3-1 day 1: graphing polynomial functions pearson...3-1 day 2: graphing polynomial functions pearson...

16
3-1 Day 1: Graphing Polynomial Functions Pearson Standard form: Leading coefficient: Degree: Polynomial function: End behavior: What is each polynomial in standard form and what are the leading coefficient, the degree, and the number of terms of each? 1. 2 βˆ’ 3 4 + 6 βˆ’ 5 3 2. 5 + 2 6 βˆ’ 3 4 βˆ’ 8 + 4 3 3. 4 2 + 6 4 βˆ’ 7 4. 7+ 2

Upload: others

Post on 17-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3-1 Day 1: Graphing Polynomial Functions

Pearson

Standard form:

Leading coefficient:

Degree:

Polynomial function:

End behavior:

What is each polynomial in standard form and what are the leading coefficient, the degree, and the number of

terms of each?

1. 2π‘₯ βˆ’ 3π‘₯4 + 6 βˆ’ 5π‘₯3 2. π‘₯5 + 2π‘₯6 βˆ’ 3π‘₯4 βˆ’ 8π‘₯ + 4π‘₯3

3. 4π‘₯2 + 6π‘₯4 βˆ’ π‘₯7 4. 7 + π‘₯2

Page 2: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

Degree is Even Degree is Odd

Leading coefficient is Positive

Example of even degree:

𝑦 = 3π‘₯4 βˆ’ 3π‘₯ + 5

Example of odd degree:

𝑦 = 4π‘₯5 + 2π‘₯

-Rises to left and right

-Falls to left

-Rises to right

Leading coefficient is Negative

Example of even degree:

𝑦 = βˆ’3π‘₯4 βˆ’ 3π‘₯ + 5

Example of odd degree:

𝑦 = βˆ’4π‘₯5 + 2π‘₯

-Falls to left

-Falls to right

-Rises to left

-Falls to right

Using the leading coefficient and degree of the polynomial function to determine the end behavior of each

graph.

5. 𝑓(π‘₯) = 2π‘₯6 βˆ’ 5π‘₯5 + 6π‘₯4 βˆ’ π‘₯3 + 4π‘₯2 βˆ’ π‘₯ + 1 6. 𝑔(π‘₯) = βˆ’5π‘₯3 + 8π‘₯ + 4

Page 3: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3-1 Day 2: Graphing Polynomial Functions

Pearson

Relative minimum:

Relative maximum:

Turning points:

1. Consider the polynomial function 𝑓(π‘₯) = π‘₯5 + 18π‘₯2 + 10π‘₯ + 1.

a. Make a table of values to identify key features and sketch a graph of the function.

b. Find the average rate of change over the interval [0,2].

Page 4: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

2. Use the information below to sketch a graph of the polynomial function 𝑦 = 𝑓(π‘₯).

f(x) is positive on the intervals (-2, -1) and (1, 2)

f(x) is negative on the intervals (βˆ’βˆž, βˆ’2), (-1, 1), and (2, ∞)

f(x) is increasing on the interval (βˆ’βˆž, βˆ’1.5)and (0,1.5)

f(x) is decreasing on the intervals (-1.5, 0) and (1.5, ∞)

Page 5: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3-2: Adding, Subtracting, and Multiplying Polynomials

Pearson

FOIL:

When subtracting polynomials, don’t forget to subtract __________________________

Add or subtract the polynomials.

1. (4π‘Ž4 βˆ’ 6π‘Ž3 βˆ’ 3π‘Ž2 + π‘Ž + 1) + (5π‘Ž3 + 7π‘Ž2 + 2π‘Ž βˆ’ 2)

2. (2π‘Ž2𝑏2 + 3π‘Žπ‘2 βˆ’ 5π‘Ž2𝑏) βˆ’ (3π‘Ž2𝑏2 βˆ’ 9π‘Ž2𝑏 + 7π‘Žπ‘2)

3. (3π‘₯2𝑦2 + 2π‘₯𝑦2 + 6π‘₯2) βˆ’ (2π‘₯2𝑦2 + 3π‘₯𝑦2 βˆ’ 2π‘₯2)

Page 6: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

Multiply.

4. (6𝑛 βˆ’ 7)(𝑛 + 3)

5. (π‘šπ‘› + 1)(π‘š2𝑛 βˆ’ 1)(π‘šπ‘›2 + 2)

Page 7: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3-3 Day 1: Polynomial Identities

Pearson

Identity:

Difference of

Squares π‘Ž2 βˆ’ 𝑏2=(π‘Ž + 𝑏)(π‘Ž βˆ’ 𝑏) 25π‘₯2 βˆ’ 81= (πŸ“π’™ + πŸ—)(πŸ“π’™ βˆ’ πŸ—)

Square of a Sum (π‘Ž + 𝑏)2 = π‘Ž2 + 2π‘Žπ‘ + 𝑏2 (3π‘₯ + 4𝑦)2 = (3π‘₯)2 + 2(3π‘₯)(4𝑦) + (4𝑦)2

= πŸ—π’™πŸ + πŸπŸ’π’™π’š + πŸπŸ”π’šπŸ

Difference of

Cubes π‘Ž3 βˆ’ 𝑏3 = (π‘Ž βˆ’ 𝑏)(π‘Ž2 + π‘Žπ‘ + 𝑏2 8π‘š3 βˆ’ 27 = (2π‘š βˆ’ 3)[(2π‘š)2 + (2π‘š)(3) + 32]

= (πŸπ’Ž βˆ’ πŸ‘)(πŸ’π’ŽπŸ + πŸ”π’Ž + πŸ—)

Sum of Cubes π‘Ž3 + 𝑏3 = (π‘Ž + 𝑏)(π‘Ž2 βˆ’ π‘Žπ‘ + 𝑏2) 𝑔3 + 64β„Ž2 = (𝑔 + 4β„Ž)[𝑔2 βˆ’ (𝑔)(4β„Ž) + (4β„Ž)2]= (π’ˆ + πŸ’π’‰)(π’ˆπŸ βˆ’ πŸ’π’ˆπ’‰ + πŸπŸ”π’‰πŸ)

Use polynomial identities to multiply the expressions.

1. (2π‘₯2 + 𝑦3)2 2. (3π‘₯2 + 5𝑦3)(3π‘₯2 βˆ’ 5𝑦3)

3. (12 + 15)2 4. π‘š8 βˆ’ 9𝑛10

Page 8: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

5. 27π‘₯9 βˆ’ 343𝑦6 6. 123 + 8π‘₯3

7. (π‘₯4 βˆ’ 81)2

Page 9: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3-3 Day 2: Polynomial Identities

Pearson

Pascal’s Triangle:

Patterns in Pascal’s Triangle:

Binomial Theorem:

1. Use Pascal’s Triangle to expand (π‘₯ + 𝑦)6

2. Use Pascal’s Triangle to expand (π‘₯ + 𝑦)7

Page 10: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3. Use the Binomial Theorem to expand (π‘₯ βˆ’ 1)7

4. Use the Binomial Theorem to expand (2𝑐 + 𝑑)6

Page 11: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3-4 Day 1: Diving Polynomials

Pearson

Long Division:

Use long division to divide the polynomials. Then write the dividend in terms of the quotient and remainder.

1. π‘₯3 βˆ’ 6π‘₯2 + 11π‘₯ βˆ’ 6 divided by π‘₯2 βˆ’ 4π‘₯ + 3

2. 16π‘₯4 βˆ’ 85 divided by 4π‘₯2 + 9

Page 12: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3. 8π‘₯3 + 27 divided by 2π‘₯ + 3

Page 13: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3-4 Day 2: Diving Polynomials

Pearson

Synthetic Division:

Remainder Theorem:

Use synthetic division.

1. 3π‘₯3 βˆ’ 5π‘₯ + 10 by π‘₯ βˆ’ 1

2. Use synthetic division to show that the remainder of 𝑓(π‘₯) = π‘₯3 + 8π‘₯2 + 12π‘₯ + 5 divided by π‘₯ + 2 is equal

to 𝑓(βˆ’2).

Page 14: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3. A technology company uses the function 𝑓(π‘₯) = βˆ’π‘₯3 + 12π‘₯2 + 6π‘₯ + 80 to model expected annual revenue,

in thousands of dollars, for a new product, where x is the number of years after the product is released. Use the

Remainder Theorem to estimate the revenue in year 5.

4. Use the Remainder Theorem to determine whether the given binomial is a factor of 𝑃(π‘₯).

𝑃(π‘₯) = π‘₯3 βˆ’ 10π‘₯2 + 28π‘₯ βˆ’ 16; binomial; π‘₯ βˆ’ 4

Page 15: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

3-5: Zeros of Polynomial Functions

Pearson

Multiplicity of a zero:

- When the multiplicity of a zero is ______, the

function crosses the x – axis.

- When the multiplicity of a zero if _______, the graph

has a turning point at the x – axis.

Describe the behavior of the graph of the function at each of its zeros.

1. 𝑓(π‘₯) = π‘₯(π‘₯ + 4)(π‘₯ βˆ’ 1)4 2. 𝑓(π‘₯) = (π‘₯2 + 9)(π‘₯ βˆ’ 1)5(π‘₯ + 2)2

Page 16: 3-1 Day 1: Graphing Polynomial Functions Pearson...3-1 Day 2: Graphing Polynomial Functions Pearson Relative minimum: Relative maximum: Turning points: 1. Consider the polynomial function

What are the real and complex zeros of the polynomial function shown in the graph? (Better pictures on pg. 164)

3. 𝑓(π‘₯) = 2π‘₯3 βˆ’ 8π‘₯2 + 9π‘₯ βˆ’ 9

4. What are the solution(s) of the equation π‘₯3 βˆ’ 7π‘₯ + 6 = π‘₯3 + 5π‘₯2 βˆ’ 2π‘₯ βˆ’ 24