20206580-cegb-vol-3-turbine(1)

420

Upload: rengasamy-ranganathan

Post on 18-Apr-2015

48 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 20206580-CEGB-Vol-3-Turbine(1)
Page 2: 20206580-CEGB-Vol-3-Turbine(1)
Page 3: 20206580-CEGB-Vol-3-Turbine(1)
Page 4: 20206580-CEGB-Vol-3-Turbine(1)
Page 5: 20206580-CEGB-Vol-3-Turbine(1)
Page 6: 20206580-CEGB-Vol-3-Turbine(1)
Page 7: 20206580-CEGB-Vol-3-Turbine(1)
Page 8: 20206580-CEGB-Vol-3-Turbine(1)
Page 9: 20206580-CEGB-Vol-3-Turbine(1)
Page 10: 20206580-CEGB-Vol-3-Turbine(1)
Page 11: 20206580-CEGB-Vol-3-Turbine(1)
Page 12: 20206580-CEGB-Vol-3-Turbine(1)
Page 13: 20206580-CEGB-Vol-3-Turbine(1)
Page 14: 20206580-CEGB-Vol-3-Turbine(1)
Page 15: 20206580-CEGB-Vol-3-Turbine(1)
Page 16: 20206580-CEGB-Vol-3-Turbine(1)
Page 17: 20206580-CEGB-Vol-3-Turbine(1)
Page 18: 20206580-CEGB-Vol-3-Turbine(1)

2 MODERN POWER STATION PRACTICE

'1

tSA'

wII::~

~WIL.

~...

t2

ENTROPY.

a. b - CONVERSla-I OF HEAT ENERGY TO KINETIC ENERGY

b.c -'REABSORPTla-I OF KINETIC ENERGY TO HEAT

ENERGY

WATER

SPEOFIC VOLUME V

e

x)0'IL.oJ<C

j:ZW

SUPERHEATEDST'EAM

.!7',,~'~J~;-~.'~~, I -

ENTROPY.b.c.d.e.. HEATINGAT CONST~T PRESSURE

e.f.g. . IDEALEXPANSIONAT CONST"NT ENTROPY,

g.o. . EXTRACTIONOF LATENT HEAT INCONDEH5Fk

o.b. . IDEALPRESSUREINCREASEATCOHsrAlftENTROPY INFEED PUMP

FIG. 1.1.1A.Basic routine cycle with superheating

:- PlfI

,\ SUPERHEATED>STEAM

i I' VAPOURW I

P,I-9

Page 19: 20206580-CEGB-Vol-3-Turbine(1)

TURBINES' 3

proportionately smaller. Further, unlesshigh~density high condition steam is used ata high rate of flow, the high-pressure blades become very small and inefficient.

A lower exhaust pressure lowers the temperature at which heat is rejected, thus in-creasing the cycle efficiency. For condensing turbines the vacuum obtainable is determinedprimarily by the temperature of the cooling water at the site chosen. Any possible im.provement in vacuum is very effective in increasing the work done, since a narrow butlarge addition is made to the T/cJ>area (see Chapter 4).

e ge g

wcr:JI-«crwDo~WI-

SUPERHEATEDStEAM

ENTROPY ~ ENTROPY ~

AVERAGE TEMPERATURE OF

b.c.d.e. AND Lg. HAS INCREASED,DUE TO REHEATING

b.e.d.e. - HEATING AT CONSTANT PRESSURE

e.f. -IDEAL EXPANSION AT CONSTANT ENTROPYBEFORE REHEATING

f.g. - REHEATING AT CONSTANT PRESSURE

g.h.i. -IDEAL EXPANSION AT CONSTANT ENTROPYAfTER REHEATING

i.a. - EXTRACTION OF LATENT HEAT IN CONDENSER

a.b. -IDEAL PRESSURE INCREASE AT CONSTANT

ENTROPY IN FEED PUMP

FIG. 1.1.1B. Effect of reheating

On large turbines (i.e. 100 MW and over) it becomes economic to increase the cycleefficiency by using reheat, which is a way of partially overcoming temperature limitations.By returning partially expanded steam to a reheater, the average temperature at whichheat is added is increased and, by expanding this reheated steam through the remainingstages of the turbine, the exhaust wetness is considerably less than it would otherwisebe (Fig. 1.1.IB). Conversely, if the maximum tolerable wetness is allowed, the initialpressure of the steam can be appreciably increased.

Regenerative heating of the boiler feed-water is widely used in modern power plant.the effect being to increase the average temperature at which heat is added to the cycle,thus improving the cycle efficiency (see Chapter 3).

Page 20: 20206580-CEGB-Vol-3-Turbine(1)

-4 MODERN POWER STATION PRACTICE

1.1.2. The Nozzle

When steam is-allowed to expand through a narrow orifice, it assumes kinetic energyat the expense of its enthalpy. When this kinetic energy is extracted by turbine blades,the result is an isentropic expansion, modified by the effect of frictional reheating (Fig.1.1.2A(a».

If, however, the steam expands into a chamber, the whole of the generated kineticenergy will be reabsorbed as frictional reheat and the final enthalpy wHl be the same asthe original (Fig. 1.1.2A(b». This process is known as throttling and is inherently wasteful

PoPo

o

>-CL..J~~i5

<1ENERGYDISSIPATED

BY INTERNAL

REHEAT

>-CL..J~Fzw

LOSSOFAVAILABILITY

LOSSOF

AVAILABILITY

ENTROPY ~

(0)

ENTROPY ~

(b)

USEFUL EXTRACTION OF KINETIC ENERGY

(TURBINE BLADING)

COMPLETE DISSIPATION OF KINETIC ENERGY

(1:HROTTLING)

a-b - CONVERSION OF HEAT ENERGY TO KINETIC ENERGYb-c - REABSORPTIONOF KINETICENERGY TO t fA

ENERGY

FIG. 1.1.2A. Extraction and dissipation of kinetic energy

since the kinetic energy is irretrievably thrown away; this is reflected by the large rise ine..ntropy.(Rise in entropy may be regarded as loss of availability of the energy.) Throttlingis used where it is necessary to dispose of energy in the form of enthalpy~ e.g. in governingvalves at partial loads, labyrinth glands and blade tip seals.

Figure 1.1.2B(a) illustrates the expansion process. Two chambers are connected by asmall orifice or nozzle of cross-sectional area a ft2; the left-hand chamber A is supplied

with steam at pressure Pa and temperature fa; the right chamber B is fitted with an exhaustpipe and valve, to enable its pressure Pb to be varied.

When the valve is closed

and the flow

Pb = Pa

G=O

As the valve is opened, Pb will fall and the pressure difference (Pa-Pb) will cause a flowthrough the nozzle, the steam assuming kinetic energy at the expense of its enthalpy.

Page 21: 20206580-CEGB-Vol-3-Turbine(1)

).,I

1#

~<

TURBINES 5

(;

CONVERGENTNOZZLE

VALVE

(0) EXPANSIONPROCESS

CONVERGENT. DIVERGENTNOZZLE

CONVERGENT - DIVERGENTNOZZLESFOR TURBINE FIRST STAGE

FIG. 1.1.2B.Flow through nozzles

(b) NOZZLE PROFILES

Page 22: 20206580-CEGB-Vol-3-Turbine(1)

6 MODERN POWER STATION PRACTICE

If there were no friction, the expansion through the nozzle would be isentropic, inwhich case the drop in enthalpy Ho could be measured on the Mollier chart from thevertical line between the point (Pata) and Ph'

The corresponding kinetic energy would be

C2-~2gJ

where Co is the ideal or isentropic exit velocity

Therefore Co = y'(2gJlJHo) = 223'7 y'lJHo ft/sec

where lJHois in Btu/lb,and J is the mechanical equivalent.

In fact there is friction, and the actual velocity

C1 = cpCo

where cpis the nozzle coefficient, experimentally determined.C2

2g~ = lJH1,the actual heat dropso that lJH1 = cp2lJHo

aG = C1X-

VThe flow

where v is the specific volume after expansion, in ft3/1b, obtained from the Mollier chart.As the pressure Ph falls, so the velocity C1 and the flow G increase. When Ph reaches a

certain value~the velocity C1 will reach the acoustic velocity (Ca) appropriate to the exitpressure and temperature. A fall in pressure beyond this will not be transmitted upstream(since pressure variations travel at acoustic velocity) and hence no additional velocityand flow will be induced.

At exit pressures lower than the above value, it is necessary to design the nozzle with adivergent portion beyond the throat, in order to avoid severe shock losses (Fig. 1.1.2B(b)).This permits a smooth pressure gradient between throat and exit, and the developmentof a supersonic exit velocity.

It can be shown that, for superheated steam, acoustic velocity is reached when the

pressure ratio Ph = 0'547 (termed the critical value). For saturated or wet steam, thePa

Pcritical pressure ratio -.!!...= O'580.

PaThe maximum flow G which can pass through a nozzle, the pressure ratio across which

is critical or less, is given by

VPa

G = 0'309A - lb/secVa

which is obviously independent of the pressure P beyond the nozzle.

Pa = pressure before the nozzle in Ib/in2 absolute,va = specific volume before the nozzle in ft3/1b,A = throat area of nozzle in in2.

Page 23: 20206580-CEGB-Vol-3-Turbine(1)

TURBINES 7

From this it can be seen that for the steam conditions given by Pa and va' the maximumflow through the turbine, and hen~e the maximum power output, is limited by the throatarea of the first row of nozzles.

In a nozzle-governed turbine, the area A may be reduced in stops by "blanking off"groups of nozzles. Thus there are several loads where those nozzles in use are runningfull, known as "control points"; these are the more economical points at which to run,since in between them a certain amount of throttling takes place at one of the controlvalves.

In a throttle-governed turbine, the flow is controlled at all partial loads by varyingthe pressure in front of the nozzles. This method simplifies the control valve gear, but isless efficient at partial loads.

1.1.3. Moving Blades

In blading designed on the impulse principle, steam from the nozzles impinges onmoving blades, which bend the steam path through an angle as near 1800as is practicable.The change of momentum of the steam produces a force on the blades which drives therotor, and in this way the kinetic energy of the steam is absorbed. Figure 1.1.3A(a) showsthe velocity diagram for this type of blading. This is a vector djagram of steam velocitiesrelating the absolute steam velocity C1leaving the stationary blades to the velocity of thesteam relative to the moving blades W 1, U being the tangential velocity of the movingblades. Similarly for the steam leaving the moving blades, the diagram relates the velocityof the steam leaving the moving blades W2 with the absolute leaving velocity C2. The

efficiency depends on the ratio ~ termed the velocity ratio, as shown in Figure 1.1.3B.Typical design velocity ratios for impulse blading lie between 0.45 and 0.55.

(Note: It is common practice to use the theoretical velocity ratio ~. Since C1 = rpCo,Co

~ is smaller than the corresponding ratio Cu .)~ 1

The other principle used in turbine blading is that of reaction, whereby there is someheat drop in the moving blades, so that they act as nozzles. The jets of steam issuingfrom the moving blades exert a propulsive force on the blades, as in Hero's first turbine.A pure reaction turbine would use all its heat drop in this way; but such a machine hasbeen found to be impracticable. The 50 % impulse-reaction turbine (in which half theheat drop takes place in the fixed blades and half in the moving blades) is, however, verysuccessful and Figure 1.1.3A(b) shows the velocity diagram.

Figure 1.1.3B also shows the shape of the efficiency curve for this type of blading.Being comparatively flat, velocity ratios from 0.55 to 0.75 may be used without muchchange in efficiency, i.e. a high efficiency is maintained over a wide range of load.

Nowadays most impulse type turbines are designed for pure impulse at the blade rootsonly, and a varying degree of reaction up the blades, depending on their length (seesection 1.5).

Page 24: 20206580-CEGB-Vol-3-Turbine(1)

8 MODERN POWER STATION PRACTICE

J.I.

)/

/" /" ,,"""",-

(0) IMPULSE(W2< Wl~

IJ. J.I.

(b) 50% REACTION (W2 > Wl)

KEY

Ct = ACTUAL STEAMVELOCITYLEAVING STATIONARY BLADES

ex= ANGLE BETWEEN THE PATHSOF THE MOVING BLADES ANDTHE STEAM LEAVING THESTATIONARY BLADES

I.l = VELOCITY OF MOVING BLADES

W t = RELATIVE STEAM VELOCITYENTERING MOVING BLADES

{J= ANGLE BETWEEN THE PATHOF THE MOVING BLADES ANDTHE RELATIVE PATH OF THESTEAM LEAVING THE MOVING

BLADES

C2 = ACTUAL STEAM VELOCITYLEAVING MOVING BLADES

FIG. 1.1.3A. Velocity diagrams for blading

Page 25: 20206580-CEGB-Vol-3-Turbine(1)

TURBINES 9

100

80

~ 60z1&1Uii::; 40

20

o

o 0.2 004 0.6 0.8 1.0 1.2

.VELOCITYRATIO

FIG. 1.1.38. Efficiency curves for blading

1.1.4. Stage Efficiency

The efficiency of a turbine state (Le. a nozzle-blade combination) is the product of thefollowing:

(a) The expansion efficiency {,=

(b) The diagram efficiency {=

Kinetic energy produced/lb of steam

}Enthalpy supplied fib of steam

Work done on rotor fib of steam

}Kinetic energy produced fib of steam

(c) The fixed blading leakage factor(d) The moving blading leakage factor(e) The dryness fraction

(In the wet region it is found in practice that for each additional 1%moisture thereis about 1%loss of efficiency. Hence the dryness fraction is included in the product.)

The efficiency of a well-designed stage in a modern turbine is about 85%of the remain-ing 15% of the available energy; some is dissipated as heat due to friction and some isrejected in the form of kinetic energy. The latter may be partially or wholly reclaimedby the nozzles of a subsequent similar stage, if carefully designed, and this is known as"carry-over" .

The kinetic energy leaving the last stage in the turbine cannot be reclaimed and istermed the "leaving loss". To minimise this loss it is important that the velocity of thesteam leaving the last wheel should be small and for this reason the annular area (Le.nXthe blade heightXmean diameter) of the last row of blading is made as large aseconomically practicable.

.

Page 26: 20206580-CEGB-Vol-3-Turbine(1)

10 MODERN POWER STATION PRACTICE

1.1.5. The Condition Line

The condition line for the turbine is the locus of the condition of the steam as it flowsthrough the blading, plotted on the Mollier or Hj(/>diagram (Fig. 1.1.5). An ideal stateline would be isentropic (vertical on this diagram) but frictional reheating in the stationaryand moving blades gives the condition line an increase of entropy at each stage.

STOP VALVECONDITION

. Po P1

:J:>-n.~:J:~ZW

~FIRST STAGE MAY BE

LESS EFFIOENT DUE

TO LOW VELOOTY RATIO

to

LESSEFFICIENTDUETOWETNESS

FINAL CONDITION

OF STEAM IF BROUGHT

TTST

.

I. ',I ',I , '',' ,

WASTED KINETIC

ENERGY (LEAVING

LOSS)\FINAL CONDITION

OF MOVING STEAM

(LEAVING LAST ROW)

ENTROPY .FIG. 1.1.5. Turbine condition line

For a typical stage, the work done or useful heat drop is represented by lJH1Btujlband the isentropic heat drop by lJHoBtujlb.

ffi. lJH1

The stage e clency =-{)Ho

For the whole turbine the useful heat drop is represented by LlH1 Btujlb and theisentropic heat drop by LlHo Btujlb.

h b.. I ffi . LlH1

T e tur me Interna e clency =-LlHo

The lines of constant pressure on the chart diverge as the entropy is increased andhence the sum of the stage isentropic heat drops is greater than the turbine isentropic

Page 27: 20206580-CEGB-Vol-3-Turbine(1)

-TURBINES 11

heat drop, the ratio being known as the "reheat factor" R.

MHo = };{)Ho

Since LJH1 = };{)H1

Turbine internal efficiency = R X stage efficiency.

1.1.6. Output and Specific Heat Consumption

To calculate the output of any regenerative turbine, with or without reheat, it is necess-ary to divide the turbine into groups of stages between tapping points.

E = GGXLJHG kWG 3412

where GG = steam flow through group (lbjh),

LJHG= useful heat drop for group (Btujlb).

Gross group output

Net generator output

where em = mechanical efficiency,

ee = electrical efficiency.

= GA IbjkWh'E

where GA = steam flow at stop valve (lbjh).

Specific steam consumption

Specific heat consumption

For a turbine generator without reheat

GAH1-GJih,E

GA= E (HI -hi) BtujkWh

where HI = initial steam enthalpy at stop valve (Btujlb),

hi = final feed water enthalpy after feed train (Btu/lb).

pecific heat consumption

or a turbine generator with single reheat

GAH1+ GBH3-GBH2 -GAhlE

where H2 = steam enthalpy before reheater (Btujlb),

H3 = steam enthalpy after reheater (Btujlb).

fhe additional second term represents the specific heat input from the reheater.I For a dual pressure steam turbine without reheat

Page 28: 20206580-CEGB-Vol-3-Turbine(1)
Page 29: 20206580-CEGB-Vol-3-Turbine(1)
Page 30: 20206580-CEGB-Vol-3-Turbine(1)
Page 31: 20206580-CEGB-Vol-3-Turbine(1)
Page 32: 20206580-CEGB-Vol-3-Turbine(1)
Page 33: 20206580-CEGB-Vol-3-Turbine(1)
Page 34: 20206580-CEGB-Vol-3-Turbine(1)
Page 35: 20206580-CEGB-Vol-3-Turbine(1)
Page 36: 20206580-CEGB-Vol-3-Turbine(1)
Page 37: 20206580-CEGB-Vol-3-Turbine(1)
Page 38: 20206580-CEGB-Vol-3-Turbine(1)
Page 39: 20206580-CEGB-Vol-3-Turbine(1)
Page 40: 20206580-CEGB-Vol-3-Turbine(1)
Page 41: 20206580-CEGB-Vol-3-Turbine(1)
Page 42: 20206580-CEGB-Vol-3-Turbine(1)
Page 43: 20206580-CEGB-Vol-3-Turbine(1)
Page 44: 20206580-CEGB-Vol-3-Turbine(1)
Page 45: 20206580-CEGB-Vol-3-Turbine(1)
Page 46: 20206580-CEGB-Vol-3-Turbine(1)
Page 47: 20206580-CEGB-Vol-3-Turbine(1)
Page 48: 20206580-CEGB-Vol-3-Turbine(1)
Page 49: 20206580-CEGB-Vol-3-Turbine(1)
Page 50: 20206580-CEGB-Vol-3-Turbine(1)
Page 51: 20206580-CEGB-Vol-3-Turbine(1)
Page 52: 20206580-CEGB-Vol-3-Turbine(1)
Page 53: 20206580-CEGB-Vol-3-Turbine(1)
Page 54: 20206580-CEGB-Vol-3-Turbine(1)
Page 55: 20206580-CEGB-Vol-3-Turbine(1)
Page 56: 20206580-CEGB-Vol-3-Turbine(1)
Page 57: 20206580-CEGB-Vol-3-Turbine(1)
Page 58: 20206580-CEGB-Vol-3-Turbine(1)
Page 59: 20206580-CEGB-Vol-3-Turbine(1)
Page 60: 20206580-CEGB-Vol-3-Turbine(1)
Page 61: 20206580-CEGB-Vol-3-Turbine(1)
Page 62: 20206580-CEGB-Vol-3-Turbine(1)
Page 63: 20206580-CEGB-Vol-3-Turbine(1)
Page 64: 20206580-CEGB-Vol-3-Turbine(1)
Page 65: 20206580-CEGB-Vol-3-Turbine(1)
Page 66: 20206580-CEGB-Vol-3-Turbine(1)
Page 67: 20206580-CEGB-Vol-3-Turbine(1)
Page 68: 20206580-CEGB-Vol-3-Turbine(1)
Page 69: 20206580-CEGB-Vol-3-Turbine(1)
Page 70: 20206580-CEGB-Vol-3-Turbine(1)
Page 71: 20206580-CEGB-Vol-3-Turbine(1)
Page 72: 20206580-CEGB-Vol-3-Turbine(1)
Page 73: 20206580-CEGB-Vol-3-Turbine(1)
Page 74: 20206580-CEGB-Vol-3-Turbine(1)
Page 75: 20206580-CEGB-Vol-3-Turbine(1)
Page 76: 20206580-CEGB-Vol-3-Turbine(1)
Page 77: 20206580-CEGB-Vol-3-Turbine(1)
Page 78: 20206580-CEGB-Vol-3-Turbine(1)
Page 79: 20206580-CEGB-Vol-3-Turbine(1)
Page 80: 20206580-CEGB-Vol-3-Turbine(1)
Page 81: 20206580-CEGB-Vol-3-Turbine(1)
Page 82: 20206580-CEGB-Vol-3-Turbine(1)
Page 83: 20206580-CEGB-Vol-3-Turbine(1)
Page 84: 20206580-CEGB-Vol-3-Turbine(1)
Page 85: 20206580-CEGB-Vol-3-Turbine(1)
Page 86: 20206580-CEGB-Vol-3-Turbine(1)
Page 87: 20206580-CEGB-Vol-3-Turbine(1)
Page 88: 20206580-CEGB-Vol-3-Turbine(1)
Page 89: 20206580-CEGB-Vol-3-Turbine(1)
Page 90: 20206580-CEGB-Vol-3-Turbine(1)
Page 91: 20206580-CEGB-Vol-3-Turbine(1)
Page 92: 20206580-CEGB-Vol-3-Turbine(1)
Page 93: 20206580-CEGB-Vol-3-Turbine(1)
Page 94: 20206580-CEGB-Vol-3-Turbine(1)
Page 95: 20206580-CEGB-Vol-3-Turbine(1)
Page 96: 20206580-CEGB-Vol-3-Turbine(1)
Page 97: 20206580-CEGB-Vol-3-Turbine(1)
Page 98: 20206580-CEGB-Vol-3-Turbine(1)
Page 99: 20206580-CEGB-Vol-3-Turbine(1)
Page 100: 20206580-CEGB-Vol-3-Turbine(1)
Page 101: 20206580-CEGB-Vol-3-Turbine(1)
Page 102: 20206580-CEGB-Vol-3-Turbine(1)
Page 103: 20206580-CEGB-Vol-3-Turbine(1)
Page 104: 20206580-CEGB-Vol-3-Turbine(1)
Page 105: 20206580-CEGB-Vol-3-Turbine(1)
Page 106: 20206580-CEGB-Vol-3-Turbine(1)
Page 107: 20206580-CEGB-Vol-3-Turbine(1)
Page 108: 20206580-CEGB-Vol-3-Turbine(1)
Page 109: 20206580-CEGB-Vol-3-Turbine(1)
Page 110: 20206580-CEGB-Vol-3-Turbine(1)
Page 111: 20206580-CEGB-Vol-3-Turbine(1)
Page 112: 20206580-CEGB-Vol-3-Turbine(1)
Page 113: 20206580-CEGB-Vol-3-Turbine(1)
Page 114: 20206580-CEGB-Vol-3-Turbine(1)
Page 115: 20206580-CEGB-Vol-3-Turbine(1)
Page 116: 20206580-CEGB-Vol-3-Turbine(1)
Page 117: 20206580-CEGB-Vol-3-Turbine(1)
Page 118: 20206580-CEGB-Vol-3-Turbine(1)
Page 119: 20206580-CEGB-Vol-3-Turbine(1)
Page 120: 20206580-CEGB-Vol-3-Turbine(1)
Page 121: 20206580-CEGB-Vol-3-Turbine(1)
Page 122: 20206580-CEGB-Vol-3-Turbine(1)
Page 123: 20206580-CEGB-Vol-3-Turbine(1)
Page 124: 20206580-CEGB-Vol-3-Turbine(1)
Page 125: 20206580-CEGB-Vol-3-Turbine(1)
Page 126: 20206580-CEGB-Vol-3-Turbine(1)
Page 127: 20206580-CEGB-Vol-3-Turbine(1)
Page 128: 20206580-CEGB-Vol-3-Turbine(1)
Page 129: 20206580-CEGB-Vol-3-Turbine(1)
Page 130: 20206580-CEGB-Vol-3-Turbine(1)
Page 131: 20206580-CEGB-Vol-3-Turbine(1)
Page 132: 20206580-CEGB-Vol-3-Turbine(1)
Page 133: 20206580-CEGB-Vol-3-Turbine(1)
Page 134: 20206580-CEGB-Vol-3-Turbine(1)
Page 135: 20206580-CEGB-Vol-3-Turbine(1)
Page 136: 20206580-CEGB-Vol-3-Turbine(1)
Page 137: 20206580-CEGB-Vol-3-Turbine(1)
Page 138: 20206580-CEGB-Vol-3-Turbine(1)
Page 139: 20206580-CEGB-Vol-3-Turbine(1)
Page 140: 20206580-CEGB-Vol-3-Turbine(1)
Page 141: 20206580-CEGB-Vol-3-Turbine(1)
Page 142: 20206580-CEGB-Vol-3-Turbine(1)
Page 143: 20206580-CEGB-Vol-3-Turbine(1)
Page 144: 20206580-CEGB-Vol-3-Turbine(1)
Page 145: 20206580-CEGB-Vol-3-Turbine(1)
Page 146: 20206580-CEGB-Vol-3-Turbine(1)
Page 147: 20206580-CEGB-Vol-3-Turbine(1)
Page 148: 20206580-CEGB-Vol-3-Turbine(1)
Page 149: 20206580-CEGB-Vol-3-Turbine(1)
Page 150: 20206580-CEGB-Vol-3-Turbine(1)
Page 151: 20206580-CEGB-Vol-3-Turbine(1)
Page 152: 20206580-CEGB-Vol-3-Turbine(1)
Page 153: 20206580-CEGB-Vol-3-Turbine(1)
Page 154: 20206580-CEGB-Vol-3-Turbine(1)
Page 155: 20206580-CEGB-Vol-3-Turbine(1)
Page 156: 20206580-CEGB-Vol-3-Turbine(1)
Page 157: 20206580-CEGB-Vol-3-Turbine(1)
Page 158: 20206580-CEGB-Vol-3-Turbine(1)
Page 159: 20206580-CEGB-Vol-3-Turbine(1)
Page 160: 20206580-CEGB-Vol-3-Turbine(1)
Page 161: 20206580-CEGB-Vol-3-Turbine(1)
Page 162: 20206580-CEGB-Vol-3-Turbine(1)
Page 163: 20206580-CEGB-Vol-3-Turbine(1)
Page 164: 20206580-CEGB-Vol-3-Turbine(1)
Page 165: 20206580-CEGB-Vol-3-Turbine(1)
Page 166: 20206580-CEGB-Vol-3-Turbine(1)
Page 167: 20206580-CEGB-Vol-3-Turbine(1)
Page 168: 20206580-CEGB-Vol-3-Turbine(1)
Page 169: 20206580-CEGB-Vol-3-Turbine(1)
Page 170: 20206580-CEGB-Vol-3-Turbine(1)
Page 171: 20206580-CEGB-Vol-3-Turbine(1)
Page 172: 20206580-CEGB-Vol-3-Turbine(1)
Page 173: 20206580-CEGB-Vol-3-Turbine(1)
Page 174: 20206580-CEGB-Vol-3-Turbine(1)
Page 175: 20206580-CEGB-Vol-3-Turbine(1)
Page 176: 20206580-CEGB-Vol-3-Turbine(1)
Page 177: 20206580-CEGB-Vol-3-Turbine(1)
Page 178: 20206580-CEGB-Vol-3-Turbine(1)
Page 179: 20206580-CEGB-Vol-3-Turbine(1)
Page 180: 20206580-CEGB-Vol-3-Turbine(1)
Page 181: 20206580-CEGB-Vol-3-Turbine(1)
Page 182: 20206580-CEGB-Vol-3-Turbine(1)
Page 183: 20206580-CEGB-Vol-3-Turbine(1)
Page 184: 20206580-CEGB-Vol-3-Turbine(1)
Page 185: 20206580-CEGB-Vol-3-Turbine(1)
Page 186: 20206580-CEGB-Vol-3-Turbine(1)
Page 187: 20206580-CEGB-Vol-3-Turbine(1)
Page 188: 20206580-CEGB-Vol-3-Turbine(1)
Page 189: 20206580-CEGB-Vol-3-Turbine(1)
Page 190: 20206580-CEGB-Vol-3-Turbine(1)
Page 191: 20206580-CEGB-Vol-3-Turbine(1)
Page 192: 20206580-CEGB-Vol-3-Turbine(1)
Page 193: 20206580-CEGB-Vol-3-Turbine(1)
Page 194: 20206580-CEGB-Vol-3-Turbine(1)
Page 195: 20206580-CEGB-Vol-3-Turbine(1)
Page 196: 20206580-CEGB-Vol-3-Turbine(1)
Page 197: 20206580-CEGB-Vol-3-Turbine(1)
Page 198: 20206580-CEGB-Vol-3-Turbine(1)
Page 199: 20206580-CEGB-Vol-3-Turbine(1)
Page 200: 20206580-CEGB-Vol-3-Turbine(1)
Page 201: 20206580-CEGB-Vol-3-Turbine(1)
Page 202: 20206580-CEGB-Vol-3-Turbine(1)
Page 203: 20206580-CEGB-Vol-3-Turbine(1)
Page 204: 20206580-CEGB-Vol-3-Turbine(1)
Page 205: 20206580-CEGB-Vol-3-Turbine(1)
Page 206: 20206580-CEGB-Vol-3-Turbine(1)
Page 207: 20206580-CEGB-Vol-3-Turbine(1)
Page 208: 20206580-CEGB-Vol-3-Turbine(1)
Page 209: 20206580-CEGB-Vol-3-Turbine(1)
Page 210: 20206580-CEGB-Vol-3-Turbine(1)
Page 211: 20206580-CEGB-Vol-3-Turbine(1)
Page 212: 20206580-CEGB-Vol-3-Turbine(1)
Page 213: 20206580-CEGB-Vol-3-Turbine(1)
Page 214: 20206580-CEGB-Vol-3-Turbine(1)
Page 215: 20206580-CEGB-Vol-3-Turbine(1)
Page 216: 20206580-CEGB-Vol-3-Turbine(1)
Page 217: 20206580-CEGB-Vol-3-Turbine(1)
Page 218: 20206580-CEGB-Vol-3-Turbine(1)
Page 219: 20206580-CEGB-Vol-3-Turbine(1)
Page 220: 20206580-CEGB-Vol-3-Turbine(1)
Page 221: 20206580-CEGB-Vol-3-Turbine(1)
Page 222: 20206580-CEGB-Vol-3-Turbine(1)
Page 223: 20206580-CEGB-Vol-3-Turbine(1)
Page 224: 20206580-CEGB-Vol-3-Turbine(1)
Page 225: 20206580-CEGB-Vol-3-Turbine(1)
Page 226: 20206580-CEGB-Vol-3-Turbine(1)
Page 227: 20206580-CEGB-Vol-3-Turbine(1)
Page 228: 20206580-CEGB-Vol-3-Turbine(1)
Page 229: 20206580-CEGB-Vol-3-Turbine(1)
Page 230: 20206580-CEGB-Vol-3-Turbine(1)
Page 231: 20206580-CEGB-Vol-3-Turbine(1)
Page 232: 20206580-CEGB-Vol-3-Turbine(1)
Page 233: 20206580-CEGB-Vol-3-Turbine(1)
Page 234: 20206580-CEGB-Vol-3-Turbine(1)
Page 235: 20206580-CEGB-Vol-3-Turbine(1)
Page 236: 20206580-CEGB-Vol-3-Turbine(1)
Page 237: 20206580-CEGB-Vol-3-Turbine(1)
Page 238: 20206580-CEGB-Vol-3-Turbine(1)
Page 239: 20206580-CEGB-Vol-3-Turbine(1)
Page 240: 20206580-CEGB-Vol-3-Turbine(1)
Page 241: 20206580-CEGB-Vol-3-Turbine(1)
Page 242: 20206580-CEGB-Vol-3-Turbine(1)
Page 243: 20206580-CEGB-Vol-3-Turbine(1)
Page 244: 20206580-CEGB-Vol-3-Turbine(1)
Page 245: 20206580-CEGB-Vol-3-Turbine(1)
Page 246: 20206580-CEGB-Vol-3-Turbine(1)
Page 247: 20206580-CEGB-Vol-3-Turbine(1)
Page 248: 20206580-CEGB-Vol-3-Turbine(1)
Page 249: 20206580-CEGB-Vol-3-Turbine(1)
Page 250: 20206580-CEGB-Vol-3-Turbine(1)
Page 251: 20206580-CEGB-Vol-3-Turbine(1)
Page 252: 20206580-CEGB-Vol-3-Turbine(1)
Page 253: 20206580-CEGB-Vol-3-Turbine(1)
Page 254: 20206580-CEGB-Vol-3-Turbine(1)
Page 255: 20206580-CEGB-Vol-3-Turbine(1)
Page 256: 20206580-CEGB-Vol-3-Turbine(1)
Page 257: 20206580-CEGB-Vol-3-Turbine(1)
Page 258: 20206580-CEGB-Vol-3-Turbine(1)
Page 259: 20206580-CEGB-Vol-3-Turbine(1)
Page 260: 20206580-CEGB-Vol-3-Turbine(1)
Page 261: 20206580-CEGB-Vol-3-Turbine(1)
Page 262: 20206580-CEGB-Vol-3-Turbine(1)
Page 263: 20206580-CEGB-Vol-3-Turbine(1)
Page 264: 20206580-CEGB-Vol-3-Turbine(1)
Page 265: 20206580-CEGB-Vol-3-Turbine(1)
Page 266: 20206580-CEGB-Vol-3-Turbine(1)
Page 267: 20206580-CEGB-Vol-3-Turbine(1)
Page 268: 20206580-CEGB-Vol-3-Turbine(1)
Page 269: 20206580-CEGB-Vol-3-Turbine(1)
Page 270: 20206580-CEGB-Vol-3-Turbine(1)
Page 271: 20206580-CEGB-Vol-3-Turbine(1)
Page 272: 20206580-CEGB-Vol-3-Turbine(1)
Page 273: 20206580-CEGB-Vol-3-Turbine(1)
Page 274: 20206580-CEGB-Vol-3-Turbine(1)
Page 275: 20206580-CEGB-Vol-3-Turbine(1)
Page 276: 20206580-CEGB-Vol-3-Turbine(1)
Page 277: 20206580-CEGB-Vol-3-Turbine(1)
Page 278: 20206580-CEGB-Vol-3-Turbine(1)
Page 279: 20206580-CEGB-Vol-3-Turbine(1)
Page 280: 20206580-CEGB-Vol-3-Turbine(1)
Page 281: 20206580-CEGB-Vol-3-Turbine(1)
Page 282: 20206580-CEGB-Vol-3-Turbine(1)
Page 283: 20206580-CEGB-Vol-3-Turbine(1)
Page 284: 20206580-CEGB-Vol-3-Turbine(1)
Page 285: 20206580-CEGB-Vol-3-Turbine(1)
Page 286: 20206580-CEGB-Vol-3-Turbine(1)
Page 287: 20206580-CEGB-Vol-3-Turbine(1)
Page 288: 20206580-CEGB-Vol-3-Turbine(1)
Page 289: 20206580-CEGB-Vol-3-Turbine(1)
Page 290: 20206580-CEGB-Vol-3-Turbine(1)
Page 291: 20206580-CEGB-Vol-3-Turbine(1)
Page 292: 20206580-CEGB-Vol-3-Turbine(1)
Page 293: 20206580-CEGB-Vol-3-Turbine(1)
Page 294: 20206580-CEGB-Vol-3-Turbine(1)
Page 295: 20206580-CEGB-Vol-3-Turbine(1)
Page 296: 20206580-CEGB-Vol-3-Turbine(1)
Page 297: 20206580-CEGB-Vol-3-Turbine(1)
Page 298: 20206580-CEGB-Vol-3-Turbine(1)
Page 299: 20206580-CEGB-Vol-3-Turbine(1)
Page 300: 20206580-CEGB-Vol-3-Turbine(1)
Page 301: 20206580-CEGB-Vol-3-Turbine(1)
Page 302: 20206580-CEGB-Vol-3-Turbine(1)
Page 303: 20206580-CEGB-Vol-3-Turbine(1)
Page 304: 20206580-CEGB-Vol-3-Turbine(1)
Page 305: 20206580-CEGB-Vol-3-Turbine(1)
Page 306: 20206580-CEGB-Vol-3-Turbine(1)
Page 307: 20206580-CEGB-Vol-3-Turbine(1)
Page 308: 20206580-CEGB-Vol-3-Turbine(1)
Page 309: 20206580-CEGB-Vol-3-Turbine(1)
Page 310: 20206580-CEGB-Vol-3-Turbine(1)
Page 311: 20206580-CEGB-Vol-3-Turbine(1)
Page 312: 20206580-CEGB-Vol-3-Turbine(1)
Page 313: 20206580-CEGB-Vol-3-Turbine(1)
Page 314: 20206580-CEGB-Vol-3-Turbine(1)
Page 315: 20206580-CEGB-Vol-3-Turbine(1)
Page 316: 20206580-CEGB-Vol-3-Turbine(1)
Page 317: 20206580-CEGB-Vol-3-Turbine(1)
Page 318: 20206580-CEGB-Vol-3-Turbine(1)
Page 319: 20206580-CEGB-Vol-3-Turbine(1)
Page 320: 20206580-CEGB-Vol-3-Turbine(1)
Page 321: 20206580-CEGB-Vol-3-Turbine(1)
Page 322: 20206580-CEGB-Vol-3-Turbine(1)
Page 323: 20206580-CEGB-Vol-3-Turbine(1)
Page 324: 20206580-CEGB-Vol-3-Turbine(1)
Page 325: 20206580-CEGB-Vol-3-Turbine(1)
Page 326: 20206580-CEGB-Vol-3-Turbine(1)
Page 327: 20206580-CEGB-Vol-3-Turbine(1)
Page 328: 20206580-CEGB-Vol-3-Turbine(1)
Page 329: 20206580-CEGB-Vol-3-Turbine(1)
Page 330: 20206580-CEGB-Vol-3-Turbine(1)
Page 331: 20206580-CEGB-Vol-3-Turbine(1)
Page 332: 20206580-CEGB-Vol-3-Turbine(1)
Page 333: 20206580-CEGB-Vol-3-Turbine(1)
Page 334: 20206580-CEGB-Vol-3-Turbine(1)
Page 335: 20206580-CEGB-Vol-3-Turbine(1)
Page 336: 20206580-CEGB-Vol-3-Turbine(1)
Page 337: 20206580-CEGB-Vol-3-Turbine(1)
Page 338: 20206580-CEGB-Vol-3-Turbine(1)
Page 339: 20206580-CEGB-Vol-3-Turbine(1)
Page 340: 20206580-CEGB-Vol-3-Turbine(1)
Page 341: 20206580-CEGB-Vol-3-Turbine(1)
Page 342: 20206580-CEGB-Vol-3-Turbine(1)
Page 343: 20206580-CEGB-Vol-3-Turbine(1)
Page 344: 20206580-CEGB-Vol-3-Turbine(1)
Page 345: 20206580-CEGB-Vol-3-Turbine(1)
Page 346: 20206580-CEGB-Vol-3-Turbine(1)
Page 347: 20206580-CEGB-Vol-3-Turbine(1)
Page 348: 20206580-CEGB-Vol-3-Turbine(1)
Page 349: 20206580-CEGB-Vol-3-Turbine(1)
Page 350: 20206580-CEGB-Vol-3-Turbine(1)
Page 351: 20206580-CEGB-Vol-3-Turbine(1)
Page 352: 20206580-CEGB-Vol-3-Turbine(1)
Page 353: 20206580-CEGB-Vol-3-Turbine(1)
Page 354: 20206580-CEGB-Vol-3-Turbine(1)
Page 355: 20206580-CEGB-Vol-3-Turbine(1)
Page 356: 20206580-CEGB-Vol-3-Turbine(1)
Page 357: 20206580-CEGB-Vol-3-Turbine(1)
Page 358: 20206580-CEGB-Vol-3-Turbine(1)
Page 359: 20206580-CEGB-Vol-3-Turbine(1)
Page 360: 20206580-CEGB-Vol-3-Turbine(1)
Page 361: 20206580-CEGB-Vol-3-Turbine(1)
Page 362: 20206580-CEGB-Vol-3-Turbine(1)
Page 363: 20206580-CEGB-Vol-3-Turbine(1)
Page 364: 20206580-CEGB-Vol-3-Turbine(1)
Page 365: 20206580-CEGB-Vol-3-Turbine(1)
Page 366: 20206580-CEGB-Vol-3-Turbine(1)
Page 367: 20206580-CEGB-Vol-3-Turbine(1)
Page 368: 20206580-CEGB-Vol-3-Turbine(1)
Page 369: 20206580-CEGB-Vol-3-Turbine(1)
Page 370: 20206580-CEGB-Vol-3-Turbine(1)
Page 371: 20206580-CEGB-Vol-3-Turbine(1)
Page 372: 20206580-CEGB-Vol-3-Turbine(1)
Page 373: 20206580-CEGB-Vol-3-Turbine(1)
Page 374: 20206580-CEGB-Vol-3-Turbine(1)
Page 375: 20206580-CEGB-Vol-3-Turbine(1)
Page 376: 20206580-CEGB-Vol-3-Turbine(1)
Page 377: 20206580-CEGB-Vol-3-Turbine(1)
Page 378: 20206580-CEGB-Vol-3-Turbine(1)
Page 379: 20206580-CEGB-Vol-3-Turbine(1)
Page 380: 20206580-CEGB-Vol-3-Turbine(1)
Page 381: 20206580-CEGB-Vol-3-Turbine(1)
Page 382: 20206580-CEGB-Vol-3-Turbine(1)
Page 383: 20206580-CEGB-Vol-3-Turbine(1)
Page 384: 20206580-CEGB-Vol-3-Turbine(1)
Page 385: 20206580-CEGB-Vol-3-Turbine(1)
Page 386: 20206580-CEGB-Vol-3-Turbine(1)
Page 387: 20206580-CEGB-Vol-3-Turbine(1)
Page 388: 20206580-CEGB-Vol-3-Turbine(1)
Page 389: 20206580-CEGB-Vol-3-Turbine(1)
Page 390: 20206580-CEGB-Vol-3-Turbine(1)
Page 391: 20206580-CEGB-Vol-3-Turbine(1)
Page 392: 20206580-CEGB-Vol-3-Turbine(1)
Page 393: 20206580-CEGB-Vol-3-Turbine(1)
Page 394: 20206580-CEGB-Vol-3-Turbine(1)
Page 395: 20206580-CEGB-Vol-3-Turbine(1)
Page 396: 20206580-CEGB-Vol-3-Turbine(1)
Page 397: 20206580-CEGB-Vol-3-Turbine(1)
Page 398: 20206580-CEGB-Vol-3-Turbine(1)
Page 399: 20206580-CEGB-Vol-3-Turbine(1)
Page 400: 20206580-CEGB-Vol-3-Turbine(1)
Page 401: 20206580-CEGB-Vol-3-Turbine(1)
Page 402: 20206580-CEGB-Vol-3-Turbine(1)
Page 403: 20206580-CEGB-Vol-3-Turbine(1)
Page 404: 20206580-CEGB-Vol-3-Turbine(1)
Page 405: 20206580-CEGB-Vol-3-Turbine(1)
Page 406: 20206580-CEGB-Vol-3-Turbine(1)
Page 407: 20206580-CEGB-Vol-3-Turbine(1)
Page 408: 20206580-CEGB-Vol-3-Turbine(1)
Page 409: 20206580-CEGB-Vol-3-Turbine(1)
Page 410: 20206580-CEGB-Vol-3-Turbine(1)
Page 411: 20206580-CEGB-Vol-3-Turbine(1)
Page 412: 20206580-CEGB-Vol-3-Turbine(1)
Page 413: 20206580-CEGB-Vol-3-Turbine(1)
Page 414: 20206580-CEGB-Vol-3-Turbine(1)
Page 415: 20206580-CEGB-Vol-3-Turbine(1)
Page 416: 20206580-CEGB-Vol-3-Turbine(1)
Page 417: 20206580-CEGB-Vol-3-Turbine(1)
Page 418: 20206580-CEGB-Vol-3-Turbine(1)
Page 419: 20206580-CEGB-Vol-3-Turbine(1)
Page 420: 20206580-CEGB-Vol-3-Turbine(1)