2015 entomology research report...2015. financial support for these experiments was provided by...

64
2015 ENTOMOLOGY RESEARCH REPORT Editor: M. O. Way Co-editor: R. A. Pearson Texas A & M AgriLife Research Center at Beaumont

Upload: others

Post on 03-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

2015

ENTOMOLOGY RESEARCH

REPORT

Editor: M. O. Way Co-editor: R. A. Pearson

Texas A & M AgriLife Research Center at Beaumont

Page 2: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

OFFICE OF M. O. (Mo) Way, Professor of Entomology

Texas A & M AgriLife Research and Extension Center at Beaumont 1509 Aggie Drive

Beaumont, Texas 77713

Tel. 409-752-2741, Extension 2231 Cell. 409-658-2186 Fax. 409-752-5560

Email. [email protected] WWW – http://beaumont.tamu.edu

February 19, 2016 Dear stakeholder, cooperator and/or colleague: This report is a compilation of results of Entomology Project experiments conducted in 2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies), Texas Soybean Board, United Sorghum Board, USDA, and various private agricultural companies. I thank these donors for their generous contributions. I am confident the results contained in this booklet will provide useful pest management information to clientele. I also wish to thank my support staff for an outstanding, productive year in 2015: Rebecca Pearson ................ Research Assistant Suhas Vyavhare ................. Post-Doctoral Scientist Augustine Castro ................ Agricultural Research Technician II Carra Curtice ...................... Lamar University Student Intern and Technician II Caleb Marshall ................... Lamar University Student Intern Katie Ruth .......................... Lamar University Student Intern Braydon Meloncon............. Sam Houston State University Student Intern Case Cammack................... Student Assistant Alissa Carre ........................ Student Assistant Alicyn Schroeder ............... Student Assistant Finally, I thank Jack Vawter and his staff at the David R. Wintermann Rice Research Station at Eagle Lake for excellent work at Eagle Lake. This annual report is also available online at the Beaumont Center website: http://Beaumont.tamu.edu/eLibrary/Reports_default.htm If you have any questions or comments, please contact me. Sincerely, M.O. Way Professor Entomology

Page 3: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

i

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table of Contents1.

Rice Rice Water Weevil (Lissorhoptrus oryzophilus) Bayer Antonio Seed Treatments ..........................................................................................1 Bayer XL753 Seed Treatments ............................................................................................4 Valent Seeding Rate Study ..................................................................................................7 Reduced Rates of Dermacor X-100 on Non-hybrid Rice ..................................................10 Dermacor X-100 vs. Silicon Study ....................................................................................13 Seed Treatment Replant Study ...........................................................................................16 Botanical Insecticides for Rice Water Weevil Control – Dayflower .................................19 Botanical Insecticides for Rice Water Weevil Control – Ducksalad .................................20 Rice Stink Bug (Oebalus pugnax) Evaluation of Rice Stink Bug Treatment Thresholds – Corman Field ..............................21 Evaluation of Rice Stink Bug Treatment Thresholds – G5 Field ......................................22 Insecticide Screening for Rice Stink Bug Control .............................................................23 Fungicides for Rice Stink Bug Peck Study ........................................................................26 Stalk Borers Antonio Seed Treatments for Stalk Borer Control ............................................................28 XL753 Seed Treatments for Stalk Borer Control ..............................................................31 Trapping for Mexican Rice Borer ......................................................................................34 Sheath Blight Foliar Fungicide Evaluation for Control of Sheath Blight*...............................................35 Soybean Soybean Insecticide Screening Study ......................................................................................38 Sugarcane, Energy Cane and Sorghum

Sorghum Seed Treatments .......................................................................................................45 Insecticide Screening for Sugarcane Aphid Control in Grain Sorghum ..................................49 Sorghum Host Plant Resistance Study .....................................................................................53 Sugarcane Alion Herbicide Test ..............................................................................................60

1. All reports are authored by M. O. Way and R. A. Pearson except those with an *.

Page 4: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

1

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Bayer Antonio Seed Treatments Block 3N

Beaumont, TX 2015

← North PLOT PLAN

I II III IV 1 1 6 4 11 2 16 3 2 2 7 3 12 1 17 2 3 4 8 2 13 5 18 4 4 5 9 1 14 3 19 5 5 3 10 5 15 4 20 1

Plot size: 7 rows, 7 inch row spacing, 18 ft long Variety: Antonio (80 lb/A)

Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS Trt no. Treatment

Rate (mL/hkg)

1 Untreated --- 2 Evergol Energya 130.4 3 Evergol Energy + Poncho 600a 130.4 + 125 4 Evergol Energy + Poncho Votivo 2nd gen.a 130.4 + 150 5 Cruiser 5FS + Maxim + Apron XLa 129.1 g ai/hkg + 2.504 g ai/hkg + 7.7 g ai/hkg

a Also contain Pro-ized Green Colorant @ 130.4 mL/hkg

Agronomic and Cultural Information Experimental design: Randomized complete block with 5 treatments and 4 replications Planting: Drill-planted test (Antonio @ 80 lb/A) into League soil (pH 5.5, sand 3.2%, silt

32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on May 8 Plot size = 7 rows, 7 inch row spacing, 18 ft long Emergence on May 15 Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on May 8 Note: Plots were flushed as needed from emergence to permanent flood Permanent flood (PF) on Jun 6 (22 days after emergence) Fertilization: All fertilizer (urea) was distributed by hand. 34 lb N/A on May 8 at planting

Page 5: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Bayer Antonio Seed Treatments

2

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

85 lb N/A on Jun 6 at PF 51 lb N/A on Jun 22 at panicle differentiation Herbicide: RiceBeaux @ 2 qt/A; Permit @ 1 oz/A, and Command 3ME @ 0.8 pt/A applied

with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Jun 1 for early season weed control

Treatments: Seed treatments applied by Bayer Sampling: Rice water weevil (RWW) cores (5 cores per plot, each core 4 inches diameter, 4

inches deep, containing at least one rice plant) were collected on Jun 25 and Jul 2. Core samples were stored in a cold room, later washed through 40 mesh screen buckets and immature RWW counted.

Whiteheads (WHs) counted in 4 middle rows per plot on Aug 4; WHs are a measure of stalk borer activity.

Harvest: Harvested all main crop plots on Aug 24 Size harvested plot = 7 rows, 7 inch row spacing, 18 ft long Data analysis: Count data transformed using

x + 0.5 ; yields converted to 12% moisture; all data analyzed by ANOVA and means separated by LSD

Discussion

RWW populations were high in untreated and Evergol Energy (no insecticide) plots on

both sample dates (Table 1). The economic injury level (EIL) for RWW is about 15 larvae/pupae per 5 cores; thus, populations of RWW were much higher than the EIL in the above plots. All insecticidal seed treatments significantly reduced RWW populations on both sample dates, but control was not as good as expected. One reason is 2015 was a very wet year. About 7.5 inches of rain fell from emergence of rice through soil to application of the flood 22 days later. This means soil in plots remained quite wet during this time. In fact, drain pipes were let down multiple times during this period to help dry plots to allow spraying of herbicides and application of urea to relatively dry ground. These prolonged wet conditions may have affected the efficacy of the insecticidal seed treatments. For instance, some of the insecticide may have washed off the seed causing dilution of the chemical. A second reason is we did not install metal barriers around the plots this year. Perhaps the insecticides on the seed spread among surrounding plots in the absence of barriers.

Whitehead counts were not significantly different among treatments, so the insecticidal seed treatments did not affect stem borer activity (Table 1). Virtually all of the whiteheads were caused by Mexican rice borer larvae. Yields were low throughout the experiment, due in part to the late planting date and due to the fact plots were not seeded with a high yielding hybrid variety (Table 1). Nevertheless, all insecticide seed treatments outyielded the untreated. The seed treatment with Poncho Votivo 2nd generation produced almost 1000 lb/A more grain than the untreated

Page 6: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Bayer Antonio Seed Treatments

3

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 1. Mean data for Bayer Antonio seed treatments. Beaumont, TX. 2015.

Treatment Rate

(mL/hkg) RWWa/5 cores WHsa/4

rows Yield (lb/A) Jun 25 Jul 2

Untreated --- 92.5 a 57.0 a 5.8 5193.6 b

Evergol Energyb 130.4 88.8 a 67.8 a 3.3 5669.8 ab Evergol Energy +

Poncho 600b 130.4 + 125 32.3 b 21.5 b 9.3 6058.8 a

Evergol Energy + Poncho Votivo 2nd gen.b 130.4 + 150 28.5 b 29.5 b 8.3 6145.4 a

Cruiser 5FS + Maxim + Apron XLb

129.1 g ai/hkg + 2.504 g ai/hkg +

7.7 g ai/hkg 39.3 b 29.0 b 6.3 5876.4 ab

NS a RWW = rice water weevil; WH = whitehead bAlso contain Pro-ized Green Colorant @ 130.4 mL/hkg Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.07 for Yield, P = 0.05 for all others, ANOVA and LSD)

Page 7: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

4

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Bayer XL753 Seed Treatments Block 3S

Beaumont, TX 2015

← North PLOT PLAN

I II III IV 1 1 6 4 11 2 16 3 2 2 7 3 12 1 17 2 3 4 8 2 13 5 18 4 4 5 9 1 14 3 19 5 5 3 10 5 15 4 20 1

Plot size: 7 rows, 7 inch row spacing, 18 ft long Variety: XL753 (20 lb/A)

Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS

Trt no. Treatment

Rate (mL/hkg)

1 Untreated --- 2 Evergol Energya 130.4 3 Evergol Energy + Poncho 600a 130.4 + 125 4 Evergol Energy + Poncho Votivo 2nd gen.a 130.4 + 150 5 Cruiser 5FS + Maxim + Apron XLa 129.1 g ai/hkg + 2.504 g ai/hkg + 7.7 g ai/hkg

a Also contain Pro-ized Green Colorant @ 130.4 mL/hkg

Agronomic and Cultural Information Experimental design: Randomized complete block with 5 treatments and 4 replications Planting: Drill-planted test (XL753 @ 20 lb/A) into League soil (pH 5.5, sand 3.2%, silt

32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on May 8 Plot size = 7 rows, 7 inch row spacing, 18 ft long Emergence on May 15 Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on May 8 Note: Plots were flushed as needed from emergence to permanent flood Permanent flood (PF) on Jun 6 (22 days after emergence) Fertilization: All fertilizer (urea) was distributed by hand. 120 lb N/A on Jun 6 at PF

Page 8: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Bayer XL753 Seed Treatments

5

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

60 lb N/A on Jul 23 at late boot/early heading Herbicide: RiceBeaux @ 2 qt/A; Permit @ 1 oz/A, and Command 3ME @ 0.8 pt/A applied

with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Jun 1 for early season weed control

Treatments: Seed treatments applied by Bayer Sampling: Rice water weevil (RWW) cores (5 cores per plot, each core 4 inches diameter, 4

inches deep, containing at least one rice plant) were collected on Jun 26 and Jul 2. Core samples were stored in a cold room, later washed through 40 mesh screen buckets and immature RWW counted.

Whiteheads (WHs) counted in 4 middle rows per plot on Aug 24; WHs are a measure of stalk borer activity.

Harvest: Harvested all main crop plots on Aug 27 Size harvested plot = 7 rows, 7 inch row spacing, 18 ft long Data analysis: Count data transformed using

x + 0.5 ; yields converted to 12% moisture; all data analyzed by ANOVA and means separated by LSD

Discussion

RWW populations were high in untreated and Evergol Energy (no insecticide) plots on

both sample dates (Table 1). The economic injury level (EIL) for RWW is about 15 larvae/pupae per 5 cores; thus, populations of RWW were much higher than the EIL in the above plots. Only the insecticidal seed treatment with Poncho Votivo 2nd gen. significantly reduced RWW populations on the 1st sample date. None of the treatments significantly reduced RWW populations on the 2nd sample date. These results were unexpected. One reason is 2015 was a very wet year. Almost 10 inches of rain fell from planting May 8 to application of the flood June 6. This means soil in plots remained quite wet during this time. In fact, drain pipes were let down multiple times during this period to help dry plots to allow spraying of herbicides and application of urea to relatively dry ground. These prolonged wet conditions may have affected the efficacy of the insecticidal seed treatments. For instance, some of the insecticide may have washed off the seed causing dilution of the chemical. A second reason is we did not install metal barriers around the plots this year. Perhaps the insecticides on the seed spread (causing dilution of the seed treatment) among surrounding plots in the absence of barriers. Also, the low seeding rate (20 lb/A for the hybrid XL753) may have contributed to lack of control because if seed is treated on a cwt basis, then lower seeding rates will result in less toxicant applied on a per unit area (A) basis.

Whitehead counts were not significantly different among treatments, so the insecticidal seed treatments did not affect stem borer activity (Table 1). Virtually all of the whiteheads were caused by Mexican rice borer larvae.

Yields were high throughout the experiment due in large part to the hybrid XL753 (Table 1). However, no significant treatment differences in yield were detected.

Page 9: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Bayer XL753 Seed Treatments

6

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 1. Mean data for Bayer XL753 seed treatments. Beaumont, TX. 2015.

Treatment Rate

(mL/hkg) RWWa/5 cores WHsa/4

rows Yield (lb/A) Jun 25 Jul 2

Untreated --- 80.8 b 73.5 4.5 9986.0

Evergol Energyb 130.4 124.3 a 65.0 1.8 9692.7 Evergol Energy +

Poncho 600b 130.4 + 125 71.5 b 54.0 1.3 9483.9

Evergol Energy + Poncho Votivo 2nd gen.b 130.4 + 150 47.8 c 44.8 1.8 9903.3

Cruiser 5FS + Maxim + Apron XLb

129.1 g ai/hkg + 2.504 g ai/hkg +

7.7 g ai/hkg 72.0 b 56.0 1.5 9157.5

NS NS NS a RWW = rice water weevil; WH = whitehead bAlso contain Pro-ized Green Colorant @ 130.4 mL/hkg Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD)

Page 10: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

7

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Valent Seeding Rate Study Block 5N

Beaumont, TX 2015

PLOT PLAN

← North I II III IV

1 5 8 1 15 6 22 2 2 7 9 6 16 3 23 5 3 2 10 5 17 4 24 1 4 1 11 4 18 2 25 7 5 6 12 3 19 7 26 3 6 4 13 2 20 1 27 6 7 3 14 7 21 5 28 4

Plot size: 7 rows, 7 inch row spacing, 18 ft long, with barriers Variety: Antonio (provided by TRIA)

Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS Treatment

no. Description Seeding Rate Rate

(fl oz/cwt) Timinga

1 Untreated 90 --- --- 2 CruiserMaxx Rice 90 7 ST 3 CruiserMaxx Rice 60 7 ST 4 CruiserMaxx Rice 30 7 ST 5 Belay 2.13EC 90 4.5 fl oz/A 7 – 10 DAF 6 Belay 2.13EC 60 4.5 fl oz/A 7 – 10 DAF 7 Belay 2.13EC 30 4.5 fl oz/A 7 – 10 DAF

a ST = seed treatment, DAF = days after flood

Agronomic and Cultural Information Experimental design: Randomized complete block with 7 treatments and 4 replications Planting: Drill-planted test (Antonio @ 30, 60 and 90 lb/A) into League soil (pH 5.5, sand

3.2%, silt 32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on Jun 5 Plot size = 7 rows, 7 inch row spacing, 18 ft long Emergence on Jun 12

Page 11: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Valent Seeding Rate Study

8

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on Jun 6 Note: Plots were flushed as needed from emergence to permanent flood Permanent flood (PF) on Jul 2 (20 days after emergence) Fertilization: All fertilizer (urea) was distributed by hand. 34 lb N/A on Jun 5 at planting 85 lb N/A on Jul 2 at PF 51 lb N/A on Jul 21 at panicle differentiation Herbicide: RiceBeaux @ 2 qt/A; Permit @ 1 oz/A, and Command 3ME @ 0.8 pt/A applied

with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Jun 26 for early season weed control

Treatments: Seed treatments applied by Entomology Project on Jun 4 Treatments 5-7 applied with a 3-nozzle spray boom (800067 nozzles, 50 mesh

screens, 27 gpa final spray volume) on Jul 13 Sampling: Stand counts (3, 3 ft counts on rows 2, 4 and 6) on Jun 23 Rice water weevil (RWW) cores (5 cores per plot, each core 4 inches diameter, 4

inches deep, containing at least one rice plant) were collected on Jul 23 and Jul 30. Core samples were stored in a cold room, later washed through 40 mesh screen buckets and immature RWW counted.

Whiteheads (WHs) counted in 4 middle rows per plot on Sep 14; WHs are a measure of stalk borer activity.

Harvest: Harvested all main crop plots on Sep 16 Size harvested plot = 7 rows, 7 inch row spacing, 18 ft long Data analysis: Count data transformed using

x + 0.5 ; yields converted to 12% moisture; all data analyzed by ANOVA and means separated by LSD

Discussion

In general, plant stands reflected seeding rates (Table 1). However, CruiserMaxx Rice

applied to rice seed and planted at the highest seeding rate significantly increased plant stand compared to the untreated and the Belay treatment applied post-flood following planting at the same seeding rate of 90 lb/A. At this seeding rate, CruiserMaxx Rice may have stimulated germination, increased seedling vigor or controlled an unknown pest responsible for decreasing plant stand.

On the 1st RWW sampling date, populations were well above the economic injury level in the untreated (the economic injury level is about 15 larvae/pupae per 5 cores). So, this was a good test of the efficacy of the treatments. CruiserMaxx Rice treatments at seeding rates of 60 and 90 lb/A gave excellent control of RWW, but only 79% control compared to the untreated at the lowest seeding rate (30 lb/A). This is why I believe the current label for CruiserMaxx Rice should take into account seeding rate---lower seeding rates should require more CruiserMaxx Rice on a cwt basis. Belay applied 11 DAF provided about the same level of RWW control (75%), regardless of seeding rate.

Page 12: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Valent Seeding Rate Study

9

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

On the 2nd RWW sampling date, populations were again above the economic injury level in the untreated. Best control was achieved with CruiserMaxx Rice at the highest seeding rate and all the Belay treatments. Data suggest the Belay treatments provided a little longer residual activity compared to the seed treatments applied at 60 and 90 lb/A seeding rates. None of the treatments effectively reduced whitehead densities in this experiment which means none of the treatments controlled Mexican rice borer (virtually all dissected whiteheads revealed infestations of this stalk borer species).

Yields were relatively low across treatments due to the late planting date caused by excessive rainfall during the planting season and throughout the season (the Beaumont Center received over 82 inches of rain in 2015). Nevertheless, highest yields were produced by CruiserMaxx Rice at the highest seeding rate and Belay treatments at 60 and 90 lb/A seeding rates. In conclusion, a post-flood application of Belay is a viable option for rice farmers who don’t treat seed for RWW. Also, post-flood applications of Belay are not preventive---the rice farmer can apply Belay after ovipositing weevils enter fields. If adult weevil feeding scars are abundant, the farmer can opt to treat with Belay. Table 1. Mean data for Valent seeding rate study. Beaumont, TX. 2015.

Treatment Seeding

Rate Rate

(fl oz/cwt) Timinga

Stand (plants/ft of row)

RWWb/5 cores WHsb/4

rows Yield (lb/A) Jul 23 Jul 30

Untreated 90 --- --- 9.4 bc 103.5 a 34.0 a 8.0 5758.5 bcd

CruiserMaxx Rice 90 7 ST 12.9 a 4.0 d 3.5 d 8.5 6375.2 a

CruiserMaxx Rice 60 7 ST 8.7 c 5.0 cd 13.3 bc 7.5 5890.3 abc

CruiserMaxx Rice 30 7 ST 5.7 d 22.0 b 13.5 b 8.8 5359.4 cd

Belay 2.13EC 90 4.5 fl oz/A 11 DAF 10.4 b 29.0 b 8.8 bcd 6.5 6025.5 ab

Belay 2.13EC 60 4.5 fl oz/A 11 DAF 8.8 c 16.3 bc 4.3 cd 7.3 6054.5 ab

Belay 2.13EC 30 4.5 fl oz/A 11 DAF 5.1 d 31.5 b 8.3 bcd 6.0 5235.5 d NS a ST = seed treatment, DAF = days after flood b RWW = rice water weevil, WH = whitehead Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD).

Page 13: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

10

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Reduced Rates of Dermacor X-100 on Non-Hybrid Rice Block 5S

Beaumont, TX 2015

PLOT PLAN

← North I II III IV

1 5 9 8 17 2 25 4 2 1 10 4 18 3 26 6 3 2 11 6 19 7 27 5 4 6 12 3 20 1 28 2 5 7 13 5 21 8 29 7 6 4 14 2 22 5 30 3 7 8 15 1 23 4 31 8 8 3 16 7 24 6 32 1

Plot size: 7 rows, 7 inch row spacing, 18 ft long Variety: Antonio (80 lb/A and 50 lb/A)

Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS

Treatment no. Variety Seeding rate

(lb/A) Treatment Rate

(fl oz/cwt)

1 Antonio 80 Untreated --- 2 Antonio 80 Dermacor X-100 1.0 3 Antonio 80 Dermacor X-100 1.5 4 Antonio 80 Dermacor X-100 2.0 5 Antonio 50 Untreated --- 6 Antonio 50 Dermacor X-100 1.5 7 Antonio 50 Dermacor X-100 2.0 8 Antonio 50 Dermacor X-100 2.5

Agronomic and Cultural Information Experimental design: Complete randomized block with 8 treatments and 4 replications

Page 14: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Reduced Rates of Dermacor X-100 on Non-Hybrid Rice

11

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Planting: Drill-planted test (Presidio @ 80 lb/A and CL152 @ 50 lb/A) into League soil (pH 5.5, sand 3.2%, silt 32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on Jun 9

Plot size = 7 rows, 7 inch row spacing, 18 ft long Emergence on Jun 14 Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on Jun 9 Note: Plots were flushed as needed from emergence to permanent flood Permanent flood (PF) on Jul 6 (22 days after emergence) Fertilization: All fertilizer (urea) was distributed by hand. 34 lb N/A on Jun 9 at planting 85 lb N/A on Jul 6 at PF 51 lb N/A on Jul 23 Herbicide: RiceBeaux @ 2 qt/A; Permit @ 1 oz/A, and Command 3ME @ 0.8 pt/A applied

with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Jun 26 for early season weed control

Treatments: Seed treatments applied by the Entomology Project Sampling: Stand counts (3, 3 ft counts on rows 2, 4 and 6) on Jun 23 Rice water weevil (RWW) cores (5 cores per plot, each core 4 inches diameter, 4

inches deep, containing at least one rice plant) were collected on Jul 27 and Aug 3. Core samples were stored in a cold room, later washed through 40 mesh screen buckets and immature RWW counted.

Whiteheads (WHs) counted in 4 middle rows per plot on Sep 14; WHs are a measure of stalk borer activity.

Harvest: Harvested all plots on Sep 17 Size harvested plot = 7 rows, 7 inch row spacing, 18 ft long Data analysis: Count data transformed using

x + 0.5 ; yields converted to 12% moisture; all data analyzed by ANOVA and means separated by LSD

Discussion

Rice plant stands reflected seeding rates (Table 1). The 80 lb/A seeding rate averaged

13.3 plants/ft of row across treatments; the 50 lb/A seeding rate averaged 8.4 plants/ft of row across treatments. RWW populations were high in untreated plots on both sampling dates. For the 80 lb/A seeding rate, the lowest rate of Dermacor X-100 provided similar control to the highest rate (no significant differences). For the 50 lb/A seeding rate, control was again similar across rates of Dermacor X-100.

Virtually all dissected WHs revealed infestations of Mexican rice borer. At the 80 lb/A seeding rate, Dermacor X-100 at 1.5 and 2.0 fl oz/cwt provided excellent control of stalk borers (as evidenced by WH densities). At the 50 lb/A seeding rate, Dermacor X-100 at 2.0 and 2.5 fl oz/cwt provided better control of stalk borers than the lowest rate (1.5 fl oz/cwt).

Page 15: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Reduced Rates of Dermacor X-100 on Non-Hybrid Rice

12

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Yields were relatively low due to the late planting date which was unavoidable due to heavy and prolonged rainfall during the planting season. However, even the lowest rate of Dermacor X-100 for the 80 and 50 lb/A seeding rates outyielded the respective untreateds by about 760 and 994 lb/A, respectively.

So, based on these data, reducing the rate of Dermacor X-100 to 1.5 fl oz/cwt for the 80 lb/A seeding rate and to 2.0 fl oz/cwt for the 50 lb/A seeding rate may be a viable option for main crop rice. Because of the late planting date, we were unable to ratoon crop the experiment. Thus, we cannot recommend these combinations of seed treatment rates and seeding rates for main and ratoon crop rice production. Table 1. Mean data for reduced rates of Dermacor X-100 on non-hybrid rice. Beaumont, TX. 2015.

Treatment

Seeding rate

(lb/A) Rate

(fl oz/cwt)

Stand (plants/ft of row)

RWWa/5 cores WHsa/4 rows

Yield (lb/A) Jul 27 Aug 3

Untreated 80 --- 13.0 ab 100.3 a 54.3 a 7.5 a 5057.2 b

Dermacor X-100 80 1.0 14.2 a 12.5 bc 11.0 bc 3.0 abc 5815.7 a

Dermacor X-100 80 1.5 11.9 abc 7.3 c 6.0 c 0.0 d 5527.5 a

Dermacor X-100 80 2.0 14.2 a 7.3 c 4.8 c 0.8 cd 5744.7 a

Untreated 50 --- 7.8 cd 89.8 a 65.0 a 6.3 a 4502.1 c

Dermacor X-100 50 1.5 7.5 d 19.8 b 14.8 b 3.5 ab 5496.1 ab

Dermacor X-100 50 2.0 8.5 cd 10.8 bc 9.5 bc 1.5 bcd 5507.6 ab

Dermacor X-100 50 2.5 9.6 bcd 15.8 bc 6.0 c 1.3 bcd 5962.5 a a RWW = rice water weevil, WH = whitehead Means in a column followed by the same letter are not significantly different (P = 0.05, ANOVA and LSD).

Page 16: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

13

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Dermacor X-100 – Silicon Study (Cooperating with Mike Stout’s Project) Block 6N

Beaumont, TX 2015

PLOT PLAN

← North I II III IV

1 5 9 6 17 7 25 4 2 7 10 3 18 2 26 6 3 1 11 4 19 5 27 8 4 8 12 5 20 6 28 3 5 4 13 2 21 1 29 7 6 2 14 8 22 3 30 5 7 6 15 7 23 4 31 1 8 3 16 1 24 8 32 2

Plot size: 7 rows, 7 inch row spacing, 18 ft long Variety: XL753 (20 lb/A) and Antonio (80 lb/A) Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS

Treatment no. Variety Descriptiona Rate

(fl oz/cwt) 1 XL753 Dermacor X-100 + Silicon 5 + 4000 kg/ha 2 XL753 Dermacor X-100 5 3 XL753 Silicon 4000 kg/ha 4 XL753 Untreated --- 5 Antonio Dermacor X-100 + Silicon 1.75 + 4000 kg/ha 6 Antonio Dermacor X-100 1.75 7 Antonio Silicon 4000 kg/ha 8 Antonio Untreated ---

a Dermacor X-100 applied as seed treatment; Silicon incorporated into soil after planting.

Agronomic and Cultural Information Experimental design: Randomized complete block with 8 treatments and 4 replications

Page 17: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Dermacor X-100 – Silicon Study

14

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Planting: Drill-planted test (Antonio @ 80 lb/A and XL753 @ 20 lb/A) into League soil (pH 5.5, sand 3.2%, silt 32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on Jun 10

Plot size = 7 rows, 7 inch row spacing, 18 ft long Emergence on Jun 18 Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on Jun 10 Note: Plots were flushed as needed from emergence to permanent flood Permanent flood (PF) on Jul 10 (22 days after emergence) Fertilization: All fertilizer (urea) was distributed by hand. Antonio: 34.0 lb N/A (20% of 170) on Jun 10, incorporated into soil after planting 85.0 lb N/A (50% of 170) on Jul 10 at PF 51.0 lb N/A (30% of 170) on Jul 31 at panicle differentiation (PD) XL723: 120 lb N/A on Jul 10 at PF 60 lb N/A on Aug 25 at late boot/early heading Herbicide: RiceBeaux @ 2 qt/A; Permit @ 1 oz/A, and Command 3ME @ 0.8 pt/A applied

with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Jul 2 for early season weed control

Treatments: Dermacor X-100 seed treatments (1, 2, 5 and 6) applied by the Entomology

Project on Jun 8 Silicon applied and incorporated by Entomology Project after planting on Jun 10 Sampling: Stand counts (3, 3 ft counts on rows 2, 4 and 6) on Jul 6 Rice water weevil (RWW) cores (5 cores per plot, each core 4 inches diameter, 4

inches deep, containing at least one rice plant) were collected on Jul 31 and Aug 7. Core samples were stored in a cold room, later washed through 40 mesh screen buckets and immature RWW counted.

Whiteheads (WHs) counted in 4 rows per plot on Sep 14; WHs are a measure of stalk borer activity.

Harvest: Harvested all plots on Oct 6 Size harvested plot = 7 rows, 7 inch row spacing, 18 ft long

Discussion

The experiment was planted very late (June 10) due to abnormally and persistent wet conditions during the spring and summer (about 82 inches of rain were recorded at the Beaumont Center in 2015). We almost abandoned the experiment because of poor stands resulting from blackbird pressure and persistent water-logged soil. However, we decided to continue the experiment even though plant stands were less than ideal. Rice plant stands were low and not significantly different among treatments (Table 1).

Page 18: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Dermacor X-100 – Silicon Study

15

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

On the 1st sample date, untreated plots of both varieties harbored populations of RWW above the economic injury level (about 15 immatures per 5 cores) which suggests data from this experiment are useful (Table 1). Dermacor X-100 alone provided good control of RWW, regardless of variety. The addition of silicon did not increase or decrease control. Silicon alone did not control RWW, regardless of variety. As expected, populations of RWW were lower on the 2nd compared to the 1st sample date. Results from both sample dates are similar.

WH densities were significantly lower in treatments with Dermacor X-100 (Table 1). Virtually all dissected WHs were infested with Mexican rice borer. As expected, WH densities were higher in untreated Antonio than untreated hybrid plots. The addition of silicon to Dermacor X-100 treatments did not affect the efficacy of the seed treatments.

For hybrid yields, the addition of silicon to the seed treatment did not significantly improve yield (Table 1). However, silicon alone numerically increased yield over the untreated by more than 100 lb/A. For Antonio, the addition of silicon to the seed treatment significantly increased yield over the seed treatment alone by more than 600 lb/A. Silicon alone also significantly increased yield over the untreated by about 520 lb/A.

In conclusion, data suggest silicon alone or in combination with the seed treatment Dermacor X-100 has no impact on RWW or stem borer control. However, silicon alone may increase yield via another mechanism than insect control. This mechanism may be related to nutrition or nutrient uptake. Table 1. Mean data for Dermacor X-100 vs. silicon study. Beaumont, TX. 2015.

Variety Treatment

Rate (fl

oz/cwt)

Stand (plants/ft of row)

No. RWWa/5 cores WHsa/4 rows

Yield (lb/A) Jul 31 Aug 7

XL753 Dermacor X-100 + Silicon

5 + 4000 kg/ha 3.0 5.0 c 6.8 cd 0.5 b 8757.3 a

XL753 Dermacor X-100 5 2.3 6.8 c 6.0 cd 0.5 b 8816.6 a

XL753 Silicon 4000 kg/ha 2.3 33.3 ab 11.8 ab 2.8 b 8098.9 b

XL753 Untreated --- 2.4 28.5 b 10.8 bc 1.8 b 7994.7 b

Antonio Dermacor X-100 + Silicon

1.75 + 4000 kg/ha 3.6 0.3 c 0.5 e 0.8 b 6339.2 c

Antonio Dermacor X-100 1.75 3.1 3.0 c 2.8 de 0.8 b 5714.1 d

Antonio Silicon 4000 kg/ha 3.6 57.5 a 18.5 a 7.8 a 5270.9 d

Antonio Untreated --- 3.4 40.0 ab 18.0 a 10.5 a 4749.0 e

NS a RWW = rice water weevil, WH = whitehead Means in a column followed by the same letter are not significantly (NS) different (P = 0.05, ANOVA and LSD).

Page 19: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

16

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Seed Treatment Replant Study Block 2N

Beaumont, TX 2015

⇐ North PLOT PLAN

I II III IV 1 3 8 2 15 1 22 5 2 6 9 5 16 7 23 3 3 4 10 1 17 3 24 7 4 2 11 7 18 5 25 4 5 1 12 4 19 2 26 6 6 5 13 3 20 6 27 1 7 7 14 6 21 4 28 2

Plot size: 7 rows, 7 inch row spacing, 18 ft long Variety: Presidio (seed provided by TRIA)

Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS

Treatment no. Description Rate

(fl oz/cwt) Timing

1st planting 2nd planting 1 Untreated --- --- --- 2 CrusierMaxx Rice 7 Ta Ua

3 CruiserMaxx Rice 7 T T 4 Dermacor X-100 1.75 T U 5 Dermacor X-100 1.75 T T 6 NipsIt INSIDE 1.92 T U 7 NipsIt INSIDE 1.92 T T

a T = treated; U = untreated

Agronomic and Cultural Information Experimental design: Randomized complete block with 7 treatments and 4 replications Planting: Drill-planted test (Presidio @ 80 lb/A) into League soil (pH 5.5, sand 3.2%, silt

32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on Apr 3 Plot size = 7 rows, 7 inch row spacing Emergence on Apr 17 (1st planting) Drill-planted 2nd planting on May 4

Page 20: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Seed Treatment Replant Study

17

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Emergence on May 11 (2nd planting) Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on Apr 7 (1st planting)

and May 5 (2nd planting) Note: Plots were flushed as needed from emergence to permanent flood Permanent flood (PF) on Jun 4 (24 days after emergence) Fertilization: All fertilizer (urea) was distributed by hand. 34 lb N/A on Apr 7 at 1st planting 34 lb N/A on May 5 at 2nd planting 85 lb N/A on Jun 4 at PF 51 lb N/A on Jun 22 at panicle differentiation Herbicide: RiceBeaux @ 2 qt/A; Permit @ 1 oz/A, and Command 3ME @ 0.8 pt/A applied

with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Jun 2 for early season weed control

Treatments: Seed treatments applied by the Entomology Project All plots sprayed with glyphosate on Apr 24 to kill emerged rice from 1st

planting Sampling: Rice water weevil (RWW) cores (5 cores per plot, each core 4 inches diameter, 4

inches deep, containing at least one rice plant) were collected on Jun 26 and Jul 2. Core samples were stored in a cold room, later washed through 40 mesh screen buckets and immature RWW counted.

Whiteheads (WHs) counted in 4 middle rows per plot on Aug 4; WHs are a measure of stalk borer activity.

Harvest: Harvested all plots on Aug 18 Size harvested plot = 7 rows, 7 inch row spacing, 18 ft long Data analysis: Count data transformed using

x + 0.5 ; yields converted to 12% moisture; all data analyzed by ANOVA and means separated by LSD

Discussion

Some rice farmers replant due to blackbird damage, seedling disease, herbicide

phytotoxicity, chinch bug damage, poor land preparation and/or inability to drain paddies after heavy rains occur soon after planting. Cool temperatures frequently associated with early planting can hinder seedling emergence and stand establishment. Also, low seeding rates, which are becoming more common, increase the chances of replanting, given less than ideal environmental and biotic conditions. Most rice farmers apply an insecticide to their seed. So, an obvious question to answer is: if a farmer has to replant, does he/she have to apply an insecticide to the replant seed if the 1st planted seed was treated with an insecticide? This is the question this experiment addresses.

The 1st planting on Apr 3 was flushed to stimulate germination and seedling growth. Following this initial flush, 8.4 inches of precipitation occurred between planting and emergence

Page 21: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Seed Treatment Replant Study

18

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

on Apr 17. Thus, soil stayed water-logged (we could not drain and dry the plots adequately) during this period. In addition, blackbird damage was severe. Thus, 1st planting stands were poor. We did not record plant stands which we should have done, but will do in future similar experiments. In short, the extreme environment (heavy rain and blackbird damage) provided a good test of the persistence and efficacy of the insecticidal seed treatments.

In general, populations of RWW were low throughout the experiment (Table 1). The economic injury level for RWW is about 15 larvae/pupae per 5 cores. Untreated plots only averaged 24 and 30 larvae/pupae per 5 cores on the 1st and 2nd sampling dates, respectively. Data show Dermacor X-100 applied only to 1st planted seed reduced RWW populations 58 % on both sample dates for replanted rice. Similar CruiserMaxx Rice and NipsIt INSIDE treatments did not perform as well as Dermacor X-100.

WHs were low throughout the experiment, so these data are not very useful (Table 1). Yields were very low across treatments due in part to the late replanting date (May 4)

(Table 1). There were no significant differences in yield among treatments, probably due to relatively low RWW populations among treatments. However, yields were numerically higher in treatments where both 1st and replant seed were treated with an insecticide compared to treatments where only 1st plant seed was treated with an insecticide.

Data from this experiment suggest both 1st and replant seed should be treated with an insecticide for control of RWW. However, this experiment was exposed to abnormally high rainfall and blackbird damage during early growth stages of rice which may have reduced efficacy of insecticidal seed treatments. Table 1. Mean data for seed treatment replant study. Beaumont, TX. 2015.

Treatment Rate

(fl oz/cwt) Timinga RWWb/5 cores WHsb/4

rows Yield (lb/A) 1st planting 2nd planting Jun 26 Jul 2

Untreated --- --- --- 24.0 a 30.3 a 1.5 5002.6

CrusierMaxx Rice 7 T U 18.5 ab 24.0 ab 1.3 4760.2

CruiserMaxx Rice 7 T T 3.0 de 7.0 c 0.5 5167.1

Dermacor X-100 1.75 T U 10.0 c 12.8 bc 0 4868.3

Dermacor X-100 1.75 T T 0.5 e 0 d 0.3 5048.1

NipsIt INSIDE 1.92 T U 15.5 bc 19.5 ab 0.5 4758.7

NipsIt INSIDE 1.92 T T 4.0 d 6.8 c 1.5 4951.3 NS NS

a T = treated; U = untreated b RWW = rice water weevil; WH = whitehead Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05; ANOVA and LSD)

Page 22: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

19

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Botanical Insecticides for Rice Water Weevil Control – Dayflower Greenhouse

Beaumont, TX 2015

Agronomic and Cultural Information

Experimental design: Randomized complete block with 2 treatments and 8 replications Plot size = 6” pots Treatments: Blended 100 dayflower leaves with 300 ml water and 3 ml AgriDex. Applied

solution to plants in 8 pots and infested all pots with 4 RWW/pot on Jun 19. All plants were covered with plastic cages.

Sampling: Counted number of RWW feeding scars and number of leaves/plant on Jun 19

(pre-treatment) Counted number of RWW feeding scars and number of leaves/plant on Jun 23 Washed pot contents through 40 mesh screen buckets and immature RWW

counted on Jul 17

Discussion

This experiment was conducted in the greenhouse at the Beaumont Center. Significantly more RWW adult feeding scars were found on untreated than dayflower extract-treated plants (Table 1). In addition, the dayflower extract did not appear to cause any phytotoxicity to rice. RWW immature populations were very low in both treatments, so these data are not meaningful.

We will expand this study next year---perhaps apply the dayflower extract at time of flooding to rice in the field---in a replicated small plot test. Reduced adult RWW feeding scar density could mean less oviposition and lower immature RWW populations. Table 1. Mean data for dayflower for rice water weevil control. Beaumont, TX. 2015.

Treatment No. RWW

feeding scars/pot No. leaves/plant No. RWW

feeding scars/leaf No. immature

RWW/pot Dayflower 9.7 b 4.5 b 2.1 b 1.4 Untreated 21.0 a 5.1 a 4.1 a 0.8 NS Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD)

Page 23: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

20

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Botanical Insecticides for Rice Water Weevil Control – Ducksalad Greenhouse

Beaumont, TX 2015

Agronomic and Cultural Information

Experimental design: Two tests each consisting of a randomized complete block with 2

treatments and 8 replications Plot size = 6” pots Treatments: Blended 100 ducksalad leaves with 300 ml water and 3 ml AgriDex. Applied

solution to plants in 8 pots and infested all pots with 4 RWW/pot on Jun 11 for Test I and Jul 17 for Test II. All plants were covered with plastic cages after infestation.

Sampling: Counted number of pre-treatment RWW feeding scars and number of

leaves/plant on Jun 11for Test I and Jul 17 for Test II Counted number of RWW feeding scars and number of leaves/plant on Jun 16

for Test I and Jul 20 for Test II

Discussion

These experiments were conducted in the greenhouse at the Beaumont Center. Data show the ducksalad extract had no effect on adult RWW feeding scar densities (Tables 1 and 2). Table 1. Mean data for ducksalad for rice water weevil control. Test I. Beaumont, TX. 2015.

Treatment No. RWW feeding

scars/plant No. leaves/plant No. RWW feeding

scars/leaf Ducksalad 18.2 3.6 5.0 Untreated 25.1 3.8 6.6 Means in a column are not significantly different (P = 0.05, ANOVA and LSD) Table 2. Mean data for ducksalad for rice water weevil control. Test II. Beaumont, TX. 2015.

Treatment No. RWW feeding

scars/plant No. leaves/plant No. RWW feeding

scars/leaf Ducksalad 22.7 4.8 5.1 Untreated 20.4 4.9 4.2 Means in a column are not significantly different (P = 0.05, ANOVA and LSD)

Page 24: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

21

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Rice Stink Bug Study – Corman Field 2015

Agronomic and Cultural Information

Treatments: Tenchu 20 SG applied Sampling: Removed 300 panicles in 3 different areas of treated and untreated rice on Aug

10; weighed and hulled samples and inspected for peck. Data analysis: Count data transformed using

x + 0.5 ; percent data transformed with arcsine; all data analyzed by ANOVA and means separated by LSD

Discussion

We cooperated with Crop Consultant Glenn Crane on commercial rice fields near Lissie,

TX. Weight of panicles, no. filled grains, no. partially filled grains and no. unfilled grains were not significantly different in protected vs protected plots (Table 1). Peck data also were not significantly different between sprayed and unsprayed plots (Table 2). Crane took rice stink bug sweep samples, but we have not yet incorporated these data into the report. Table 1. Mean panicle data for rice stink bug study. Corman field. 2015.

Treatment No. of

panicles

Wt. of panicles

(g) No. filled

grains No. partially filled grains

No. unfilled grains

Treated 299.7 899.6 857.8 91.6 50.7

Untreated 295.3 896.4 749.3 111.5 139.1

Means in a column are not significantly different (P = 0.05, ANOVA and LSD). Table 2. Mean peck data for brown rice for rice stink bug study. Corman field. 2015.

Treatment

Wt. whole grains without

peck (g)

Wt. whole grains with

peck (g)

Wt. brokens without peck

(g)

Wt. brokens with peck

(g) % peck Treated 61.4 0.1 7.6 0.2 0.4

Untreated 60.9 0.2 7.0 0.6 1.2 Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 25: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

22

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Rice Stink Bug Study – G5 Field 2015

Agronomic and Cultural Information

Treatments: Tenchu 20 SG applied Sampling: Removed 300 panicles in 3 different areas of treated and untreated rice on Aug

10; weighed and hulled samples and inspected for peck. Data analysis: Count data transformed using

x + 0.5 ; percent data transformed with arcsine; all data analyzed by ANOVA and means separated by LSD

Discussion

We cooperated with Crop Consultant Glenn Crane on commercial rice fields near Lissie,

TX. Weight of panicles, no. filled grains, no. partially filled grains and no. unfilled grains were not significantly different in protected vs protected plots (Table 1). Peck data also were not significantly different between sprayed and unsprayed plots (Table 2). Crane took rice stink bug sweep samples, but we have not yet incorporated these data into the report. Table 1. Mean panicle data for rice stink bug study. G5 field. 2015.

Treatment No. of

panicles

Wt. of panicles

(g) No. filled

grains No. partially filled grains

No. unfilled grains

Treated 302.7 1243 755.6 69.8 174.6

Untreated 304.3 1248 733.7 69.9 196.4

Means in a column are not significantly different (P = 0.05, ANOVA and LSD). Table 2. Mean peck data for brown rice for rice stink bug study. G5 field. 2015.

Treatment

Wt. whole grains without

peck (g)

Wt. whole grains with

peck (g)

Wt. brokens without peck

(g)

Wt. brokens with peck

(g) % peck Treated 60.5 0.1 7.5 0.1 0.3

Untreated 57.2 0.2 9.3 0.4 0.8 Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 26: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

23

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Rice Stink Bug Insecticide Screening Study Beaumont, TX

2015

⇑ North PLOT PLAN I IV

1 1 (white) 13 1 (white) 2 2 (red) 14 5 (yellow) 3 3 (blue) 15 3 (blue) 4 4 (light green) 16 2 (red) 5 5 (yellow) 17 6 (purple) 6 6 (purple) 18 4 (light green)

II III 7 2 (red) 19 3 (blue) 8 3 (blue) 20 2 (red) 9 4 (light green) 21 4 (light green) 10 5 (yellow) 22 6 (purple) 11 6 (purple) 23 5 (yellow) 12 1 (white) 24 1 (white)

Plot size: 4 rows, 5 ft. row spacing, 40 ft long Variety: Jasmine 85 (ratoon)

Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS Trt no. Treatment Flag color

Rate (fl oz/A)

1 Untreated White --- 2 Endigo ZCX Red 5 3 Endigo ZCX Blue 6 4 Karate Z Light green 2.56 5 Assail 30SG + Karate Z Yellow 5.4 oz/A + 2.5 6 Tenchu 20SG Purple 9

Agronomic and Cultural Information

Experimental design: Randomized complete block with 6 treatments and 4 replications Plot size = 5 ft x 50 ft; conducted in a TRIA ratoon field of Jasmine 85

Page 27: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Rice Stink Bug Insecticide Screening Study

24

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Treatments: Applied treatments 2 - 6 on Oct 1 with a 3-nozzle spray boom (Teejet 11004VS tips, 50 mesh screens, 28 gpa final spray volume) to ratoon rice (Jasmine 85) in heading/dough

Sampling: 10 sweeps per plot on Oct 5, Oct 9, Oct 14 and Oct 21

Discussion

The experiment was conducted on a TRIA ratoon field of Jasmine 85. The EP evaluated

the novel insecticides Endigo ZCX and Assail 30SG. Unfortunately, RSB populations were low from the beginning to the end of the experiment (Tables 1 and 2). Thus, no useable data were gained from this experiment. Because of the extremely low populations of RSB, we did not gather panicles for peck and yield information. Table 1. Mean insect data from 10 sweeps on Oct 5 and Oct 9. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) 4 DATa 8 DAT

RSBAb GHb RSBA RSBNb GH Untreated --- 0.3 0.3 0.8 0.8 0.0

Endigo ZCX 5 0.0 0.5 0.0 0.5 0.0

Endigo ZCX 6 0.0 0.0 0.0 0.0 0.0

Karate Z 1.92 0.3 0.0 0.3 0.5 0.3

Assail 30SG + Karate Z 2.56 0.0 0.0 0.0 0.3 0.5

Tenchu 20SG 9 oz prod/A 0.3 0.0 0.0 0.5 0.3 a DAT = days after treatment b RSBA = rice stink bug adults; GH = grasshoppers; RSBN = rice stink bug nymphs Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 28: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Rice Stink Bug Insecticide Screening Study

25

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 2. Mean insect data from 10 sweeps on Oct 14 and Oct 21. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) 13 DATa 20 DAT

RSBA RSBN GH RSBA GH Untreated --- 0.8 0.8 a 0.3 0.8 a 0.3 ab

Endigo ZCX 5 0.3 0.0 b 0.5 0.0 b 0.0 b

Endigo ZCX 6 0.0 0.0 b 0.3 0.0 b 0.0 b

Karate Z 1.92 0.3 0.0 b 0.5 0.0 b 0.3 ab

Assail 30SG + Karate Z 2.56 0.3 0.0 b 0.3 0.0 b 0.0 b

Tenchu 20SG 9 oz prod/A 0.0 0.0 b 0.0 0.0 b 0.8 a NS NS

a DAT = days after treatment b RSBA = rice stink bug adults; RSBN = rice stink bug nymphs; GH = grasshoppers Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.07 for RSBN 13 DAT and RSBA 20 DAT, and P = 0.05 for all others, ANOVA and LSD).

Page 29: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

26

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Fungicides and Rice Stink Bug Peck Block 9N

Beaumont, TX 2015

TREATMENT DESCRIPTIONS, RATES AND TIMINGS

Treatment # Flag color Treatment Rate

(fl oz/A) 1 Light green Untreated --- 2 Blue Tilt 10 3 Red Quadris 15.5

Agronomic and Cultural Information

Experimental design: Complete randomized block with 3 treatments and 4 replications Planting: Drill-planted test (Antonio @ 80 lb/A) into League soil (pH 5.5, sand 3.2%, silt

32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on Jul 20 Plot size = 4 ft x 100 ft Emergence on Jul 26 Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on Jul 20 Note: Plots were flushed as needed from emergence to permanent flood Permanent flood (PF) on Aug 26 (31 days after emergence) Fertilization: All fertilizer (urea) was distributed by hand. 34 lb N/A on Jul 20 at planting 85 lb N/A on Aug 26 at PF 51 lb N/A on Sep 25 Herbicide: RiceBeaux @ 2 qt/A; Permit @ 1 oz/A, and Command 3ME @ 0.8 pt/A applied

with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Jul 20 for early season weed control

Treatments: Treatments 2 and 3 applied with a 3-nozzle spray boom (800067 nozzles, 50

mesh screens, 19.2 gpa final spray volume) on Oct 14 Sampling: Cages set out (1 cage/treatment/replication) and infested with 8 adult RSB each

on Oct 14; rice heading – milk Cages removed on Oct 28 Panicles removed on Nov 13 Data analysis: Count data transformed using

x + 0.5 ; yields converted to 12% moisture; all data analyzed by ANOVA and means separated by LSD

Page 30: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Fungicides and Rice Stink Bug Peck

27

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Discussion

Glenn Crane, Crop Consultant, suggested we conduct an experiment to see if typical foliar fungicide treatments applied at panicle differentiation to heading may decrease peck caused by the rice stink bug (RSB). So, in the fall, we set up a preliminary experiment to answer this query.

The experiment was planted very late---we were not very interested in yield data; mainly peck data in fungicide-treated vs untreated plots.

Treatments were applied, then after treatment sprays dried, cages made of wire mesh screen (small enough to prevent adult RSB movement in or out of cages) were placed over rice plants in the heading stage. Cages were in the shape of cylinders 44 inches tall and 15 inches in diameter. Eight adult RSB were placed in each cage; cages were removed 14 days later.

Rice within cages was hand-harvested and threshed. Grain was hulled and brown rice was inspected for peck.

Although no. of grains with peck was not significantly different among treatments, data suggest peck may have been reduced when rice was sprayed with Tilt or Quadris (Table 1). The possibility exists that the fungicides affected RSB feeding behavior or may have caused RSB mortality. However, another possible explanation is the fungicides decreased populations of common fungi on the grains. These fungi may be associated with peck.

Results are very preliminary, but we plan to expand this research in 2016---more replications, earlier planting date, more treatments, etc. Table 1. Mean data for fungicide and rice stink bug peck study. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) Wt. of 100 grains No. grains with peck Untreated --- 1.9 1.6

Tilt 10 1.8 1.0 Quadris 15.5 1.8 0.7

Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 31: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

28

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

RO

AD

Antonio Seed Treatments Eagle Lake, TX

2015

PLOT PLAN

I II III IV

Ant

onio

1 2 5 4 9 1 13 3 2 3 6 1 10 3 14 2 3 4 7 2 11 4 15 1 4 1 8 3 12 2 16 4

Plot size: 9 rows, 7.5 in. row spacing, 16 ft long Seed source: Antonio (TRIA) seeded at 80 lb/A Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTION, RATE AND TIMING

Trt no. Description Rate

(fl oz/cwt) 1 Untreated --- 2 CruiserMaxx Rice + Karate Za 7 + 0.03 lb ai/A 3 Dermacor X-100 1.75 4 NipsIt INSIDE + Karate Za 1.92 + 0.03 lb ai/A

a Applied at late boot/heading

Agronomic and Cultural Information Experimental design: Randomized complete block with 4 treatments and 4 replications Planting: Drill-planted test (Antonio @ 80 lb/A) into Nada soil on Apr 2 Plot size = 9 rows, 7.5 inch row spacing, 16 ft long Emergence on Apr 10 Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on Apr 2 Note: Plots were flushed as needed from emergence to permanent flood Permanent flood (PF) on May 22 on main crop (31 days after emergence) Ratoon crop PF on Aug 7 Fertilization: 0-45-45 (lbs N-P-K/A) on Apr 2 preplant 45-0-0 (lbs N-P-K/A) on Apr 2 preplant 80 lb N/A (urea) on May 21 before permanent flood 60 lb N/A (ammonium sulfate) on Jun 2 at panicle initiation/differentiation

Page 32: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Antonio Seed Treatments

29

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

100 lb N/A on Aug 6 for ratoon crop Herbicide: RiceBeaux @ 2 lb ai/A and Command 3ME @ 0.3 lb ai/A applied on Apr 13 Permit @ 0.05 lb ai/A and Propanil @ 2 lb/A applied on May 11 Treatments: Treatments 2 and 4 (Karate Z @ 0.03 lb ai/A) applied on Jun 30 (late

boot/heading) Sampling: Rice water weevil (RWW) cores (5 cores per plot, each core 4 inches diameter, 4

inches deep, containing at least one rice plant) were collected on Jun 15 (24 days after PF) and Jun 22. Core samples were stored in a cold room, later washed through 40 mesh screen buckets and immature RWW counted.

Panicle counts (3, 1 ft counts/plot) on Jul 16 Whitehead (WH) counts (4 rows) on Jul 16 (main) and Oct 1 (ratoon); WHs are

a measure of stalk borer damage Harvest: Harvested main crop plots on Aug 4 Size harvested main crop plot = 7 rows, 7.5 inch row spacing, 16 ft long Harvested ratoon crop plots on Oct 21 Size harvested ratoon crop plot = 4 rows, 7.5 inch row spacing, 16 ft long Data analysis: RWW and WH counts transformed using

x + 0.5 ; yields converted to 12% moisture; all data analyzed by ANOVA and means separated by LSD.

Discussion

Number of panicles per foot of row was not significantly different among treatments;

thus, treatments did not affect panicle production (Table 1). Populations of RWW were very low on both sampling dates, so these data are not very meaningful. WH densities were low on the main crop, so, again these data are not very meaningful. However, on the ratoon crop, WH densities were high in the untreated and lowest in the Dermacor X-100 treatment. Data suggest control of stalk borers (virtually all stalk borers were Mexican rice borers as detected by dissecting infested stalks) on the ratoon crop was achieved by the Dermacor X-100 seed treatment. Karate Z applied once on the main crop did not provide control of stalk borers on the ratoon crop. Probably due to the low densities of RWW, we did not detect any differences in yield among the treatments for both main and ratoon crops. However, highest numerical yields for both main and ratoon crops were produced by the Dermacor X-100 treatment.

Page 33: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Antonio Seed Treatments

30

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 1. Mean insect and panicle count data for Antonio seed treatments. Eagle Lake, TX. 2015.

Treatment Rate

(fl oz/cwt) No. RWWa/5 cores Panicles/ft

of row No. WHsa/4 rows

Jun 15 Jun 22 Main Ratoon Untreated --- 3.8 a 0.8 82.0 6.3 26.3 a

CruiserMaxx Rice + Karate Zb

7 + 0.03 lb ai/A 2.3 ab 1.5 81.5 1.5 16.0 ab

Dermacor X-100 1.75 1.0 bc 2.0 80.5 2.3 7.5 b NipsIt INSIDE +

Karate Zb 1.92 +

0.03 lb ai/A 0.5 c 1.8 91.5 3.3 16.3 ab

NS NS NS a RWW = rice water weevil; WH = whitehead b Applied at late boot/heading to main crop Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD). Table 2. Mean yield data for Antonio seed treatments. Eagle Lake, TX. 2015.

Treatment Rate

(fl oz/cwt) Yield (lb/A)

Main Ratoon Total Untreated --- 7211.6 3662.2 10874

CruiserMaxx Rice + Karate Za 7 + 0.03 lb ai/A 7574.5 3256.9 10831

Dermacor X-100 1.75 7432.8 3929.9 11363

NipsIt INSIDE + Karate Za 1.92 + 0.03 lb ai/A 7550.8 3459.8 11011 a Applied at late boot/heading to main crop Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 34: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

31

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

RO

AD

XL753 Seed Treatments Eagle Lake, TX

2015

PLOT PLAN

I II III IV

XL7

53

1 2 5 4 9 1 13 3 2 3 6 1 10 3 14 2 3 4 7 2 11 4 15 1 4 1 8 3 12 2 16 4

Plot size: 9 rows, 7.5 in. row spacing, 16 ft long, with barriers Seed source: XL753 (RiceTec) seeded at 25 lb/A Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTION, RATE AND TIMING

Trt no. Description Rate

(fl oz/cwt) 1 Untreated --- 2 CruiserMaxx Rice + Karate Za 7 + 0.03 lb ai/A 3 Dermacor X-100 5.0 4 NipsIt INSIDE + Karate Za 1.92 + 0.03 lb ai/A

a Applied at late boot/heading

Agronomic and Cultural Information Experimental design: Randomized complete block with 4 treatments and 4 replications Planting: Drill-planted test (XL753 @ 25 lb/A) into Nada soil on Apr 2 Plot size = 9 rows, 7.5 inch row spacing, 16 ft long Emergence on Apr 10 Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on Apr 2 Note: Plots were flushed as needed from emergence to permanent flood Permanent flood (PF) on May 22 on main crop (31 days after emergence) Ratoon crop PF on Aug 7 Fertilization: 0-45-45 (lbs N-P-K/A) on Apr 2 preplant 120 lb N/A (urea) on May 21 before permanent flood (BF) 60 lb N/A (ammonium sulfate) on Jun 24 at boot/heading 100 lb N/A on Aug 6 for ratoon crop

Page 35: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

XL753 Seed Treatments

32

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Herbicide: RiceBeaux @ 2 lb ai/A and Command 3ME @ 0.3 lb ai/A applied on Apr 13 Permit @ 0.05 lb ai/A and Propanil @ 2 lb/A applied on May 11 Treatments: Treatments 2 and 4 (Karate Z @ 0.03 lb ai/A) applied on Jun 30 (late

boot/heading) Sampling: Rice water weevil (RWW) cores (5 cores per plot, each core 4 inches diameter, 4

inches deep, containing at least one rice plant) were collected on Jun 15 (24 days after PF) and Jun 22. Core samples were stored in a cold room, later washed through 40 mesh screen buckets and immature RWW counted.

Panicle counts (3, 1 ft counts/plot) on Jul 16 Whitehead (WH) counts (4 rows) on Jul 16 (main) and Oct 1 (ratoon); WHs are

a measure of stalk borer damage Harvest: Harvested main crop plots on Aug 4 Size harvested main crop plot = 7 rows, 7.5 inch row spacing, 16 ft long Harvested ratoon crop plots on Oct 21 Size harvested ratoon crop plot = 4 rows, 7.5 inch row spacing, 16 ft long Data analysis: RWW and WH counts transformed using

x + 0.5 ; yields converted to 12% moisture; all data analyzed by ANOVA and means separated by LSD.

Discussion

Panicle density was not significantly different among treatments; thus, treatments did not

affect panicle production (Table 1). RWW populations across treatments were extremely low on both sampling dates; thus, these data are not very meaningful. Also, WH counts in the main crop were low and not significantly different among treatments. In the ratoon crop, WH densities were significantly lower in the Dermacor X-100 treatment compared to the other treatments which shows this seed treatment provides good control of stalk borers in the ratoon crop. Karate Z treatments applied to the main crop do not persist to protect the ratoon crop from stalk borer damage. Virtually all stalk borers found in this experiment were Mexican rice borer. Yields were high and not significantly different across treatments in both crops (Table 2). However, lowest yields were recorded from the untreated for both crops.

Page 36: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

XL753 Seed Treatments

33

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 1. Mean insect and panicle count data for XL753 seed treatments. Eagle Lake, TX. 2015.

Treatment Rate

(fl oz/cwt) No. RWWa/5 cores Panicles/ft

of row No. WHsa/4 rows

Main Ratoon Untreated --- 5.0 2.8 21.3 1.0 7.3 a

CruiserMaxx Rice + Karate Zb

7 + 0.03 lb ai/A 4.0 3.5 20.5 0.5 7.5 a

Dermacor X-100 5.0 4.3 2.3 22.2 0.3 1.3 b NipsIt INSIDE +

Karate Zb 1.92 +

0.03 lb ai/A 3.3 1.3 27.2 0.0 5.8 a

NS NS NS NS a RWW = rice water weevil; WH = whitehead b Applied at late boot/heading to main crop Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD). Table 2. Mean yield data for XL753 seed treatments. Eagle Lake, TX. 2015.

Treatment Rate

(fl oz/cwt) Yield (lb/A)

Main Ratoon Total Untreated --- 9089 5550 14639

CruiserMaxx Rice + Karate Za 7 + 0.03 lb ai/A 9593 5612 15205

Dermacor X-100 5.0 9869 6118 15987

NipsIt INSIDE + Karate Za 1.92 + 0.03 lb ai/A 10489 5623 16112 a Applied at late boot/heading to main crop Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 37: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

34

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Trapping for Mexican Rice Borer Texas Rice Belt

2015 PIs: Mo Way (Texas A & M AgriLife Research), Gene Reagan (LSU AgCenter) and J. Beuzelin (LSU AgCenter) Co-PIs and trap operators: Becky Pearson and Carra Curtice (Chambers and Jefferson Cos.),

Jack Vawter (Colorado Co.) and Noelle Jordan (Orange Co.) Mexican rice borer (MRB) pheromone traps were set up in selected counties of the Texas Rice Belt (TRB). MRB was detected for the first time in Louisiana in November 2008. MRB was collected for the first time in Orange Co. in September 2010. Data are being used to follow the progress of MRB population densities over time in the TRB. In December 2012, an MRB moth was found in a light trap in Florida. Table 1. Monthly totals of Mexican rice borer adults from pheromone traps (2 traps/county) located next to rice on the Texas Upper Gulf Coast in 2015.

Month Chambers Co. Colorado Co. Jefferson Co. Orange Co. January 15 1 0 0 February 3 0 0 0 March 0 39 1 0 April 47 100 29 2 May 45 86 36 0 June 46 87 29 0 July 53 251 20 0

August 54 60 32 0 September 76 81 14 1

October 229 66 80 0 November 2 37 15 0 December 0 0 0 1

Page 38: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

35

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Foliar Fungicide Evaluation JO & WAY

Texas A&M AgriLife, Beaumont, TX 2015

PLOT PLAN

Building ← North Block 2S

I II III IV 1 1 8 3 15 1 22 1 2 2 9 6 16 5 23 6 3 4 10 1 17 3 24 5 4 6 11 5 18 2 25 3 5 3 12 2 19 1 26 4 6 1 13 4 20 6 27 2 7 5 14 1 21 4 28 1

Plot size: 7 rows, 7 inch row spacing, 18 ft long Variety: Antonio (provided by TRIA)

Note: smaller numbers in italics are plot numbers

Foliar fungicide treatment – Syngenta

Treatment no. Description

Rate (fl oz prod/A)

Timing

1 Untreated ---

2 Quilt Xcel 2.2 SE + surfactant 21 + 1% v/v PD + 10 d

3 Quadris TOP + surfactant 14 + 1% v/v PD + 10 d

4 A20760 + surfactant 7.7 + 1% PD + 10 d

5 A20760 + Quadris + surfactant 7.7 + 3.3 + 1% PD + 10 d

6 A20760 + Sercadis + surfactant 7.7 + 5.7 + 1% PD + 10 d

Page 39: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Foliar Fungicide Evaluations

36

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Agronomic and Cultural Information Experimental Randomized complete block with 6 treatments and 4 replications. design Planting: Drill-planted test (Antonio @ 80 lb/A) into League soil (pH 5.5, sand 3.2%, silt

32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on May 4. Plot size = 7 rows, 7 inch row spacing, 18 ft long. Emergence of main crop on May 11. Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on May 5. Note: Plots were flushed as needed from emergence to permanent flood. Permanent flood (PF) on main crop on Jun 2 (22 days after emergence). Fertilization: All fertilizer (urea) was distributed by hand. 34.0 lb N/A (20% of 170) on May 5 at planting on all plots. 85.0 lb N/A (50% of 170) on Jun 2 at PF. 51.0 lb N/A (30% of 170) on Jun 22 after panicle differentiation (PD). 100 lb N/A on Aug 26 on ratoon. Herbicide: RiceBeaux @ 2 qt/A; Permit @ 1 oz/A, and Command 3ME @ 0.8 pt/A applied

with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on May 1 for early season weed control.

Insecticide: Karate Z @ 2.56 fl oz/A applied on Jun 2 for rice water weevil control Sheath blight Introduced sheath blight grain inoculum on June 26. Inoculation: Fungicide: Foliar fungicide application on June 26 at 10 days after PD. Harvest: Harvested all main crop plots on Aug 18. Ratoon crop harvested on Nov 5. Size harvested plot = 7 rows, 7 inch row spacing, 18 ft long.

Page 40: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Foliar Fungicide Evaluations

37

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Summary Foliar fungicide treatment – Block 2S Title of the trial: Evaluate A20760A for disease control in rice (FDI380A4-2015US).

Block Treatment Main crop

yield Ratoon

yield Total yield

Main crop

disease severity

Main crop disease

incidence (%)

2S 1 7734.4 B 1437.4 9171.8 B 3.9 A 50.8 A 2S 2 8284.4 AB 1343.8 9716.5 AB 1.0 B 0.9 B 2S 3 8483.6 A 1603.3 10091.0 A 0.4 B 0.4 B 2S 4 8069.1 AB 1583.4 9652.5 AB 1.1 B 1.9 B 2S 5 8333.0 AB 1616.1 9949.1 AB 0.1 B 0.1 B 2S 6 8168.7 AB 1506.5 9675.1 AB 0.9 B 3.3 B

Fisher’s Protected LSD (α = 0.05) 639.0 788.6 1.1 11.1

P value 0.118 0.334 0.126 < 0.0001 < 0.0001 All fungicide treatments significantly reduced sheath blight severity and incidence in the main crop, compared with the non-treated control (Treatment 1). At P value = 0.118-0.126, treatment 3 produced the highest main crop and total yields.

Page 41: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

38

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Soybean Insecticide Screening Study Blocks 6S & 7S Beaumont, TX

2015

← North PLOT PLAN 6S

18 1 (white) 17 2 (red) 15 6 (yellow) 16 3 (blue) 14 4 (light green) 13 6 (yellow) 11 5 (purple) 12 2 (red) 10 3 (blue) 9 5 (purple)

7S 7 1 (white) 8 1 (white) 6 5 (purple) 5 2 (red) 3 4 (light green) 4 3 (blue) 2 6 (yellow) 1 4 (light green)

Plot size: 4 rows, 5 ft. row spacing, 40 ft long Variety: AG6732

Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS Trt no. Treatment Flag color

Rate (fl oz/A)

1 Untreated White --- 2 Belt SC Red 2 3 Belt SC Blue 2.5 4 Belt SC Light green 3 5 Besiege Purple 7 6 Prevathon Yellow 14

Agronomic and Cultural Information Experimental design: Randomized complete block with 6 treatments and 3 replications Planting: Planted test (AG6732) on Jun 12 Plot size = 4 rows, 30 inch row spacing, 40 ft long

Page 42: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Soybean Insecticide Screening Study

39

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Emergence on Jun 17 Irrigation: Soybeans were irrigated as needed (blocks were in a rice strip with irrigation

capability) Herbicide: First Rate @ 0.75 oz/A and Dual Magnum @ 2.5 pt/A were applied pre-

emergence with a 2-person hand-held spray boom (13- No. 2 cone nozzles, 50 mesh screens, 15 gpa final spray volume) on Jun 12.

Fertilization: Urea applied @ 50 lb N/A and flushed on Jul 21 Urea applied @ 50 lb N/A and flushed on Sep 25 Treatments: Treatments 2 – 6 applied with a hand-held spray boom (2 nozzle boom

(Conejet TSS cone nozzles, 50 mesh screens, 22 gpa final spray volume) on Oct 5

Sampling: Insect sweeps (12 sweeps/plot) on Oct 6 (1 DAT), Oct 9 (4 DAT), Oct 13 (8

DAT), and Oct 20 (15 DAT)

Discussion

The experiment was planted late (June 12) due to extended wet weather---I wanted to plant earlier (mid-May) but could not because of untimely rains.

One DAT, populations of Lepidoptera defoliators were too low for meaningful interpretation (Table 1). However, redbanded stink bug (RBSB) and threecornered alfalfa hopper (TCAH) populations were moderately high (Table 2). No differences among treatments were detected which may have been due to insufficient time for insecticides to produce results.

Four DAT, the highest rate of Belt SC (3 fl oz/A), Besiege and Prevathon effectively controlled low populations of soybean looper (SL) and velvetbean caterpillar (VBC) (Table 3). RBSB nymphs were abundant, but only the Besiege treatment at 7 fl oz/A gave effective control (Table 4). TCAHs were abundant across treatments, but the Besiege treatment numerically reduced populations the most, compared to the untreated (Table 5).

Eight DAT, all treatments significantly reduced green cloverworm (GCW) populations, although densities were rather low in the untreated (Table 6). Total RBSBs were significantly lower in the Besiege treatment compared to the untreated (Table 7). None of the treatments controlled TCAH (Table 8).

Fifteen DAT, Lepidoptera defoliator populations were too low in the untreated for meaningful interpretation (Table 9). In addition, none of the treatments significantly reduced stink bug or TCAH populations (Tables 10 and 11).

Plots were not harvested because of prolonged extremely wet conditions---making machine harvesting impossible.

In conclusion, Besiege at 7 fl oz/A, Prevathon at 14 fl oz/A and Belt SC at the highest rate evaluated (3 fl oz/A) effectively controlled rather low populations of Lepidoptera defoliators while Besiege at 7 fl oz/A provided control (about 80%) of stink bugs (primarily RBSB) at 4 DAT. Decreasing control of stink bugs with Besiege was evident at 8 and 15 DAT. None of the treatments gave acceptable control of TCAH.

Page 43: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Soybean Insecticide Screening Study

40

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 1. Mean lepidopterous larvae data in 12 sweeps on Oct 6 (1 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) Soybean looper

Green cloverworm

Velvetbean caterpillar Total leps

Untreated --- 1.0 0.3 2.0 3.3 Belt SC 2 1.0 0.0 0.7 1.7 Belt SC 2.5 1.0 0.0 0.3 1.3 Belt SC 3 0.3 0.0 0.3 0.7 Besiege 7 0.0 0.0 0.7 0.7

Prevathon 14 0.7 0.0 0.7 1.3 Means in a column are not significantly different (P = 0.05, ANOVA and LSD). Table 2. Mean redbanded stink bug and miscellaneous insect data in 12 sweeps on Oct 6 (1 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A)

Redbanded stink bug Threecornered alfalfa hopper

Banded cucumber

beetle Adults Nymphs Total Untreated --- 1.0 5.0 6.0 12.7 0.0 Belt SC 2 2.0 6.3 8.3 18.7 0.3 Belt SC 2.5 1.0 4.3 5.3 10.7 0.0 Belt SC 3 1.0 3.7 4.7 16.0 0.3 Besiege 7 1.0 4.0 5.0 4.7 0.3

Prevathon 14 0.3 2.3 2.7 18.0 0.0 Means in a column are not significantly different (P = 0.05, ANOVA and LSD). Table 3. Mean lepidopterous larvae data in 12 sweeps on Oct 9 (4 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) Soybean looper

Green cloverworm

Velvetbean caterpillar Total leps

Untreated --- 2.0 a 0.3 2.3 4.7 a Belt SC 2 1.0 ab 0 0.0 1.0 bc Belt SC 2.5 2.3 a 0 0.3 2.7 ab Belt SC 3 0.0 b 0 0.0 0.0 c Besiege 7 0.3 b 0 0.0 0.3 bc

Prevathon 14 0.3 b 0 0.0 0.3 bc NS NS

Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD).

Page 44: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Soybean Insecticide Screening Study

41

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 4. Mean stink bug data in 12 sweeps on Oct 9 (4 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A)

Southern green stink bug adults

Redbanded stink bug Total stink bugs Adults Nymphs Total

Untreated --- 0.0 0.7 13.7 a 14.3 14.3 Belt SC 2 0.3 2.0 15.0 a 17.0 17.3 Belt SC 2.5 0.0 1.7 10.0 a 11.7 11.7 Belt SC 3 0.0 1.0 6.7 ab 7.7 7.7 Besiege 7 0.0 1.0 1.7 b 2.7 2.7

Prevathon 14 0.0 0.7 7.7 ab 8.3 8.3 NS NS NS NS

Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD). Table 5. Mean miscellaneous insect data in 12 sweeps on Oct 9 (4 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) Threecornered alfalfa hopper Grasshoppers

Banded cucumber beetle

Untreated --- 16.0 0.0 0.0 b Belt SC 2 16.3 0.3 0.0 b Belt SC 2.5 10.0 0.7 0.0 b Belt SC 3 17.0 0.0 0.0 b Besiege 7 7.3 0.3 0.0 b

Prevathon 14 18.0 0.0 0.7 a NS NS

Means in a column are not significantly different (P = 0.05, ANOVA and LSD)

Page 45: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Soybean Insecticide Screening Study

42

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 6. Mean lepidopterous larvae data in 12 sweeps on Oct 13 (8 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) Soybean looper Green

cloverworm Total leps Untreated --- 0.3 3.3 a 3.7 a Belt SC 2 0.3 0.3 b 0.7 b Belt SC 2.5 0.0 0.3 b 0.3 b Belt SC 3 0.0 0.0 b 0.0 b Besiege 7 0.3 0.0 b 0.3 b

Prevathon 14 0.3 0.0 b 0.3 b NS

Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD). Table 7. Mean stink bug data in 12 sweeps on Oct 13 (8 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A)

Southern green stink bug adults

Redbanded stink bug Total stink bugs Adults Nymphs Total

Untreated --- 0.0 4.0 9.7 ab 13.7 ab 13.7 ab Belt SC 2 0.7 7.3 14.3 a 21.7 a 22.3 a Belt SC 2.5 0.0 3.7 10.0 ab 13.7 ab 13.7 ab Belt SC 3 0.3 2.3 5.7 bc 8.0 bc 8.3 bc Besiege 7 0.3 1.0 3.7 c 4.7 c 5.0 c

Prevathon 14 0.0 5.0 11.3 ab 16.3 ab 16.3 ab NS NS

Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD). Table 8. Mean miscellaneous insect data in 12 sweeps on Oct 13 (8 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) Threecornered alfalfa

hopper Grasshoppers Untreated --- 21.7 0.0 Belt SC 2 25.7 0.7 Belt SC 2.5 28.7 0.0 Belt SC 3 26.3 0.3 Besiege 7 13.7 0.7

Prevathon 14 25.3 0.7 Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 46: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Soybean Insecticide Screening Study

43

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 9. Mean lepidopterous larvae data in 12 sweeps on Oct 20 (15 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) Soybean looper

Green cloverworm

Velvetbean caterpillar Total leps

Untreated --- 0.0 1.3 0.3 1.7 Belt SC 2 0.0 0.3 0.3 0.7 Belt SC 2.5 0.0 0.3 0.0 0.3 Belt SC 3 0.3 0.0 0.0 0.3 Besiege 7 0.0 0.7 0.0 0.7

Prevathon 14 0.0 0.0 0.0 0.0 Means in a column are not significantly different (P = 0.05, ANOVA and LSD). Table 10. Mean stink bug data in 12 sweeps on Oct 20 (15 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A)

Southern green Redbanded Brown Total stink bugs Aa Na Ta A N T A N T

Untreated --- 0.0 0.0 0.0 4.0 9.0 13.0 0.3 0.0 b 0.3 13.3 Belt SC 2 0.3 9.0 9.3 9.0 10.7 19.7 0.7 0.0 b 0.7 29.7 Belt SC 2.5 0.7 0.0 0.7 8.0 6.7 14.7 0.3 0.7 a 1.0 16.3 Belt SC 3 0.0 0.0 0.0 4.7 4.7 9.3 0.7 0.0 b 0.7 10.0 Besiege 7 0.0 0.0 0.0 3.3 3.0 6.3 0.3 0.0 b 0.3 6.7

Prevathon 14 0.0 0.0 0.0 6.0 4.7 10.7 0.3 0.0 b 0.3 11.0 NS NS NS NS NS NS NS NS NS a A = adults; N = nymphs; T = total Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD). Table 11. Mean threecornered alfalfa hopper data in 12 sweeps on Oct 20 (15 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) Threecornered alfalfa hopper

Adults Nymphs Total Untreated --- 20.7 0.7 21.3 Belt SC 2 26.3 1.3 27.7 Belt SC 2.5 39.0 1.0 40.0 Belt SC 3 24.0 0.3 24.3 Besiege 7 22.0 0.3 22.3

Prevathon 14 26.7 0.7 27.3 Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 47: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Soybean Insecticide Screening Study

44

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 12. Mean miscellaneous insect data in 12 sweeps on Oct 20 (15 DAT) for soybean insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) Grass-

hoppers

Banded cucumber

beetle Leaf-

hoppers Spiders Assassin

bugs

Spotted cucumber

beetle Bean leaf

beetle Untreated --- 0.3 0.3 1.0 1.7 0.0 0.3 0.0 Belt SC 2 0.3 0.0 0.0 2.0 0.3 0.0 0.0 Belt SC 2.5 0.0 0.0 0.3 1.3 0.3 0.3 0.0 Belt SC 3 0.3 0.3 0.3 1.0 0.3 0.0 0.7

Besiege SC 7 0.3 0.0 0.0 1.3 0.0 0.0 0.0 Prevathon SC 14 0.0 0.3 0.3 1.3 0.3 0.7 0.0 Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 48: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

45

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Sorghum Seed Treatments Block 1N

Beaumont, TX 2015

PLOT PLAN

← North I II III IV

1 5 6 2 11 4 16 1 2 1 7 4 12 2 17 3 3 2 8 3 13 1 18 5 4 4 9 5 14 5 19 2 5 3 10 1 15 3 20 4

Plot size: 4 rows, 30 inch row spacing, 20 ft long Variety: Chromatin K73-J6 (provided by David Kerns)

Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS

Treatment no. Description Rate

(fl oz/lb)

1 Cruiser 5FS 0.076 2 Poncho 600 0.064 3 Gaucho 600 0.064 4 NipsIt INSIDE 0.064 5 Untreated ---

All seed treated with Concep @ 0.32 fl oz/50 lb seed

Agronomic and Cultural Information Experimental design: Randomized complete block with 5 treatments and 4 replications Planting: Drill-planted test (K73-J6 @ about 1 seed/inch) into League soil (pH 5.5, sand

3.2%, silt 32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on Apr 8 Plot size = 4 rows, 30 inch row spacing, 20 ft long No emergence due to heavy rains; replanted test on May 5 Emergence on May 13 (2nd planting) Irrigation: Flushed blocks (temporary flood, immediate drain) on Apr 9 (1st planting) and

May 7 (2nd planting) Note: Plots were flushed as needed

Page 49: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Seed Treatments

46

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Fertilization: All fertilizer (urea) was distributed by hand. 38 lb N/A on Apr 9 (1st planting) and May 7 (2nd planting) 77 lb N/A on Jun 8 at 5-leaf stage Herbicide: AAtrex 4L @ 2.3 pt/A and Dual II Magnum @ 1 pt/A with a 2-person hand-

held, CO2-powered spray rig (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Apr 9 (1st planting) and May 6 (2nd planting) for weed control

Treatments: All seed treated with Concept III (safener) Applied AV-1011 (bird repellent) @ 2 gal/A with a 2-person hand-held, CO2-

powered spray rig (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Jul 27

Sampling: Measured plant ht and counted number of leaves on 5 plants per plot on Jun 8,

Jun 29, Jul 6 and Jul 13 Stand counts - 3 ft counts in 2 rows on Jun 29 Counted number of SCA on 10 leaves (1 leaf per plant) per plot on Jun 29 Counted number of SCA on 20 leaves (1 leaf per plant) per plot on Jul 6, Jul 13,

Jul 20, Jul 27, Aug 3, Aug 11 Measured percent heading in 20 plants per plot on Jul 20 Counted number of seed heads per row on Aug 25 Collected and weighed 20 seed heads per plot on Aug 31 Data analysis: Count data transformed using

x + 0.5 ; percent data transformed with arcsin; all data analyzed by ANOVA and means separated by LSD

Discussion

Due to abnormally wet conditions during the spring, we replanted this experiment. We

rototilled and pipe-harrowed the plots before the 1st planting. For the 2nd planting, we planted directly into a “stale seedbed”---no weeds in the plots. The time between the 1st and 2nd plantings was 27 days. The amount of rainfall during this time was 9.7 inches. We kept the same treatments in the same plots for both plantings. There is a possibility that seed treatment residues from the 1st planting may have affected the results garnered from the 2nd planting, but we think this possibility is unlikely due to the length of time and large amount of rain between plantings.

Regardless of treatment, plant stand, plant height and no. of leaves per plant were not significantly different---except for plant height on Jul 6 (Table 1). Thus, we conclude the seed treatments did not affect plant growth prior to SCA infestation. We did not observe any phytotoxicity or stimulatory effect on plants. We conducted periodic observations of plots to determine the early presence of SCAs. Thus, we began sampling for SCA on Jun 29 just after we began to observe SCAs in the experiment.

On Jun 29, no SCAs were found in any of the seed treatment plots, but mean no. of SCAs in untreated plots was about 16 per leaf (Table 2). One week later, we began to observe SCAs in the seed treatment plots, but numbers were significantly higher in untreated plots. SCA populations continued to increase in untreated plots up to Jul 20, then decreased abruptly. SCA populations in the seed treatment plots were much lower than in untreated plots up to Jul 20.

Page 50: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Seed Treatments

47

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Results suggest all seed treatments in this experiment provided a degree of control of SCA through the peak of their population build-up. However, SCA populations were relatively low and highly variable throughout the experiment.

We do not have a combine to harvest sorghum, so we counted the heads in each plot and followed up with recording the wet weight of 20 randomly selected heads in each plot. We found no significant difference in % of plants with heads on Jul 20 (Table 3). We also found no significant difference in no. of heads and wet weight of heads per plot; however, all seed treatments produced numerically more heads and higher head weights per plot than the untreated. Table 1. Mean plant characteristic data for sorghum seed treatment test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/lb)

Stand (plants /ft of row)

Plant ht (cm) No. leaves

Jun 8 Jun 29 Jul 6 Jul 13 Jun 8 Jun 29 Jul 6 Jul 13 Cruiser 5FS 0.076 39.4 39.4 92.7 103.0 b 110.0 6.7 8.4 7.9 8.7

Poncho 600 0.064 33.8 33.8 94.1 111.1 a 113.0 6.7 8.5 7.7 9.4

Gaucho 600 0.064 37.7 37.7 96.9 109.6 a 113.4 6.9 8.5 8.0 9.4

NipsIt INSIDE 0.064 37.5 37.5 95.7 106.2 ab 114.3 7.1 8.1 7.7 9.5

Untreated --- 35.7 35.7 89.9 106.1 ab 107.3 6.9 7.4 7.8 9.2

NS NS NS NS NS NS NS NS Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD).

Table 2. Mean SCA data for sorghum seed treatment test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/lb) No. SCAa per leaf

Jun 29 Jul 6 Jul 13 Jul 20 Jul 27 Aug 3 Aug 11 Cruiser 5FS 0.076 0.0 b 4.0 b 4.8 2.6 1.5 0.1 0.0 b

Poncho 600 0.064 0.0 b 2.2 b 0.5 1.0 1.2 0.7 0.1 b

Gaucho 600 0.064 0.0 b 12.2 b 6.0 4.3 10.1 1.9 0.0 b

NipsIt INSIDE 0.064 0.0 b 3.0 b 3.6 1.4 13.3 1.9 0.0 b

Untreated --- 15.8 a 45.5 a 50.6 126.9 13.5 3.9 2.3 a NS NS NS NS a Number of sugarcane aphids per leaf from 10 leaves for Jun 29 and 20 leaves for all others Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD).

Page 51: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Seed Treatments

48

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 3. Mean heading and yield data for sorghum seed treatment. Beaumont, TX. 2015.

Treatment Rate

(fl oz/lb) Percent headed

on Jul 20 No. seed heads/

row Wet wt. (g) of 20

seed heads Cruiser 5FS 0.076 58.8 149.1 363.1

Poncho 600 0.064 61.3 142.6 390.9

Gaucho 600 0.064 80.0 146.8 325.6

NipsIt INSIDE 0.064 61.3 158.3 337.9

Untreated --- 61.3 134.8 302.8 Means in a column are not significantly different (P = 0.05, ANOVA and LSD).

Page 52: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

49

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Sorghum Insecticide Screening Study Blocks 7N, 8N & 8S

Beaumont, TX 2015

← North PLOT PLAN

8S 32 3 (light green) 31 5 (red) 30 7 (purple) 29 1 (white) 28 2 (pink)

27 8 (blue) 26 6 (yellow) 7N

24 1 (white) 25 4 (orange) 21 4 (orange) 22 3 (light green) 23 2 (pink) 18 7 (purple) 19 6 (yellow) 20 5 (red) 15 8 (blue) 16 2 (pink) 17 8 (blue)

8N 13 4 (orange) 14 6 (yellow)

10 5 (red) 11 7 (purple) 12 1 (white) 7 7 (purple) 8 8 (blue) 9 3 (light green) 4 4 (orange) 5 5 (red) 6 6 (yellow) 1 1 (white) 2 2 (pink) 3 3 (light green)

Plot size: 2 rows, 30 inch row spacing, 35 ft long Variety: RV9924

Note: smaller numbers in italics are plot numbers

TREATMENT DESCRIPTIONS, RATES AND TIMINGS Trt no. Treatment Flag color

Rate (fl oz/A)

1 Untreated White --- 2 Endigo ZCX + NIS Pink 5 + 0.25% v/v 3 Centric 40WDG + NIS Light green 2.5 oz/A + 0.25% v/v 4 Fulfill 50WDG + Kinetic Orange 5 oz/A + 4 5 Sivanto Red 4 6 Sivanto Yellow 8 7 Lorsban Advanced Purple 32 oz/A 8 Transform WG Blue 1 oz/A

Page 53: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Insecticide Screening Study

50

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Agronomic and Cultural Information Planting: Drill-planted test (@ about 1 seed/inch) into League soil (pH 5.5, sand 3.2%, silt

32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on Jul 14; late planting to better coincide with predicted high populations of sugarcane aphid (SCA)

Plot size = 2 rows, 30 inch row spacing, 35 ft long Emergence on Jul 20 Irrigation: Flushed blocks (temporary flood, immediate drain) on Jul 15 Note: Plots were flushed as needed Fertilization: All fertilizer (urea) was distributed by hand. 38 lb N/A on Jul 14 77 lb N/A on Aug 3 at 5-leaf stage Herbicide: AAtrex 4L @ 2.3 pt/A and Dual II Magnum @ 1 pt/A with a 2-person hand-held

spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on Jul 15 for weed control

Treatments: Applied treatments 2 – 8 on Aug 28 with a 3-nozzle, hand-held, CO2 powered

spray boom (800067 nozzles, 50 mesh screens, final spray volume = 13.7 gpa); plant ht ca. 20 inches, plants not heading

Sampling: Counted number of SCA on leaves selected from mid-canopy of plants (1 leaf

per plant); 5 leaves per plot on Aug 27, 10 leaves per plot on Aug 31 and Sep 4, and 20 leaves per plot on Sep 14

Counted number of seed heads per row on Oct 8 Removed and weighed 20 seed heads per plot on Nov 11 Data analysis: Count data transformed using

x + 0.5 ; all data analyzed by ANOVA and means separated by LSD

Discussion

We planted this experiment late in hopes of encountering high populations of SCA.

During the experiment, we periodically checked the plots for the presence of SCA. Not until about 2 weeks before treatment applications on August 28, did we observe aphids. We waited until populations increased before applying treatments. At this time, we easily observed honeydew on plant foliage. Thus, SCAs did not infest plots early in the growing season.

Pretreatment counts were high and not significantly different among treatments (Table 1). At 3 DAT, all treatments significantly reduced populations compared to the untreated; however, Endigo, Centric, Sivanto and Transform treatments performed the best. For instance, % reduction in populations compared to the untreated was 99.9, 99, 99.7 (average of 2 Sivanto treatments) and 96.3, respectively. So, all the above treatments provided excellent control of SCA 3DAT. Lorsban Advanced and Fulfill treatments did not provide as good control (about 74%). At 7 DAT, populations in the untreated declined compared to 4 days before. However, results among treatments were similar to 3 DAT. At 17 DAT, SCAs virtually disappeared from the plots. Both

Page 54: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Insecticide Screening Study

51

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

rates of Sivanto performed equally well. We periodically checked the plots for a reinfestation which was not observed. So, the SCA infestation began about mid-August and ended about mid-September. We do not have a combine to harvest sorghum, so we recorded the number of heads produced in each plot. Based on this yield component, all treatments produced significantly more heads than the untreated (Table 2). Furthermore, Endigo and Centric treatments produced 97 and 82% more heads than the untreated, respectively. We also randomly removed 20 seed heads per plot and recorded their wet weights. Untreated plots produced significantly lighter seed heads compared to all the insecticide treatments (Table 2). So, the last column in Table 2 shows the estimated relative green weight yields of the treatments. Clearly, controlling the SCA in this experiment resulted in impressive yield responses, in spite of the fact these yields are not representative of sorghum yields in SE Texas. As mentioned before, this was a late planted experiment. In addition, blackbird damage and head mold were evident in the plots. Table 1. Mean data for sorghum insecticide screening test. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) No. SCAa per leaf

PRE 3 DAT 7 DAT 17 DAT Untreated --- 719.0 940.3 a 302.7 a 0

Endigo ZCX + NIS 5 + 0.25% v/v 758.8 1.5 c 0.8 b 0

Centric 40WDG + NIS 2.5 oz/A + 0.25% v/v 807.0 9.3 c 0.2 b 0

Fulfill 50WDG + Kinetic 5 oz/A + 4 573.8 251.4 b 150.6 a 0.1

Sivanto 4 648.0 3.4 c 0.0 b 0

Sivanto 8 873.5 3.1 c 0.1 b 0

Lorsban Advanced 32 oz/A 532.0 238.4 b 217.4 a 0

Transform WG 1 oz/A 767.5 34.8 c 29.1 b 0 NS NS a PRE = pretreatment, DAT = days after treatment; number of SCA per 5 leaves per plot on PRE, 10 leaves on 3 and 7 DAT, and 20 leaves on 17 DAT Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD).

Page 55: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Insecticide Screening Study

52

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 2. Mean seed head data for sorghum insecticide screening study. Beaumont, TX. 2015.

Treatment Rate

(fl oz/A) No. seed

heads/row Wet wt. (g) per

seed head Wet wt. (g) per

row Untreated --- 63.8 e 16.3 c 1081.2 b

Endigo ZCX + NIS 5 + 0.25% v/v 116.3 ab 29.4 ab 3439.2 a

Centric 40WDG + NIS

2.5 oz/A + 0.25% v/v 126.1 a 25.5 b 3201.7 a

Fulfill 50WDG + Kinetic 5 oz/A + 4 85.4 d 34.2 a 2887.5 a

Sivanto 4 112.4 abc 29.7 ab 3384.7 a

Sivanto 8 101.6 bcd 27.7 b 2807.8 a Lorsban

Advanced 32 oz/A 94.3 cd 30.2 ab 2859.3 a

Transform WG 1 oz/A 111.1 abc 26.2 b 2927.4 a Means in a column followed by the same letter are not significantly different (P = 0.05, ANOVA and LSD).

Page 56: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

53

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Sorghum Host Plant Resistance Block 1S

Beaumont, TX 2015

PLOT PLAN

← North I II III IV

1 DKS37-07 13 RV9924 25 RTX430 37 RTX2783 2 DKS37-07 14 RV9924 26 RTX430 38 RTX2783 3 DKS51-01 15 RTX2783 27 RV9782 39 DKS37-07 4 DKS51-01 16 RTX2783 28 RV9782 40 DKS37-07 5 RV9924 17 DKS37-07 29 DKS51-01 41 RV9924 6 RV9924 18 DKS37-07 30 DKS51-01 42 RV9924 7 RV9782 19 RTX430 31 RV9924 43 RTX430 8 RV9782 20 RTX430 32 RV9924 44 RTX430 9 RTX2783 21 RV9782 33 DKS37-07 45 DKS51-01 10 RTX2783 22 RV9782 34 DKS37-07 46 DKS51-01 11 RTX430 23 DKS51-01 35 RTX2783 47 RV9782 12 RTX430 24 DKS51-01 36 RTX2783 48 RV9782

Treated with Transform WG Untreated

Plot size: 2 rows, 30 inch row spacing, 20 ft long Note: smaller numbers in italics are plot numbers

Agronomic and Cultural Information

Experimental design: Split plot with main plot = variety and subplot = treated or untreated and 4

replications Planting: Drill-planted test (@ about 1 seed/inch) into League soil (pH 5.5, sand 3.2%, silt

32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on May 6 Plot size = 2 rows, 30 inch row spacing, 20 ft long Emergence on May 15 Irrigation: Flushed blocks (temporary flood, immediate drain) on May 7 Note: Plots were flushed as needed Fertilization: All fertilizer (urea) was distributed by hand. 38 lb N/A on May 7 77 lb N/A on Jun 8 at 5-leaf stage

Page 57: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Host Plant Resistance

54

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Herbicide: AAtrex 4L @ 2.3 pt/A and Dual II Magnum @ 1 pt/A with a 2-person hand-

held, CO2-powered spray rig (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on May 7 for weed control

Treatments: All seed treated with Concept III (safener) Applied Transform WG @ 0.75 lb/A on treated plots with a handheld, CO2-

powered spray rig (2 nozzles, Conejet TSS tips, 50 mesh screens, 20 gpa = final spray volume) on Jul 2

Applied AV-1011 (bird repellent) @ 2 gal/A with a 2 person handheld, CO2-powered spray rig (13 nozzles, 80015 tips, 50 mesh screens, 10.4 gpa = final spray volume) on Jul 27

Sampling: Measured plant ht and counted number of leaves on 5 plants per plot on Jun 8,

Jun 29, Jul 6 and Jul 13 Stand counts - 3 ft counts in 2 rows on Jun 29 Counted number of sugarcane aphid (SCA) on 10 leaves (1 leaf per plant) per

plot on Jun 29 Counted number of SCA on 20 leaves (1 leaf per plant) per plot on Jul 6, Jul 13,

Jul 20, Jul 27, Aug 3, Aug 11 Measured percent heading in 20 plants per plot on Jul 20 Counted number of seed heads per row on Aug 25 Collected and weighed 20 seed heads per plot on Sep 8 Data analysis: Count data transformed using

x + 0.5 ; percent data transformed using arcsin; all data analyzed by ANOVA and means separated by LSD

Discussion

Plant stands were not significantly different across varieties or treated/untreated plots

(Tables 1 and 2). We periodically inspected plots for SCA early in the season. We did not observe SCA in plots until the end of Jun when sorghum was about 70-80 cm (about 27-31 inches tall, depending on variety). Across varieties, treated plots produced plants significantly taller than untreated plants on Jul 13 which suggests SCA infestations affected plant height (Table 2). Number of leaves was not significantly different across varieties or treated/untreated plots until Jul 13 at which time treated plots exhibited significantly more leaves than untreated plots---another indication SCA affected leaf production/survival (Table 4).

On Jun 29, before application of Transform WG, significantly fewer SCA were found on DKS37-07 and RTX2783 compared to the other varieties (Tables 5 and 6). One week later, when populations of SCA peaked, these same 2 varieties again harbored the least number of SCA. Basically, DKS37-07 and RTX2783 harbored the fewest SCA compared to the other varieties in this experiment. In addition, Transform WG performed well in controlling SCA in treated plots.

We do not have a combine to harvest sorghum, so we counted heads in each plot and randomly selected 20 heads per plot and recorded wet weight. Across varieties, data show treated plots may have headed sooner than untreated plots suggesting SCA delays heading (Table 8). But, across varieties, treated plots produced significantly more heads compared to untreated

Page 58: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Host Plant Resistance

55

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

plots. So, % heading data taken on Jul 20 may be influenced by fewer heads being produced in untreated plots. In fact, untreated plots produced 54% fewer heads than treated plots which shows the severity of this SCA infestation. DKS37-07 and RTX2783 produced the most heads, across treated/untreated plots. In addition, these varieties produced the highest head weights. Thus, DKS37-07 and RTX2783 appear to be relatively resistant to SCA while producing the highest yields in this experiment. RV9924, RV9782, RTX430 and DKS51-01 developed the highest SCA populations in this experiment; thus, we rate them susceptible to SCA. These varieties also produced the lowest yields. Table 1. Mean plant heights for sorghum host plant resistance. Beaumont, TX. 2015.

Variety Trt

Stand (plants /ft of row)

Plant ht (cm)

Jun 8 Jun 29 Jul 6 Jul 13 DKS37-07 T 6.6 30.9 69.2 87.2 104.7

DKS37-07 U 6.6 30.3 72.1 95.3 104.5

DKS51-01 T 6.0 31.3 70.0 91.4 94.3

DKS51-01 U 7.1 34.3 70.0 83.1 91.5

RTX2783 T 6.8 33.7 84.2 104.7 112.0

RTX2783 U 7.3 33.8 75.7 98.5 98.4

RTX430 T 6.2 31.3 80.6 95.1 110.8

RTX430 U 6.5 31.9 70.0 92.2 99.1

RV9782 T 5.9 29.9 77.1 89.0 106.4

RV9782 U 6.8 34.7 78.5 97.2 92.9

RV9924 T 6.9 36.2 83.1 95.8 101.1

RV9924 U 7.0 35.9 87.4 92.1 96.7

Page 59: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Host Plant Resistance

56

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 2. Statistical analysis of data in Table 1. Beaumont, TX. 2015. Stand

(plants/ft of row)

Plant ht (cm)

Jun 8 Jun 29 Jul 6 Jul 13 Main plot

DKS37-07 6.6 30.6 c 70.6 c 91.2 b 104.6 a DKS51-01 6.5 32.8 bc 70.0 c 87.2 b 92.9 b RTX2783 7.0 33.8 ab 79.9 ab 101.6 a 105.2 a RTX430 6.4 31.6 bc 75.3 bc 93.6 b 104.9 a RV9782 6.4 32.3 bc 77.8 abc 93.1 b 99.6 ab RV9924 6.9 36.0 a 85.2 a 93.9 ab 98.9 ab

Subplot Treateda 6.4 32.2 77.4 93.9 104.9 a Untreated 6.9 33.5 75.6 93.0 97.2 b

Interaction

Variety vs. treatment P = 0.9017 P = 0.3808 P = 0.3030 P = 0.1783 P = 0.4874 a Transform WG @ 0.75 lb/A Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD) Table 3. Mean number of leaves per plant in sorghum host plant resistance study. Beaumont, TX. 2015.

Variety Trt No. leaves

Jun 8 Jun 29 Jul 6 Jul 13 DKS37-07 T 7.1 8.2 7.9 7.9

DKS37-07 U 7.0 8.6 8.4 8.8

DKS51-01 T 6.3 7.5 7.8 7.6

DKS51-01 U 6.3 7.1 7.0 7.0

RTX2783 T 6.8 8.1 7.8 8.7

RTX2783 U 6.4 7.5 7.1 7.5

RTX430 T 6.8 7.8 7.8 8.8

RTX430 U 6.7 7.4 7.8 7.4

RV9782 T 6.6 7.8 7.2 8.0

RV9782 U 6.8 7.8 8.4 6.4

RV9924 T 6.8 7.8 6.5 8.4

RV9924 U 7.7 8.0 7.5 7.3

Page 60: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Host Plant Resistance

57

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 4. Statistical analysis of data in Table 3. Beaumont, TX. 2015. No. leaves

Jun 8 Jun 29 Jul 6 Jul 13 Main plot

DKS37-07 7.0 ab 8.4 8.2 8.4 DKS51-01 6.3 c 7.3 7.4 7.3 RTX2783 6.6 bc 7.8 7.4 8.1 RTX430 6.8 b 7.6 7.8 8.1 RV9782 6.7 bc 7.8 7.8 7.2 RV9924 7.2 a 7.9 7.0 7.8

Subplot Treateda 6.7 7.8 7.5 8.2 a Untreated 6.8 7.7 7.7 7.4 b

Interaction

Variety vs. treatment P = 0.1025 P = 0.7463 P = 0.0945 P = 0.1055 a Transform WG @ 0.75 lb/A Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD)

Table 5. Mean SCA data for sorghum host plant resistance. Beaumont, TX. 2015.

Variety Trt No. SCAa

Jun 29 Jul 6 Jul 13 Jul 20 Jul 27 Aug 3 Aug 11 DKS37-07 T 14.0 0.0 0.5 0.9 0.3 0.1 0.1

DKS37-07 U 12.8 20.7 40.3 10.6 0.9 0.4 1.0

DKS51-01 T 71.2 25.9 1.8 5.2 0.7 0.5 4.9

DKS51-01 U 80.4 186.5 276.0 123.3 3.0 19.7 11.7

RTX2783 T 16.5 0.0 0.4 0.5 0.5 0.1 2.2

RTX2783 U 5.0 15.8 34.0 3.5 0.2 0.7 0.4

RTX430 T 71.0 0.0 0.3 2.4 0.4 1.5 21.2

RTX430 U 75.5 236.3 186.4 144.4 12.0 9.4 31.8

RV9782 T 83.1 0.1 0.5 5.4 0.7 0.2 5.8

RV9782 U 101.0 287.1 220.8 66.5 0.8 4.7 9.1

RV9924 T 85.1 34.7 0.4 2.5 1.4 1.9 21.0

RV9924 U 128.1 353.4 254.3 63.6 23.7 44.2 48.8 a Number of SCA per leaf from 10 leaves for Jun 29 and 20 leaves for all others

Page 61: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Host Plant Resistance

58

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 6. Statistical analysis of data in Table 5. Beaumont, TX. 2015.

Variety No. SCAa

Jun 29 Jul 6 Jul 13 Jul 20 Jul 27 Aug 3 Aug 11 Main plot DKS37-07 13.4 b 10.4 c 20.4 b 5.8 0.6 b 0.3 0.6 b DKS51-01 75.8 a 106.2 b 138.9 a 64.3 1.8 b 10.1 8.3 ab RTX2783 10.7 b 7.9 c 17.2 b 2.0 0.3 b 0.4 1.3 b RTX430 73.2 a 118.2 b 93.3 a 73.4 6.2 ab 5.5 26.5 a RV9782 92.0 a 143.6 ab 110.7 a 36.0 0.7 b 2.4 7.4 ab RV9924 106.6 a 194.0 a 127.4 a 33.0 12.6 a 23.1 34.9 a

Subplot Treatedb 56.8 10.1 b 0.6 b 2.8 b 0.6 b 0.7 b 9.2 Untreated 67.1 183.3 a 168.6 a 68.7 a 6.7 a 13.2 a 17.1

Interaction Variety vs. treatment

P = 0.6884 0.0007 0.0016 0.2159 0.0967 0.8198 0.9828 a Number of SCA per leaf from 10 leaves for Jun 29 and 20 leaves for all others b Transform WG @ 0.75 lb/A Means in a column followed by the same or no letter are not significantly (NS) different (P = 0.05, ANOVA and LSD).

Table 7. Mean heading and yield data for sorghum host plant resistance. Beaumont, TX. 2015.

Variety Trt Percent headed

on Jul 20 No. seed heads/

row Wet wt. of 20 seed heads (g)

DKS37-07 T 35.0 108.8 351.0

DKS37-07 U 31.3 99.1 369.5

DKS51-01 T 1.3 35.4 397.0

DKS51-01 U 1.3 6.4 218.5

RTX2783 T 42.5 112.0 362.0

RTX2783 U 27.5 94.3 361.5

RTX430 T 23.8 103.8 338.0

RTX430 U 6.3 10.8 199.5

RV9782 T 22.5 90.8 294.5

RV9782 U 12.5 9.1 162.0

RV9924 T 37.5 104.1 317.0

RV9924 U 7.5 33.1 146.5

Page 62: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sorghum Host Plant Resistance

59

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Table 8. Statistical analysis of data in Table 7. Beaumont, TX. 2015.

Variety Percent headed on

Jul 20 No. seed heads/ row Wet wt. of 20 seed

heads (g) Main plot DKS37-07 33.1 a 103.9 a 360.3 a DKS51-01 1.3 b 20.9 c 307.8 ab RTX2783 35.0 a 103.1 a 361.8 a RTX430 15.0 ab 57.3 b 268.8 b RV9782 17.5 ab 49.9 b 228.3 b RV9924 22.5 a 68.6 b 231.8 b

Subplot Treateda 27.1 a 92.5 a 343.3 a Untreated 14.4 b 42.1 b 242.9 b

Interaction Variety vs. treatment P = 0.6148 P = 0.0011 P = 0.1369

a Transform WG @ 0.75 lb/A Means in a column followed by the same letter are not significantly different (P = 0.05, ANOVA and LSD).

Page 63: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

60

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas A & M AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Sugarcane Alion Test Beaumont, TX 2014 – 2015

PLOT PLAN

⇓ North I II III

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6 7 3 2 5 4 1 7 6 6 7 5 2 3 4 1 Plot size = 1 row, 5.5 ft row spacing, 30 ft long

Note: smaller numbers in italics are plot numbers Variety: Ho 02-113

TREATMENT DESCRIPTIONS, RATES AND TIMINGS

Treatment no. Flag color Description Rate Timing

1 pink Untreated --- --- 2 red Alion SC 1.25 early 3 yellow Alion SC 2.5 early 4 lime green Alion SC 3.75 early 5 green Alion SC 1.25 early + layby 6 orange Alion SC 2.5 early + layby 7 white Alion SC 3.75 early + layby

Agronomic and Cultural Information Experimental design: Randomized complete block with 7 treatments and 3 replications Planting: Planted test (Ho 02-113 cut from Gaulding’s field) into LaBelle clay/loam

soil on Nov 4, 2014; beds/rows 5.5 ft apart Plot size = 1 row, 30 ft long; no emergence as of Feb 3, 2015 Irrigation: Plots irrigated as needed. No irrigation applied as of Feb 3, 2015 Fertilization: No fertilizer applied as of Feb 3, 2015 Treatments: Treatments 2 – 7 applied with a hand-held spray boom (3 nozzle boom

(11004 VS nozzles, 50 mesh screens, 38.7 gpa final spray volume) on Dec 12, 2014

Page 64: 2015 ENTOMOLOGY RESEARCH REPORT...2015. Financial support for these experiments was provided by Texas A & M AgriLife Research, Texas Rice Research Foundation (rice check-off monies),

Sugarcane Alion Test

61

M.O. Way ⋅ [email protected] ⋅ (409)752-2741 ext.2231 Texas AgriLife Research and Extension Center at Beaumont ⋅ 1509 Aggie Dr. ⋅ Beaumont, TX 77713 ⋅ http://beaumont.tamu.edu

Sampling: No energycane emergence at time of early application of treatments; small weeds emerged in all treatments in rep I, but mostly in plot 1 (Trt 1, Rep I) at time of early application of treatments

Plots rated for weed control Feb 3, 2015; Vyavhare and Way rated each plot for % of soil surface occupied by weeds. The 2 ratings were averaged for each plot. Weeds were primarily annual bluegrass with some curly dock, filaree, unknown Compositae seedling, and chickweed.

Discussion

Percent weed coverage in the early Alion-treated plots was significantly less than the

untreated (Table 1). In addition, rate response (in terms of % weed coverage) to the herbicide was evident. Best control was provided by the highest rate---3.75 fl oz/A. Unfortunately, we were unable to apply the layby treatments due to continuing inclement weather during the winter and spring. By the time plots were dry, sugarcane was too tall to cultivate, weeds were large and layby treatments not feasible.

We planted this test too late. In the future, we will plant the test in September and apply the early treatments soon after planting. Then, we will apply the layby treatments immediately following the last cultivation at layby. Table 1. Mean weed coverage rating before energycane emergence for Alion Test. Feb 3, 2015. Beaumont, TX. 2014 – 2015.

Treatment Rate

(fl oz/A) Timing Weed coverage rating

(%) Untreated --- --- 79.2 a

Alion SC 1.25 early 23.3 b

Alion SC 2.5 early 15.0 bc

Alion SC 3.75 early 6.7 c

Alion SC 1.25 early + layby 15.0 bc

Alion SC 2.5 early + layby 8.3 c

Alion SC 3.75 early + layby 5.0 c Means in a column followed by the same letter are not significantly different (P = 0.05, ANOVA and LSD).