2168.2-2009 computerized radiography testing of mettalic materials using x-rays and gamma rays

Upload: joselito-magat

Post on 05-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    1/25

     

     AS 2168.2—2009

    Australian Standard® 

    Non-destructive testing—Computerizedradiography

    Part 2: Testing of metallic materialsusing X-rays and gamma rays

    A S 2 1  6  8 .2 —2  0  0  9 

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    2/25

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    3/25

     

     AS 2168.2—2009

    Australian Standard® 

    Non-destructive testing—Computerizedradiography

    Part 2: Testing of metallic materialsusing X-rays and gamma rays

    First published as AS 2168.2—2009.

    COPYRIGHT

    © Standards Australia

     All rights are reserved. No part o f this work may be reproduced or copied in any form or by

    any means, electronic or mechanical, including photocopying, without the written

    permission of the publisher.

    Published by Standards Australia GPO Box 476, Sydney, NSW 2001, Australia

    ISBN 0 7337 9178 6 A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    4/25

     AS 2168.2—2009   2

    PREFACE

    This Standard was prepared by the Australian members of the Joint Standards

    Australia/Standards New Zealand Committee MT-007, Non-destructive Testing of Metals

    and Materials. After consultation with stakeholders in both countries, Standards Australiaand Standards New Zealand decided to develop this Standard as an Australian Standard

    rather than an Australian/New Zealand Standard.

    The objective of this Standard is to ensure that the parameter of computed radiography

    systems as a progression for the next generation of radiographic methods are achieved.

    In the preparation of this Standard cognizance was taken of the following Standards:

    EN

    14784 Non-destructive testing—Industrial computed radiograph with storage

    phosphor imaging plates

    14784-1 Part 1: Classification of systems

    14784-2 Part 2: General principles for testing of metallic materials using X-rays andgamma rays

    This Standard is one of a series of Standards covering the range radiography of metals and

    materials.

    AS

    2168 Non-destructive testing—Computerized radiography

    2168.1 Part 1: Systems

    2168.2 Part 2: Testing of metallic materials using X-rays and gamma rays (this

    Standard)

    2177 Non-destructive testing—Radiography of welded butt joints in metal

    2314 Radiography of metals—Image quality indicators (IQI) and recommendations

    for their use

    3507 Non-destructive testing

    3507.1 Part 1: Guide to radiography for ferrous castings

    3507.2 Part 2: Radiographic determination of quality of ferrous castings

    3669 Non-destructive testing—Qualification and approval of personnel—Aerospace

    4749 Non-destructive testing—Terminology of and abbreviations for fusion weld

    imperfections as revealed by radiography

    Statements expressed in mandatory terms in footnotes to tables are deemed to be

    requirements of this Standard.

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    5/25

      3  AS 2168.2—2009  

    CONTENTS

     Page

    1 SCOPE........................................................................................................................ 42 REFERENCED DOCUMENTS.................................................................................. 4

    3 DEFINITIONS............................................................................................................ 4

    4 SAFETY PRECAUTIONS ......................................................................................... 5

    5 PERSONNEL QUALIFICATION AND VISION REQUIREMENTS........................ 5

    6 CLASSIFICATION OF COMPUTED RADIOGRAPHIC TECHNIQUES................. 6

    7 GENERAL REQUIREMENTS................................................................................... 6

    8 RECOMMENDED TECHNIQUES FOR MAKING COMPUTEDRADIOGRAPHS ........................................................................................................ 7

    9 PRESENTATION DATA ......................................................................................... 16

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    6/25

     AS 2168.2—2009   4

    © Standards Australia www.standards.org.au

    STANDARDS AUSTRALIA

    Australian Standard

    Non-destructive testing—Computerized radiography

    Part 2: Testing of metallic materials using X-rays and gamma rays

    1 SCOPE

    This Standard specifies fundamental techniques of computed radiography with the aim of

    enabling satisfactory and repeatable results to be obtained economically. The techniques are

    based on the fundamental theory of the subject and test measurements. This Standard

    specifies the general rules for industrial computed X-ray and gamma radiography for flaw

    detection purposes, using storage phosphor imaging plates (IP). It is based on the general

    principles for radiographic examination of metallic materials on the basis of films, (refer toAS 2177.)

    2 REFERENCED DOCUMENTS

    The following documents are referred to in this Standard:

    AS

    1929 Non-destructive testing—Glossary of terms

    2177 Non-destructive testing—Radiography of welded butt joints in metals

    2314 Radiography of metals—Image quality indicators (IQI) and recommendations

    for their use2168 Non-destructive testing—Computerized radiography

    2168.1 Part 1: Systems

    2243 Safety in laboratories

    2243.4 Part 4: Ionizing radiations

    2452 Non-destructive testing—Determination of thickness

    2452.1 Part 1: Determination of wall thickness of pipe by the use of radiography

    3507 Non-destructive testing

    3507.1 Part 1: Guide to radiography for ferrous castings

    3669 Non-destructive testing—Qualification and approval of personnel—Aerospace3998 Non-destructive testing—Qualification and certification of personnel

    EN

    462 Non-destructive testing—Image quality of radiographs

    462-5 Part 5: Image quality indicators (duplex wire type), determination of image

    unsharpness value

    3 DEFINITIONS

    For the purposes of this Standard the following definitions and those in AS 1929 apply.

    3.1 Computed radiography system (CR system)

    Complete system of a storage phosphor imaging plate (IP) and corresponding read out unit

    (scanner or reader), and system software, which converts the information of the IP into a

    digital image. A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    7/25

      5  AS 2168.2—2009  

     www.standards.org.au © Standards Australia

    3.2 Computed radiography system class

    Particular group of storage phosphor imaging plate systems, which is characterized by a

    Signal-to-Noise Ratio (SNR) range shown in Table 1 and by a certain basic spatial

    resolution value (e.g. derived from duplex wire IQI) in a specified exposure range.

    3.3 Nominal thickness (t )Thickness of the material in the region under examination. Manufacturing tolerances do not

    have to be taken into account.

    3.4 Object-to-detector distance (b)

    Distance between the radiation side of the test object and the detector surface measured

    along the central axis of the radiation beam.

    3.5 Penetrated thickness (w)

    Thickness of material in the direction of the radiation beam calculated on basis of the

    nominal thickness. For multiple wall techniques the penetrated thickness is calculated from

    the nominal thickness.3.6 Effective source size (d )

    Size of the source of radiation.

    3.7 Source-to-detector distance ( SDD)

    Distance between the source of radiation and the detector measured in the direction of the

    beam.

    3.8 Source-to-object distance (  f )

    Distance between the source of radiation and the source side of the test object measured

    along the central axis of the radiation beam.

    3.9 Storage phosphor imaging plate systems

    Complete system of a storage phosphor imaging plate (IP) and a corresponding read out

    unit (scanner or reader), which converts the information of the IP into a digital image.

    4 SAFETY PRECAUTIONS

    Prolonged exposure of any part of the human body to ionizing radiation is hazardous to

     your health. Adequate precautions shall be taken to protect testing personnel and any other

    persons in the vicinity, when X-ray equipment or radioactive sources are being used.

     NOTES: 

    1  The use of radioactive substance and irradiation apparatus is controlled by various statutory

    regulations. Reference should be made to the Radiation Health Series No. 31 Code of Practicefor the safe use of industrial radiographic equipment.

    2  Reference should also be made to AS 2243.4 for ionizing radiation safety precautions.

    5 PERSONNEL QUALIFICATION AND VISION REQUIREMENTS

    5.1 Personnel qualifications

    Radiographic testing interpretation for compliance, and report shall be made by personnel

    having qualification and experience for their job function acceptable to the testing body, the

    manufacturer and where required by the purchaser.

    Operators of CR systems shall have documented proof of competency in using the

    equipment.

    Operators shall have the qualification detailed below or shall carry out their duties under

    the supervision of persons responsible for the performance of the test. A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    8/25

     AS 2168.2—2009   6

    © Standards Australia www.standards.org.au

    Qualifications normally acceptable for the radiographic testing or welds or metallic

    materials include the following:

    (a)  Certification by the Australian Institute for Non-Destructive Testing (AINDT)

    Certification Board in accordance with AS 3998 or approval in accordance with AS

    3669 in radiographic testing.

    (b)  Equivalent qualifications.

    5.2 Vision requirements

    The personnel shall provide documented evidence of satisfactory vision in accordance with

    AS 3998 or AS 3669.

    Subsequent to certification, the tests of visual acuity shall be carried out annually and be

     verified by the employer or the responsible agency.

    6 CLASSIFICATION OF COMPUTED RADIOGRAPHIC TECHNIQUES

    Computed radiographic techniques are subdivided into two classes:

    (a)  Class A: basic technique.

    (b)  Class B: improved technique.

    Class B technique will be used when Class A may be insufficiently sensitive.

     NOTE: Better techniques, compared with Class B, are possible and may be agreed between the

    purchaser and the supplier by specification of all appropriate test parameters.

    Before commencing the radiographic examination the type of techniques to be used shall be

    predetermined.

     NOTE: The agreement between the purchaser and supplier should be negotiated upon at the time

    of enquiry or placement of order.

    Due to image parameters such as signal-to-noise ratio (SNR), un-sharpness and sensitivityto scattered radiation and hardening, differences exist between film radiographs and

    computed radiographs.

     Nevertheless, the perception of flaws using film radiography or computed radiography is

    comparable by using Class A and Class B techniques, respectively. The perceptibility shall

    be proven by the use of IQIs according to AS 2314.

    If it is not possible for technical reasons to meet one of the conditions specified for the

    Class B, such as the type of radiation source or the source-to-object distance  f , it may be

    agreed between the contracting parties that the condition selected may be that specified for

    Class A. The loss of sensitivity shall be compensated for, by doubling the required

    minimum exposure time with the goal to increase the minimum SNR by a factor of 1.4(additional to the SNR required from the plate-scanner classes given by Tables 2 to 3).

    Because of the resulting improved sensitivity compared to Class A, the test sections may be

    regarded as examined within Class B.

     NOTE: This applies only to those IP-scanner systems whose SNR is not limited by the in-

    homogeneity of the phosphor layer or the scanner dynamic at the required minimum exposure

    time (see Clause 7.5).

    7 GENERAL REQUIREMENTS

    7.1 Surface preparation and stage of manufacture

    In general, surface preparation is not necessary, but where surface imperfections or coatings

    might cause difficulty in detecting defects, the surface shall be ground smooth or thecoatings shall be removed.

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    9/25

      7  AS 2168.2—2009  

     www.standards.org.au © Standards Australia

    7.2 Identification of radiographs

    Symbols shall be affixed to each section of the object being radiographed. The images of

    these symbols shall appear in the radiograph outside the region of interest where possible

    and shall ensure unequivocal identification of the section.

    7.3 MarkingPosition markings on the object to be examined shall be made in order to locate accurately

    the position of each radiograph.

    Where the nature of the material and/or its service conditions do not permit position

    marking, the location may be recorded by means of accurate sketches or photographs.

    7.4 Overlap of phosphor imaging plates

    When radiographing an area with two or more separate phosphor imaging plates (IP), the

    IPs shall overlap sufficiently to ensure that the complete region of interest is radiographed.

    This shall be verified by a high-density marker on the surface of the object that will appear

    on each image.

    7.5 Image quality indicators

    The quality of image shall be verified by use of IQIs, in accordance with the specific

    application of AS 2314 for the contrast resolution and EN 462-5 for measurement of un-

    sharpness. Therefore two IQIs are always required on each image. The minimum IQI-values

    are dependent on wall thickness and geometry as defined by AS 2314.

    This document may be applied to non-ferrous metals if appropriate IQIs are used.

    In specific cases, as-agreed minimum IQI-values may be specified in accordance with

    AS 2314.

    IQIs of the step-hole type should not be applied because the wire IQIs are more suitable to

    encourage the operator to compensate for limited sharpness with increased contrast. Thiscompensation can be achieved either by reduction of the source voltage or by longer

    exposure time to increase the SNR of the computed radiograph.

    8 RECOMMENDED TECHNIQUES FOR MAKING COMPUTED RADIOGRAPHS

    8.1 Test arrangements

    Test arrangements shall be determined from the specific application standards for film

    radiography, refer to AS 2177, AS 2452.1 and AS 3507.1.

    8.2 Choice of X-ray tube voltage and radiation source

    8.2.1  X-ray equipment

    To maintain good flaw detection sensitivity, the X-ray tube voltage should be as low as

    possible. The maximum values of tube voltage versus thickness are given in Figure 1.

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    10/25

     AS 2168.2—2009   8

    © Standards Australia www.standards.org.au

    500 Y 

    400

    300

    20 0

    100

    8070

    60

    50

    40

    30

    20

    101 2 3 4 5 6 7 8 910

    PENETRATED THICKNESS (w  ), mm

       X  -   R   A   Y

       V   O   L   T   A   G   E ,

       k   V

    20 30 40 50 60 80 100

     X 

    Cu

     T i

    Fe

     Al

     LEGEND: X = penetrated thickness w , in millimetresY = X-ray voltage, in kilovolts

    FIGURE 1 MAXIMUM X-RAY VOLTAGE FOR X-RAY DEVICES UP TO 500 kV AS

    FUNCTION OF PENETRATED WALL THICKNESS

    8.2.2  Other radiation sources

    The permitted penetrated thickness ranges for gamma ray sources and X-ray equipment

    above 1 MeV are given in Table 1.

    The value for Ir192 may be reduced further to 10 mm and for Se75 to 5 mm penetrated wall

    thickness. This is the subject of agreement between contracting parties.

    On thin specimens, gamma rays from Ir192

     and Co60

     will not produce computed radiographs

    having as good a defect detection sensitivity as X-rays used with appropriate techniqueparameters.

     NOTE: Due to the advantages of gamma ray sources in handl ing and accessibility, Table 1 gives a

    range of thickness for which each of these gamma ray sources may be used when the use of X-

    rays is not practicable.

    In cases where radiographs are produced using gamma rays, the travel time to position the

    source shall not exceed 10% of the total exposure time.

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    11/25

      9  AS 2168.2—2009  

     www.standards.org.au © Standards Australia

    TABLE 1

    PENETRATION THICKNESS RANGE FOR GAMMA RAY SOURCES AND X-RAY

    EQUIPMENT WITH ENERGY FROM 1 MeV AND ABOVE FOR STEEL, COPPER

    AND NICKEL-BASE ALLOYS

    Penetrated thickness range (w)

    mm

    Radiation source

    Test Class A Test Class B

    Tm 170   w ≤ 5 w ≤ 5

    Yb169* 1 ≤ w ≤ 15 2 ≤ w ≤ 12

    Se75† 10 ≤ w ≤ 40 14 ≤ w ≤ 40

    Ir192   20 ≤ w ≤ 100 20 ≤ w ≤ 90

    Co60  40 ≤ w ≤ 200 60 ≤ w ≤ 150

    X-ray equipment with energy 1 to 4 MeV 30 ≤ w ≤ 200 50 ≤ w ≤ 180

    X-ray equipment with energy 4 to 12 MeV 50 ≤ w  80 ≤ w 

    X-ray equipment with energy > 12 MeV 80 ≤ w  100 ≤ w 

    * For aluminium and titanium the penetrated material thickness range is 10 ≤ w ≤ 70 for Class A and 25 ≤ w 

    ≤ 55 for Class B.

    † For aluminium and titanium the penetrated material thickness range is 35 ≤ w ≤ 120 for Class A.

    8.3 Phosphor imaging plate-scanner systems and screens

    For computer radiographic examination, IP-scanner system classes shall be used

    corresponding to the definitions given in AS 2168.1. The IP system classes are defined in

    AS 2168.1 by the minimum normalized SNR-values (SNR IPx) and are reproduced in

    Table 2.

    For different radiation sources and wall thickness ranges, the minimum IP-system classes

    are given in Tables 3 and 4. These Tables show the recommended screen materials and

    metal thickness. When using lead screens, good contact between IP and screens is required.

    Other screen thicknesses and materials may also be applied if described in the specification

    provided the required image quality is achieved.

    TABLE 2

    CR SYSTEM EVALUATION ACCORDING TO THE MINIMUM

    NORMALIZED SNR AT THE MINIMUM SIGNAL INTENSITY  I IPX 

    System Class CEN Minimum normalized SNR

    IP1/Y 130

    IP2/Y 117

    IP3/Y 78

    IP4/Y 65

    IP5/Y 52

    IP6/Y 43

     NOTES: 

    The normalized SNR values of Table 1 are similar to those of EN 584-1. They

    are calculated by SNR=

    log (e) (Gradient/Granularity) of Table 1 in EN 5841.The measured SNR values are calculated from linearized signal data.

    Y is the maximum basic spatial resolution (see Clause 6.3.2).

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    12/25

     AS 2168.2—2009   10

    © Standards Australia www.standards.org.au

    The classification statement consists of two values:

    (a)  The assignment to an IP-class in agreement with Table 1. The measured normalized

    SNR shall be greater or equal to the assigned value of the minimum normalized SNR

    in Table 1.

    (b) 

    The measured maximum basic spatial resolution, rounded to the nearest 10 µm step.The statement shall be given in the following form:

    IP X/Y

     NOTE: For example, a system classified as IP 3/100 is characterized by a normalized

    SNR ≥ 78 (see Table 1) and a maximum basic spatial resolution ≤100 µm.

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    13/25

     

    www

    s t  and ar d s or gau

    ©

    S t  and ar d s A us t  r al  i  a

    TABLE 3

    IP-SYSTEM CLASSES AND METAL SCREENS FOR THE COMPUTED RADIOGRAPH

    COPPER AND NICKEL BASED ALLOYS

    IP system class* Type and minimumRadiation source

    Penetrated wall thickness (w)

    mm  A B Front

    X-ray < 50 kV 4 2 None

    X-ray < 50 kV to 150 kV 5 3 Pb 0.1

    X-ray > 150 kV to 250 kV 5 4 Pb 0.1

    w < 50 5 4 Pb 0.2 X-ray > 250 kV to 350 kV

    w > 50 5 5 Pb 0.3

    w < 50 5 4 Pb 0.3 X-ray > 350 kV to 450 kV

    w > 50 5 5 Pb 0.3

    w < 5 5 3 Pb 0.1 Yb169 , Tm 170  

    w > 5 5 4 Pb 0.1

    w < 50 5 4 Pb 0.3 Ir192 , Se75  

    w > 50 5 5 Pb 0.4

    w < 100 5 4 Fe 0.5 + Pb 1.Co60†  

    w > 100 5 5 Fe 0.5 + Pb 2.

    X-ray > 1 MV†  w < 100 5 4 Fe 0.5 + Pb 1.

    w > 100 5 5 Fe 0.5 + Pb 2.

    * Better IP-system classes may also be used.

    † In case of multiple screens (Fe + Pb) the steel screen shall be located between the IP and the lead screen. Instead of Fe or Fe + Pb

    screen screens may be used in if the image quality can be proven.

    Accessed by BUREAU VERITAS AUSTRALIA PTY LTD on 03 Apr 2013 (Document currency not guaranteed when printed)

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    14/25

     AS 2168.2—2009   12

    © Standards Australia www.standards.org.au

    TABLE 4

    IP SYSTEM CLASSES AND METAL SCREENS FOR ALUMINIUM AND

    TITANIUM

    IP system class*Radiation source

    Class A Class B

    Type and minimumthickness in mm of

    front and back screens

    X-ray < 50 kV 0

    X-ray 50 kV to 150 kV 0

    X-ray > 150 kV to 250 kV Pb 0.02

    X-ray > 250 kV Pb 0.1

    Yb169,Tm 170   Pb 0.02

    Se75 

    IP 5 IP3

    Pb 0.1

    * Better IP-system classes may be also used.

    8.4 System unsharpness

    Computed radiography systems shall provide sufficient image quality for a certain

    probability of detection of material discontinuities. Table 4 defines the required maximum

    un-sharpness (duplex wire IQI-value) and pixel size of the scanner depending on radiation

    energy and wall thickness.

    The system unsharpness shall be proven for all exposures by the duplex wire IQI (refer to

    EN 462-5).

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    15/25

     

    www

    s t  and ar d s or gau

    ©

    S t  and ar d s A us t  r al  i  a

    TABLE 5

    REQUIRED SPATIAL SYSTEM RESOLUTION IN DEPENDENCE ON ENERGY AND WA

    Class IPA Radiation source Wall thickness

    (w)

    mmMax. pixel* size

    µm

    Duplex wire IQI number† Max. pixel*

    µm

    w < 4 40 > 13‡  30 X-ray

    ≤50 kV 4 ≤ w  60 13 40

    w < 4 60 13 30

    4 ≤ w < 12 70 12 40

    X-ray

    >50 kV to 13’ requires the 13th wire pair to be resolved with a dip separation larger than 50%.

    Accessed by BUREAU VERITAS AUSTRALIA PTY LTD on 03 Apr 2013 (Document currency not guaranteed when printed)

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    16/25

     AS 2168.2—2009   14

    © Standards Australia www.standards.org.au

    8.5 Alignment of beam

    The beam of radiation shall be directed to the centre of the area being inspected and should

    be normal to the object surface at that point, except when it can be demonstrated that

    certain flaws are best revealed by a different alignment of the beam.

    8.6 Reduction of scattered radiation

    8.6.1  Filters and collimators

    In order to reduce the effect of back-scattered radiation, direct radiation shall be collimated

    as much as possible to the section under examination.

    With Se75, Ir192 and Co60 radiation sources, or in case of edge scatter, a sheet of lead can be

    used as a filter for low energy scattered radiation between the object and the cassette. The

    thickness of this sheet is 0.5 mm to 2 mm.

    8.6.2  Interception of back scattered radiation

    If necessary, the IP shall be shielded from back-scattered radiation by an adequate thickness

    of lead at least 1 mm, or of tin of at least 1.5 mm, placed behind the IP-screen combination.

    The presence of back-scattered radiation shall be checked for each new test arrangement by

    a lead letter B (with a height of minimum 10 mm and a thickness of minimum 1.5 mm)

    placed immediately behind each cassette. If the image of this symbol records as an image

    with less intensity than the background on the radiograph, it shall be rejected. If the symbol

    is not visible the radiograph is acceptable and demonstrates adequate protection against

    scattered radiation.

    8.7 Source-to-object distance

    The minimum source-to-object distance  f min  depends on the source size d and on the object-

    to-detector (IP) distance b.

    The distance  f , shall, where practicable, be chosen so that the ratio of this distance to the

    source sized d , i.e. f/d, is not below the values given by the following equations:

    For Class A:  f /d  ≥ 7.5(b)2/3  . . . (1)

    For Class B  f /d  ≥ 15(b)2/3  . . . (2)

    b is in millimetres (mm).

    If the distance b < 1.2 t the dimension b in Equations (1) and (2) and Figure 2 shall be

    replaced by the nominal thickness t . 

    For determination of the source-to-object distance,  f min , the nomogram in Figure 2 may be

    used.

    The nomogram is based on Equations (1) and (2).

    In Class A, if planar imperfections have to be detected the minimum distance  f min shall be

    the same as for Class B in order to reduce the geometric un-sharpness by a factor of 2.

    In critical technical applications of crack-sensitive materials more sensitive radiographic

    techniques than Class B shall be used.

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    17/25

      15  AS 2168.2—2009  

     www.standards.org.au © Standards Australia

    10

    mm8

    7

    6

    5

    4

    3

          d 2

    1

    0. 5

          b

    500

    400mm

    300

    20 0

    10 0

    80

    60

    50

    40

    30

    20

    10

    1

    5

    2

    3

    4

    6

    8

    5000

    mm

    300

    200

    1000

    500

    300

          f  m   i  n

      a

          f  m   i  n

       b

    200

    10 0

    50

    30

    20

    10 5

    10

    10 0

    500

    1000

    2000

    20 0

    mm

    300

    50

    20

    30

    LEGEND:

    a = Minimum source to object distance for c lass Bb = Minimum source to object distance for c lass A  

    FIGURE 2 NOMOGRAM FOR DETERMINATION OF MINIMUM SOURCE-TO-OBJECT

    DISTANCE f min IN RELATION TO THE OBJECT-IP DISTANCE AND THE SOURCE SIZE

    8.8 Maximum area for a single exposure

    The ratio of the penetrated thickness at the outer edge of an evaluated area of uniform

    thickness to that at the centre beam shall not be more than 1.1 for Class B and 1.2 for

    Class A.

    The read-out intensities resulting from any variation of penetrated thickness shall not be

    lower than those indicated in Clause 8.9.

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    18/25

     AS 2168.2—2009   16

    © Standards Australia www.standards.org.au

    8.9 Minimum read-out intensity of computed radiographs

    Each CR image shall have better or equal SNR than those defined by the system classes

    mentioned in Tables 2 and 3. As SNR values are not measured regularly, the minimum SNR

     values are guaranteed by the use of minimum read-out intensities  I IPx  where x represents the

    IP class. These read-out intensities are analogous to the use of minimum optical densities in

    film radiography. The definition of minimum read-out intensity is derived frommeasurements of the particular CR system refer to AS 2168.1 and they are provided by the

    manufacturer.

    Each acquired computed radiograph shall be verified in accordance to Table 5. To be

    classified as Class A or Class B, readings shall be equal or exceed the required values.

     NOTE: The same IP-scanner system may be used for different applications, which have to sat isfy

    different IP-scanner system classes. This results in different minimum read-out intensities and

    usually in different exposure times.

    TABLE 6

    READ-OUT INTENSITY OF COMPUTED RADIOGRAPHS

    Testing class Minimum

    Read-out intensity*

    for system Class x

    Minimum SNR

    A 0.81  I ipx† 0.9 SNR ipx†

    B 1.0  I ipx† 1.0 SNR ipx†

    * A measuring tolerance of ±5% is permitted.

    † Value may be reduced by special agreement of contacting parties.

    High intensities may be used with advantage if the IP-scanner system does not already limit

    the SNR.

    In order to avoid unduly high background intensities arising from exposure by natural

    radiation, IPs shall always be erased before use if the last erasure was more than two weeks.

    If IPs are used for high-energy application or gamma radiography, they shall be checked for

    sufficient erasure by a test read out.

    If  I IPx values are not available, the achieved testing class can be determined from the IQI-

    readout values in accordance with AS 2314. No image processing is allowed apart from

    linear brightness and contrast adjustment.

    8.10 Monitor and film viewing conditions

    The computed radiographs shall be examined in a darkened room on a monitor or a printed

    film hardcopy- with a resolution better or equal to the requirements of AS 2177.The monitor shall have a luminance of ≥100 cd/m2 and a resolution of ≥1280 × 1024 pixel

    with a pixel size of 150 µm to 300 µm. The graphic board shall provide ≥256 grey levels.

    The software shall provide images, which are always visualized with 256 grey levels. The

    ratio for displayable luminance (Lmax/Lmin) shall be ≥100:1.

    9 PRESENTATION DATA

    9.1 Record test

    The record of test shall include at least the following information:

    (a)   Name of the laboratory or testing authority.

    (b)  Identification of the component.

    (c)  Job reference number A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    19/25

      17  AS 2168.2—2009  

     www.standards.org.au © Standards Australia

    (d)   Number of the product Standard.

    (e)  Details of the material under test.

    (f)  The number of this Australian Standard, i.e. AS 2168.2, the method designation, or

    any departures from that method.

    (g) 

    Details (to allow the radiograph to be related to the workpiece or the test specimen).

    (h)  The surface condition of the workpiece, including type of preparation.

    (i)  Details of the X-ray tube voltage and current, or of the isotope used and its

    radioactivity.

    (j)  The effective source size, in millimetres.

    (k)  The source-to-detector (SDD) distance used, in millimetres.

    (l)  The nature and thickness, in millimetres, of any screens or filters used.

    (m)  Special notes on exposure geometry (if applicable).

    (n) 

    IQI types, model, location and percent sensitivity achieved, refer to AS 2314 andEN 462-5.

    (o)  The trade designation of the IP’s Cr system.

    (p)  The minimum readout intensity.

    (q)  Details of exposure, in milliampere seconds or curie seconds.

    (r)   Nominal thickness.

    (s)  The date and place of test.

    (t)  The report number (of reference number) as applicable.

    (u) 

    Identification of the testing personnel.9.2 Test report

    For each computed radiograph, or set of computed radiographs, a test report shall be made

    giving information on the radiographic technique used, and on any other special

    circumstances which would allow a better understanding of the results.

    Details concerning form and contents as specified in special application standards or be as

    required by the purchaser and supplier. If inspection is carried out exclusively to this

    guideline then the test report shall contain at least the following information:

    (a)   Name of the laboratory or testing authority.

    (b) 

    Identification of the component, including sufficient details to permit subsequentcorrelation between the report and radiographs.

    (c)  Job reference number.

    (d)   Number of the product Standard.

    (e)  Details of the material under test.

    (f)   Nominal thickness.

    (g)  Reference to this Australian Standard, i.e. AS 2168.2, the method designation, or any

    departures from that method.

    (h)  Details of the manufacturers process.

    (i) 

    Details of any surface imperfections considered in the assessment of the radiograph.

    (j)  IQI types, model, location and percent sensitivity achieved, refer to AS 2314 and

    EN 462-5. A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    20/25

     AS 2168.2—2009   18

    © Standards Australia www.standards.org.au

    (k)  Details of intensifying screens/filters.

    (l)  The minimum readout intensity.

    (m)  The trade designation of the IPs, CR system.

    (n)  The effective source size, in millimetres.

    (o)  Test results.

    (p)  A statement of compliance or otherwise with the acceptance criteria as specified in

    the relevant product Standard or application Standard, if applicable.

    (q)  The date and place of testing.

    (r)  The report number and the date of issue.

    (s)   Name of certification and signature from the responsible person(s).

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    21/25

      19  AS 2168.2—2009  

     NOTES

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    22/25

     AS 2168.2—2009   20

     NOTES

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    23/25

     

    Standards Australia

    Standards Australia develops Australian Standards® and other documents of public benefit and national interest.

     These Standards are developed through an open process of consultation and consensus, in which all interested

    parties are invited to participate. Through a Memorandum of Understanding with the Commonwealth Government,

    Standards Australia is recognized as Australia’s peak non-government national standards body. Standards Australiaalso supports excellence in design and innovation through the Australian Design Awards.

    For further information visit www standards org au 

    Australian Standards®

    Committees of experts from industry, governments, consumers and other relevant sectors prepare Australian

    Standards. The requirements or recommendations contained in published Standards are a consensus of the views

    of representative interests and also take account of comments received from other sources. They reflect the latest

    scientific and industry experience. Australian Standards are kept under continuous review after publication and are

    updated regularly to take account of changing technology.

    International Involvement

    Standards Australia is responsible for ensuring the Australian viewpoint is considered in the formulation of

    International Standards and that the latest international experience is incorporated in national Standards. This role is

    vital in assisting local industry to compete in international markets. Standards Australia represents Australia at both

    the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC).

    Sales and Distribution

     Australian Standards®, Handbooks and other documents developed by Standards Australia are printed and

    distributed under license by SAI Global Limited.

     A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    24/25

     

    For information regarding the development of Standards contact:

    Standards Australia Limited

    GPO Box 476

    Sydney NSW 2001

    Phone: 02 9237 6000

    Fax: 02 9237 6010

    Email: [email protected]

    Internet: www.standards.org.au

    For information regarding the sale and distribution of Standards contact:

    SAI Global Limited

    Phone: 13 12 42Fax: 1300 65 49 49

    Email: [email protected]

    ISBN 0 7337 9178 6 A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )

  • 8/16/2019 2168.2-2009 Computerized Radiography Testing of Mettalic Materials Using X-Rays and Gamma Rays

    25/25

    This page has been left intentionally blank.

    A c c e s s e d b

     y B U R E A U

     V E R I T A S

     A U S T R A L I A

     P T Y L T D

     o n 0 3 A p r 2 0 1 3 ( D o c u m e n t c u r r e n c y n o t g u a r a n t e e d w h e n p r i n t e d )