2%2brandom%2bnumbers

Upload: pedro91paul

Post on 15-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 2%2BRandom%2Bnumbers

    1/47

    Kleber Barcia V.

    Chapter 2

    Random Numbers

    1. Random-number generation

    2. Random-variable generation

  • 7/23/2019 2%2BRandom%2Bnumbers

    2/47

    Kleber Barcia V.

    Chapter 2

    2

    1. Objectives. Random numbers

    Discuss how the random numbers are

    generated.

    Introduce the subsequent testing for

    randomness:

    Frequency test

    Autocorrelation test.

  • 7/23/2019 2%2BRandom%2Bnumbers

    3/47

    Kleber Barcia V.

    Chapter 2

    3

    Properties of random numbers

    Two important statistical properties:

    Uniformity

    Independence.

    Random Number, Ri, must be independently drawn from auniform distribution with pdf:

    Figure: pdf for random numbers

    2

    1

    2)(

    1

    0

    21

    0

    xxdxrE

    12

    1

    4

    1

    3

    1

    2

    1

    3)(

    21

    0

    31

    0

    22

    xrEdxxrV

    12

    22

    abrV

    barE

    otherwise,0

    10,1)(

    xxf

  • 7/23/2019 2%2BRandom%2Bnumbers

    4/47

    Kleber Barcia V.

    Chapter 2

    4

    Generation of pseudo-random numbers

    Pseudo, because generating numbers using a known

    method removes the potential for true randomness.

    Goal: To produce a sequence of numbers in [0,1] that

    simulates, or imitates, the ideal properties of random numbers

    (RN).

    Important considerations in RN routines:

    Fast

    Portable to different computers

    Have sufficiently long cycle

    Replicable

    Closely approximate the ideal statistical properties of uniformity

    and independence.

  • 7/23/2019 2%2BRandom%2Bnumbers

    5/47

    Kleber Barcia V.

    Chapter 2

    5

    Techniques to generate random numbers

    Middle-square algorithm

    Middle-product algorithm

    Constant multiplier algorithm

    Linear algorithm

    Multiplicative congruential algorithm

    Additive congruential algorithm

    Congruential non-linear algorithms

    Quadratic

    Blumy Shub

  • 7/23/2019 2%2BRandom%2Bnumbers

    6/47

    Kleber Barcia V.

    Chapter 2

    6

    Middle-square algorithm

    1. Select a seed x0 with D digits (D > 3)

    2. Rises to the square: (x0)2

    3. Takes the four digits of the Center = x1

    4. Rises to the square: (x1)2

    5. Takes the four digits of the Center = x2

    6. And so on. Then convert these values to r1between

    0 and 1

    If it is not possible to obtain the D digits in the Center,

    add zeros to the left.

  • 7/23/2019 2%2BRandom%2Bnumbers

    7/47 Kleber Barcia V.

    Chapter 2

    7

    Middle-square algorithm

    If x0 = 5735

    Then,

    Y0 = (5735)2 = 32890225 x1= 8902 r1= 0.8902

    Y1 = (8902)2

    = 79245604 x2= 2456 r2= 0.2456Y2 = (2456)

    2 = 06031936 x3= 0319 r3= 0.0319

    Y3 = (0319)2 = 101760 x4= 0176 r4= 0.0176

    Y4 = (0176)2 = 030976 x5= 3097 r5= 0.3097

    1. Small cycles

    2. May lose the series (e.g.: X0 = 0012)

  • 7/23/2019 2%2BRandom%2Bnumbers

    8/47 Kleber Barcia V.

    Chapter 2

    8

    Middle-product algorithm

    It requires 2 seeds of D digits

    1. Select 2 seeds x0and x1with D > 3

    2. Y0= x0* x1 xi = digits of the center3. Yi= xi*xi+1 xi+1 = digits of the center

    If it is not possible to obtain the D digits in the center, add

    zeros to the left.

  • 7/23/2019 2%2BRandom%2Bnumbers

    9/47 Kleber Barcia V.

    Chapter 2

    9

    Middle-product algorithm

    Example:

    Seeds x0= 5015 y x1= 5734

    Y0= (5015)(5734) = 28756010 x2= 7560 r1= 0.756

    Y1= (5734)(7560) = 43349040 x3= 3490 r2= 0.349

    Y2= (7560)(3490) = 26384400 x4= 3844 r3= 0.3844

    Y3= (3490)(3844) = 13415560 x5= 4155 r4= 0.4155

    Y4= (3844)(4155) = 15971820 x6= 9718 r5= 0.9718

  • 7/23/2019 2%2BRandom%2Bnumbers

    10/47 Kleber Barcia V.

    Chapter 2

    10

    Constant multiplier algorithm

    Similar to Middle-product algorithm

    1. Select a seed x0(D > 3)

    2. Select a constant "a

    3. Y0= a*x0 xi = D digits of the center

    4. Yi = a*xi xi+1= D digits of the center

    5. Repeat until you get the desired random numbers

  • 7/23/2019 2%2BRandom%2Bnumbers

    11/47 Kleber Barcia V.

    Chapter 2

    11

    Constant multiplier algorithm

    Example:

    If: seed x0= 9803 and constant a = 6965

    Y0= (6965)(9803) = 68277895 x1= 2778 r1= 0.2778

    Y1= (6965)(2778) = 19348770 x2= 3487 r2= 0.3487

    Y2= (6965)(3487) = 24286955 x3= 2869 r3= 0.2869

    Y3= (6965)(2869) = 19982585 x4= 9825 r4= 0.9825

    Y4= (6965)(9825) = 68431125 x5= 4311 r5= 0.4311

  • 7/23/2019 2%2BRandom%2Bnumbers

    12/47 Kleber Barcia V.

    Chapter 2

    12

    Linear algorithm

    To produce a sequence of integers,X1, X2, between 0andm-1by following a recursive relationship:

    The selection of the values for a, c, m, andX0drastically affects

    the statistical properties and the cycle length, must be > 0

    "mod (m)" is the residue of the term (axi+ c) /m

    The random integers are being generated [0,m-1], and toconvert the integers to random numbers:

    ,...2,1,0,mod)(1 imcaXX ii

    The

    multiplier

    The

    increment

    Themodulus

    ,...2,1, im

    XR i

    i

  • 7/23/2019 2%2BRandom%2Bnumbers

    13/47 Kleber Barcia V.

    Chapter 2

    13

    Linear algorithm

    Example:

    UseX0= 27, a = 17, c = 43y m = 100

    The values ofxiand riare:

    X1= (17*27+43) mod 100 = 502 mod 100 = 2 r1= 2/99 = 0.02

    X2= (17*2+43) mod 100 = 77 mod 100 = 77 r2= 77/99 = 0.77

    X3= (17*77+43) mod 100 = 1352 mod,100 = 52 r3= 52/99 = 0.52

    The maximum life period Nis equal to m

  • 7/23/2019 2%2BRandom%2Bnumbers

    14/47 Kleber Barcia V.

    Chapter 2

    14

    Multiplicative congruential algorithm

    It arises from the linear algorithm when c = 0. The recursiveequation is:

    The values of a, m, andx0must be > 0 and integers

    The conditions that must be fulfilled to achieve the

    maximum period are:

    m = 2g

    a = 3 + 8 k or 5 + 8 k where k = 0, 1, 2, 3,...

    X0= should be an odd number

    g must be integer

    With these conditions we achieve N = m/4 = 2g-2

    ,...

    ,...2,1,0,mod1 imaXX ii

    ,...2,1,1

    im

    Xr ii

  • 7/23/2019 2%2BRandom%2Bnumbers

    15/47 Kleber Barcia V.

    Chapter 2

    15

    Multiplicative congruential algorithm

    Example: Usex0= 17, k = 2, g = 5

    Then: a = 5+8(2) = 21 and m=25= 32

    x1= (21*17) mod 32 = 5 r1= 5/31 = 0.1612

    x2= (21*5) mod 32 = 9 r2= 9/31 = 0.2903

    x3= (21*9) mod 32 = 29 r3= 29/31 = 0.9354

    x4

    = (21*29) mod 32 = 1 r4

    = 1/31 = 0.3225

    x5= (21*1) mod 32 = 21 r5= 21/31 = 0.6774

    x6= (21*21) mod 32 = 25 r6= 25/31 = 0.8064

    x7= (21*25) mod 32 = 13 r7= 13/31 = 0.4193

    x8

    = (21*13) mod 32 = 17 r8

    = 17/31 = 0.5483

  • 7/23/2019 2%2BRandom%2Bnumbers

    16/47

    Kleber Barcia V.

    Chapter 2

    16

    Additive congruential algorithm

    Requires a sequence of n integer numbers x1, x2, x3,xn

    to generate new random numbers starting at xn+1, xn+2,

    The recursive equation is:

    1m

    Xr ii

    Nnnimxxx niii ,...,2,1,mod1

  • 7/23/2019 2%2BRandom%2Bnumbers

    17/47

    Kleber Barcia V.

    Chapter 2

    17

    Additive congruential algorithm

    Example:

    x1=65, x2= 89, x3= 98, x4= 03, x5= 69, m = 100

    x6=(x5+x1)mod100 = (69+65)mod100 = 34 r1= 34/99 = 0.3434

    x7=(x6+x2)mod100 = (34+89)mod100 = 23 r1= 23/99 = 0.2323

    x8=(x7+x3)mod100 = (23+98)mod100 = 21 r1= 21/99 = 0.2121

    x9=(x8+x4)mod100 = (21+03)mod100 = 24 r1= 24/99 = 0.2424

    x10=(x9+x5)mod100 = (24+69)mod100 = 93 r1= 93/99 = 0.9393

    x11=(x10+x6)mod100 = (93+34)mod100 = 27 r1= 27/99 = 0.2727

    x12=(x11+x7)mod100 = (27+23)mod100 = 50 r1= 50/99 = 0.5050

  • 7/23/2019 2%2BRandom%2Bnumbers

    18/47

    Kleber Barcia V.

    Chapter 2

    18

    Congruential non-linear algorithms

    Quadratic:

    Conditions to achieve a maximum period N = m

    m= 2g

    amust be an even number

    cmust be an odd number

    gmust be integer

    (b-1)mod4 = 1

    1m

    Xr ii

    Nimcbxaxxi ,...,3,2,1,0mod21

  • 7/23/2019 2%2BRandom%2Bnumbers

    19/47

    Kleber Barcia V.

    Chapter 2

    19

    Congruential non-linear algorithms (quadratic)

    Example:

    x0 = 13, m = 8, a = 26, b = 27, c = 27

    x1 = (26*132+27*13+27)mod 8 = 4

    x2 = (26*42+27*4+27)mod 8 = 7

    x3 = (26*72+27*7+27)mod 8 = 2

    x4 = (26*22+27*2+27)mod 8 = 1

    x5 = (26*12+27*1+27)mod 8 = 0

    x6 = (26*02+27*0+27)mod 8 = 3

    x7 = (26*32+27*3+27)mod 8 =6

    x8 = (26*62+27*6+27)mod 8 = 5

    x9 = (26*52+27*5+27)mod 8 = 4

    Nimcbxaxxi ,...,3,2,1,0mod21

  • 7/23/2019 2%2BRandom%2Bnumbers

    20/47

    Kleber Barcia V.

    Chapter 2

    20

    Congruential non-linear algorithms

    Algorithm Blum, Blumy Shub

    It occurs when Quadraticis:

    a = 1

    b = 0

    c = 0

    nimxx ii ,...,3,2,1,0mod2

    1

    h

  • 7/23/2019 2%2BRandom%2Bnumbers

    21/47

    Kleber Barcia V.

    Chapter 2

    21

    Characteristics of a good generator

    Maximum Density Such that he values assumed by Ri, i = 1,2,, leave no large

    gaps on [0,1]

    Problem: Instead of continuous, each Riis discrete

    Solution: a very large integer for modulus m Approximation appears to be of little consequence

    Maximum Period

    To achieve maximum density and avoid cycling.

    Achieve by: proper choice of a, c, m, andX0.

    Most digital computers use a binary representation ofnumbers

    Speed and efficiency depend on the modulus, m, to be (or close

    to) a (2b

    )

    Ch 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    22/47

    Kleber Barcia V.

    Chapter 2

    22

    Tests for Random Numbers

    Two categories:

    Testing for uniformity:

    H0: Ri~ U[0,1]

    H1: Ri~ U[0,1]

    Test for independence:H0: Ri~ independently

    H1: Ri~ independently

    Mean test

    H0: ri= 0.5H1: ri= 0.5

    We can use the normal distribution with 2= 1/12

    or = 0.2887 with a significance level = 0.05

    /

    /

    /

    Ch t 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    23/47

    Kleber Barcia V.

    Chapter 2

    23

    Tests for Random Numbers

    When to use these tests:

    If a well-known simulation languages or random-number

    generators is used, it is probably unnecessary to test

    If the generator is not explicitly known or documented, e.g.,

    spreadsheet programs, symbolic/numerical calculators, testsshould be applied to many sample numbers.

    Types of tests:

    Theoretical tests: evaluate the choices of m, a, and c without

    actually generating any numbers

    Empirical tests: applied to actual sequences of numbers

    produced. Our emphasis.

    Ch t 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    24/47

    Kleber Barcia V.

    Chapter 2

    24

    Kolmogorov-Smirnov test [Uniformity Test]

    Very useful for little data.

    For discrete and continuous variables.

    Procedure:

    1. Arrange the ri from lowest to highest

    2. Determine D+, D-

    3. Determine D4. Determine the critical value of D, n

    5. If D> D, nthen riare not uniform

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    25/47

    Kleber Barcia V.

    Chapter 2

    25

    Kolmogorov-Smirnov test [Uniformity Test]

    Example: Suppose that 5 generated numbers are 0.44,0.81, 0.14, 0.05, 0.93.

    Step 1:

    Step 2:

    Step 3: D = max(D+, D-) = 0.26

    Step 4: For a= 0.05,

    Da

    n= 0.565 > D

    So not reject H0.

    Sort R (i) Ascending

    D+= max {i/NR(i)}

    D-= max {R(i) - (i-1)/N}

    R(i) 0.05 0.14 0.44 0.81 0.93

    i/N 0.20 0.40 0.60 0.80 1.00

    i/NR(i) 0.15 0.26 0.16 - 0.07R(i)(i-1)/N 0.05 - 0.04 0.21 0.13

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    26/47

    Kleber Barcia V.

    Chapter 2

    26

    Chi-square test [Uniformity Test]

    The Chi-square test uses the statistical sample:

    Approximately the chi-square distribution with n-1 degrees of

    freedom is tabulated in Table A.6

    For a uniform distribution, the expected number Ei, in each class

    is:

    Valid only for large samples, example: N> = 50

    If X02>X2(; n-1) reject the hypothesis of uniformity

    n

    i i

    ii

    E

    EO

    1

    22

    0

    )(

    nobservatioof#totaltheisN where,nNEi

    nis the # of classes

    Oiis the observed # of

    the class ith

    Eiis the expected # of

    the class ith

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    27/47

    Kleber Barcia V.

    Chapter 2

    27

    Chi-square test [Uniformity Test]

    Example: Use Chi-square with a= 0.05 to test that the data shownare uniformly distributed

    The test uses n = 10 intervals of equal length:

    [0, 0.1), [0.1, 0.2), , [0.9, 1.0)

    0.34 0.90 0.25 0.89 0.87 0.44 0.12 0.21 0.46 0.67

    0.83 0.76 0.79 0.64 0.70 0.81 0.94 0.74 0.22 0.74

    0.96 0.99 0.77 0.67 0.56 0.41 0.52 0.73 0.99 0.02

    0.47 0.30 0.17 0.82 0.56 0.05 0.45 0.31 0.78 0.05

    0.79 0.71 0.23 0.19 0.82 0.93 0.65 0.37 0.39 0.42

    0.99 0.17 0.99 0.46 0.05 0.66 0.10 0.42 0.18 0.49

    0.37 0.51 0.54 0.01 0.81 0.28 0.69 0.34 0.75 0.49

    0.72 0.43 0.56 0.97 0.30 0.94 0.96 0.58 0.73 0.05

    0.06 0.39 0.84 0.24 0.40 0.64 0.40 0.19 0.79 0.62

    0.18 0.26 0.97 0.88 0.64 0.47 0.60 0.11 0.29 0.78

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    28/47

    Kleber Barcia V.

    Chapter 2

    28

    Chi-square test [Uniformity Test]

    The X02value = 3.4

    Compared to the value of Table A.6, X20.05, 9= 16.9

    Then H0is not rejected.

    Intervalo Oi Ei Oi-Ei (Oi-Ei)2

    (Oi-Ei)2

    Ei

    1 8 10 -2 4 0.4

    2 8 10 -2 4 0.4

    3 10 10 0 0 0.0

    4 9 10 -1 1 0.1

    5 12 10 2 4 0.4

    6 8 10 -2 4 0.4

    7 10 10 0 0 0.0

    8 14 10 4 16 1.6

    9 10 10 0 0 0.0

    10 11

    100

    10

    100

    1

    0

    1 0.1

    3.4

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    29/47

    Kleber Barcia V.

    Chapter 2

    29

    Tests for Autocorrelation [Test of Independence]

    It is a test between each mnumbers, starting with thenumber i The auto-correlationrimbetween the numbers Ri, Ri+m, Ri+2m,

    Ri+(M+1)m

    M is the largest integer such that, , where N is

    the total number of values in the sequence Hypothesis:

    If the values are not correlated: For large values of M, the distribution estimationrim, is

    approximately a normal distribution.

    N)m(Mi 1

    tindependenNOTarenumbers,0:

    ,0:

    1

    0 tindependenarenumbers

    im

    im

    H

    H

    r

    r

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    30/47

    Kleber Barcia V.

    Chapter 2

    30

    Tests for Autocorrelation [Test of Independence]

    The statistical test is:

    Z0is distributed normally with mean = 0and variance = 1, and:

    Ifrim> 0, the subsequence has positive autocorrelation

    High random numbers tend to be followed by high ones, and vice versa.

    Ifrim< 0, the subsequence has negative autocorrelation

    Low random numbers tend to be followed by high ones, and vice versa.

    im

    imZr

    r

    0

    )(M

    M

    .RRM

    im

    M

    k

    )m(kikmiim

    112

    713

    2501

    1

    0

    1

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    31/47

    Kleber Barcia V.

    Chapter 2

    31

    Example [Test for autocorrelation]

    Test if the 3rd, 8th, 13thand so on, are auto-correlated.Use a= 0.05

    Then i = 3, m= 5, N= 30

    Then M= 4

    0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 0.83 0.93

    0.99 0.15 0.33 0.35 0.91 0.41 0.60 0.27 0.75 0.88

    0.68 0.49 0.05 0.43 0.95 0.58 0.19 0.36 0.69 0.87

    3028

    305143

    1

    N)m(Mi

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    32/47

    Kleber Barcia V.

    p

    32

    Example [Test for autocorrelation]

    From Table A.3, z0.025= 1.96. then the hypothesis is not

    rejected.

    516.11280.0

    1945.0

    128.01412

    7)4(13

    1945.0

    250)36.0)(05.0()05.0)(27.0(

    )27.0)(33.0()33.0)(28.0()28.0)(23.0(

    14

    1

    0

    35

    35

    Z

    )(

    .

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    33/47

    Kleber Barcia V.

    p

    33

    Other tests of Independence

    Test runs up and down Test runs up and below the mean

    Test poker

    Test series

    Test holes

    -----HOMEWORK 3 at SIDWeb-----

    Bonus: (3 points for the partial exam)

    Write a computer program that generates random numbers (4 digits)using the Multiplicative Congruential Algorithm. Allow user to entervalues x0, k, g

    Give an example printed and the program file

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    34/47

    Kleber Barcia V.

    p

    34

    Understand how to generate random variables

    from a specific distribution as inputs of a

    simulation model.

    Illustrate some widely used techniques for

    generating random variables.

    Inverse-transform technique

    Acceptance- rejection technique

    2. Objectives. Random Variables

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    35/47

    Kleber Barcia V.35

    Inverse-transform technique

    It can be used to generate random variables from anexponential distribution, uniform, Weibull, triangular and

    empirical distribution.

    Concept:

    For cdf function: r = F(x)

    Generate r (0,1)

    Find x:

    x = F-1(r)

    r1

    x1

    r = F(x)

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    36/47

    Kleber Barcia V.36

    Exponential Distribution [inverse-transform]

    The exponential cdf:

    To generateX1, X2, X3

    r = F(x)

    r = 1e-lx forx 0

    Xi= F-1(ri)

    = -(1/lln(1-ri)

    = -(1/l) ln(ri)

    Figure: Inverse-transform

    technique for exp (l

    = 1)

    )1ln(1

    )1ln(

    1

    rX

    rX

    re X

    l

    l

    l

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    37/47

    Kleber Barcia V.37

    Table of Distributions [inverse-transform]

    Distribution Cumulative Inverse-Transform

    Uniform

    Weibull

    Triangular

    Normal

    bxaabaxxF

    01

    xexFx a

    21221

    102

    2

    2

    xxxF

    xxxF

    ii rabax

    a1

    1ln rx

    121122

    2102

    rrx

    rrx

    zx

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    38/47

    Kleber Barcia V.38

    Exponential Distribution [inverse-transform]

    Example: Generate 200 variables Xi with exponential distribution(l= 1)

    The histograms of riand xiare:

    Uniform distribution Exponential distribution

    i 1 2 3 4 5

    Ri 0.1306 0.0422 0.6597 0.7965 0.7696

    Xi 0.1400 0.0431 1.078 1.592 1.468

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    39/47

    Kleber Barcia V.39

    Uniform Distribution [Example]

    The temperature of an ovenbehaves uniformly within the

    range of 95 to 100 C.

    Modeling the behavior of the

    temperature.

    ii rabax

    Measurements ri TemperatureoC

    1 0.48 95+5*0.48=97.40

    2 0.82 99.103 0.69 98.45

    4 0.67 98.35

    5 0.00 95.00

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    40/47

    Kleber Barcia V.40

    Exponential Distribution [Example]

    Historical data service time a Bankbehave exponentially with an

    average of 3 min / customer.

    Simulate the behavior of this

    random variable

    Customer ri Service Time(min)

    1 0.36 3.06

    2 0.17 5.313 0.97 0.09

    4 0.50 2.07

    5 0.21 0.70

    ii rx 1ln3

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    41/47

    Kleber Barcia V.41

    Poisson Distribution [Example]

    The number of pieces entering a production systemfollows a Poisson distribution with mean 2 pcs/hour.

    Simulate the arrival behavior of the pieces to the system.

    x P(x) F(x) Random digits

    0 0.1353 0.1353 0-0.1353

    1 0.2706 0.4060 0.1353-0.4060

    2 0.2706 0.6766 0.4060-0.6766

    3 0.1804 0.8571 0.6766-0.8571

    4 0.0902 0.9473 0.8571-0.9473

    5 0.0369 0.9834 0.9473-0.9834

    6 0.0120 0.9954 0.9834-0.9954

    7 0.0034 0.9989 0.9954-0.9989

    8 0.0008 0.9997 0.9989-0.9997

    9 0.0001 0.9999 0.9997-0.9999

    10 0.00003 0.9999 0.9999-0.9999

    Arrival

    Time

    ri Pieces/hour

    1 0.6754 2

    2 0.0234 0

    3 0.7892 3

    4 0.5134 2

    5 0.3331 1

    x

    i

    i

    x

    i

    exF

    x

    x

    exp

    0 !)(

    ,...1,0,

    !a

    a

    a

    a

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    42/47

    Kleber Barcia V.42

    Convolution Method

    In some probability distributions, the random variable

    can be generated by adding other random variables

    Erlang Distribution

    The sum of exponential variables of equal means

    (1/)

    Y = x1+x2++xk

    Y = (-1/k)ln(1-r1)+ (-1/k)ln(1-r2)++ (-1/k)ln(1-rk)

    Where:

    Y = Eri= (-1/k)ln(1-ri) The factor productoria

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    43/47

    Kleber Barcia V.43

    Convolution Method

    The processing time of certain machine follows a 3-erlang distribution with mean 1/ = 8 min/piece

    Y = -(8/3)[ln(1-ri)] = -(8/3)ln[(1-r1) (1-r2) (1-r3)]

    Piece 1-r1 1-r2 1-r3 Process Time

    1 0.28 0.52 0.64 6.328

    2 0.96 0.37 0.83 3.257

    3 0. 04 0.12 0.03 23.588

    4 0.35 0.44 0.50 6.837

    5 0.77 0.09 0.21 11.279

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    44/47

    Kleber Barcia V.44

    Empirical continuous distribution [inverse-transform]

    When theoretical distribution is not applicable To collect empirical data:

    Resample the observed data

    Interpolate between observed data points to fill in the gaps

    For a small sample set (size n):

    Arrange the data from smallest to largest

    Assign the probability 1/n to each interval

    Where 1 / n is the probability

    (n)(2)(1) xxx

    (i)1)-(i xxx

    niRaxRFX ii )1()(

    )1(

    1

    n

    xx

    nin

    xxa

    iiii

    i

    /1/)1(/1

    )1()()1()(

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    45/47

    Kleber Barcia V.45

    Empirical continuous distribution [inverse-transform]

    Example: Suppose that the observed data of 100 repair times of a machineare:

    i

    Interval

    (Hours) Frecuency

    Relative

    Frecuency

    Cumulative

    Frecuencia, ci Slot, ai

    1 0.25 x 0.5 31 0.31 0.31 0.81

    2 0.5 x 1.0 10 0.10 0.41 5.0

    3 1.0 x 1.5 25 0.25 0.66 2.0

    4 1.5 x 2.0 34 0.34 1.00 1.47

    Consider r1= 0.83:

    c3= 0.66 < r1< c4= 1.00

    X1= x(4-1)+ a4(r1c(4-1))

    = 1.5 + 1.47(0.83-0.66)

    = 1.75

    Chapter 2

  • 7/23/2019 2%2BRandom%2Bnumbers

    46/47

    Kleber Barcia V.46

    Empirical Discrete Distribution

    Example: Suppose the number of shipments, x, on theloading dock of IHW company is either 0, 1, or 2

    Data - Probability distribution:

    Method - Given R, the generation

    scheme becomes:

    0.18.0

    8.05.0

    5.0

    ,2

    ,1

    ,0

    R

    R

    R

    x

    Consider R1= 0.73:

    F(xi-1) < R

  • 7/23/2019 2%2BRandom%2Bnumbers

    47/47

    Acceptance-Rejection technique

    Useful particularly when inverse cdf does not exist in closedform, a.k.a. thinning

    To generate random variables X ~ U (1/4, 1) we must:

    This procedure is only for uniform distributions

    Acceptance-rejection technique is also applied to Poisson,nonstationary Poisson, and gamma distributions

    -----HOMEWORK 4 at SIDWeb-----

    procedure :

    Step 1. Generate R ~ U[0,1]Step 2a. If R >= , accept X=R.

    Step 2b. If R < , reject R,back to step 1

    Generate R

    Condition

    output R

    si

    no