scale  low,  but  the  opera:ve  temp  is  only  dragged  down  a  degree  or  so.    Humidifica:on  to  25%.  

3/27/15   61  

Page 62: 2015-03-26 Design for Comfort.pptx

Chicago,  old  house,  winter,  warm  zone,  PMV  Lower  opera:ve  temp  and  lower  humidity  are  making  people  feel  a  liUle  colder  even  though  the  air  temp  is  s:ll  68  F.  

3/27/15   62  

Page 63: 2015-03-26 Design for Comfort.pptx

Chicago,  old  house,  winter,  warm  zone,  PPD  Dissa:sfac:on  is  more  than  10%  but  mostly  less  than  15%.      

3/27/15   63  

Page 64: 2015-03-26 Design for Comfort.pptx

Chicago,  old  house,  winter,  warm  zone,  quality.  Mostly  category  III,  ok  for  old  building.  

3/27/15   64  

Page 65: 2015-03-26 Design for Comfort.pptx

Example  2.  Small  4-­‐bdrm  house,  sensi:ve  occupant  

•  0.3  ACH  ven:la:on  was  not  enough  if  5  people  are  there  all  the  :me.      

•  18  cfm/person  =  0.58  ACH,  even  this  was  not  enough  to  keep  CO2  under  1000  ppm.  

•  Doubling  ven:la:on  to  1.2  ACH  fixes  the  CO2,  but  then  it  gets  too  dry  in  winter  even  with  an  ERV.  

•  Those  measures  plus  humidifica:on  to  40%  gave  90%  category  I  thermal  comfort  and  75%  category  I  air  quality,  per  EN  15251.  

3/27/15   65  

Page 66: 2015-03-26 Design for Comfort.pptx

Staten  Island  /  Newark,  small  house  facing  SE.  

3/27/15   66  

Page 67: 2015-03-26 Design for Comfort.pptx

Staten  Island,  outside  temp,  Jan  1-­‐2.  

3/27/15   67  

Page 68: 2015-03-26 Design for Comfort.pptx

Staten  Island,  inside  temp,  Jan  1-­‐2.  

3/27/15   68  

Page 69: 2015-03-26 Design for Comfort.pptx

Staten  Island,  inside  RH,  Jan  1-­‐2.  Humidifier  ran  steadily.  

3/27/15   69  

Page 70: 2015-03-26 Design for Comfort.pptx

Staten  Island,  inside  CO2,  Jan  1-­‐2.  1.2  ACH  ven:la:on  needed  to  keep  CO2  down  with  five  full-­‐:me  occupants  (2  adult  3  child).  

3/27/15   70  

Page 71: 2015-03-26 Design for Comfort.pptx

Staten  Island,  PMV,  Jan  1-­‐2.  Nice  narrow  range.  Q:    But  why  did  PMV  go  down  when  temperature  went  up?  A:  Humidity  effect?  RH  was  being  held  constant  but  PMV  is  driven  by  vapor  pressure.      

3/27/15   71  

Page 72: 2015-03-26 Design for Comfort.pptx

Staten  Island,  environment  quality,  Jan  1-­‐2.  PreUy  good,  90%  Category  I  thermal  comfort  and  75%  Category  I  air  quality,  but  that  humidifica:on  energy  at  high  ven:la:on  rate  drove  the  energy  use  way  up.  

3/27/15   72  

Page 73: 2015-03-26 Design for Comfort.pptx

Conclusions  •  68  F  opera:ve  really  is  the  lower  limit  for  PPD  <  10%.    

Humidity  below  35%  or  so  will  kick  it  over  that.    Probably  should  plan  on  humidifying  to  25%  RH  or  more.  

•  The  trick  of  keeping  the  surface  temperatures  up  so  that  the  air  temp  can  be  lowered  to  68  F  does  work  (takes  back  some  of  the  comfort  improvement  to  save  energy.)  

•  ASHRAE  Comfort  tool  and  WUFI  Passive  (dynamic)  can  help  design  for  comfort,  especially  in  case  of  risky  or  stringent  situa:ons.  

•  We’re  not  taking  full  advantage  of  circula:ng  fans  for  cooling  in  our  planning.  

3/27/15   73  

Page 74: 2015-03-26 Design for Comfort.pptx

Geing  crea:ve  

•  Low-­‐tech  magazine  did  a  good  series  of  ar:cles  recently  on  combining  old  and  modern  comfort  technology.  

 –   “The  Revenge  of  the  Circula:ng  fan,”  Sep  10,  2014.  –  “Restoring  the  old  way  of  warming:  hea:ng  people,  not  places,”  Feb  11,  2015.  

–  “How  to  keep  warm  in  a  cool  house,”  Mar  11,  2015.  –  “Radiant  and  Conduc:ve  hea:ng  systems,”  Mar  11,  2015.  

3/27/15   74  

Page 75: 2015-03-26 Design for Comfort.pptx

Fan  cooling  without  blowing  paper  around  

3/27/15   75  

“Adap:ve  Thermal  Comfort:  Principles  and  Prac:ce,”  Fergus  Nicol,  Michael  Humphreys  &  Susan  Roaf,  2012  

Hybrid  system:  AC  cools  to  84  F,  add  fans.  

Page 76: 2015-03-26 Design for Comfort.pptx

Vintage  hooded  chairs  

3/27/15   76  

Page 77: 2015-03-26 Design for Comfort.pptx

Modern  hooded  chair  

3/27/15   77  

Page 78: 2015-03-26 Design for Comfort.pptx

Electric  Kotatsu  

3/27/15   78  

Page 79: 2015-03-26 Design for Comfort.pptx

This  concludes  The  American  Ins:tute  of  Architects  Con:nuing  Educa:on  Systems  Course  

Passive  House  Northwest   educa:[email protected]  

3/26/15   79