3. harmonic ((, , y gp, s, rayleigh & love)...

18
3. HARMONIC (P, S, Rayleigh & LOVE) WAVES WAVES George Bouckovalas P f f N T U A Professor of N.T.U.A. October, 2016 The Seismic motion is due to ……. Pressure (P), Shear (S), Rayleigh (R) and other wave types propagating through the ground (soil & bedrock) ... GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.1

Upload: others

Post on 20-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

3. HARMONIC

(P, S, Rayleigh & LOVE)( , , y g )

WAVESWAVES

George BouckovalasP f f N T U AProfessor of N.T.U.A.

October, 2016

The Seismic motion is due to …….

Pressure (P), Shear (S), Rayleigh (R) and other wave typespropagating through the ground (soil & bedrock) ...GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.1

Page 2: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

3.1 ELASTIC WAVESELASTIC WAVES ((P & S)P & S)in UNIFORM MEDIAin UNIFORM MEDIA

P WAVE S (SH SV) WAVE

in UNIFORM MEDIAin UNIFORM MEDIA

P- WAVEwith planar front

S (SH, SV) - WAVEwith planar front

ww

SV

SH

v v

u u

Compression - extension

P-waves

Wave length

S-wavesshearing

S waves

Wave lengthGEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.2

Page 3: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

Wave equation dx

Wave equation . . .A

x dxx

2

x dxxx

u¶2

2

tu

x ux x

uΌμως σ Dε D

x

¶= =-

¶x, u

2 2x

2 2

σ u uκαι D ρ

x x t

¶ ¶ ¶=- =-¶ ¶ ¶x x t¶ ¶ ¶

DC

General solutionGeneral solution...

( )( )u f Ct x=

why;

Y Ct x=

( ) ( ) ( )22

2 2f Yu ¶¶

( ) ( ) ( )2 2

2 2

f YuC C f ''

t Y

¶¶ = =¶ ¶

¶ ¶2 22u u

άρα πράγματι

2 2

2 2

u f (Y )ενώ f ''

¶ ¶= =

¶ ¶=¶ ¶

22 2

u uC

t x

2 2f

x Y¶ ¶GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.3

Page 4: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

Physical meaning...Physical meaning...

The problem variables are NOT two independent The problem variables are NOT two independent ones (‘x’ and ‘t’) but a combined one: Y= x±Ct

If Y=Ct-x If Y=Ct+x

then, t=0 Y= -xo

t≠0 Y=Ct-xt=-xo

then, t=0 Y= xo

t≠0 Y=Ct+xt=xot 0 Y Ct xt xo& xt = xo + Ct

f(Ct-x) f(Ct+x)

t 0 Y Ct xt xo& xt = xo - Ct

tt=0

f(Ct x)

o)

t t=0

( )

f(-x

o

xo+Ctxo x xo-Ct xo x

P & S – wave propagation velocities& p p gin soil & rock formations

EGS- waves: 12

EG,GVs

P- waves:

21

1G2

211

1ED,DVp

21211

( / )VS (m/s) VP (m/s)dry saturated

loose-recent SOIL deposits <400 <1000 ≈1500

stiff SOILS – soft ROCKS 400-800 800-1600 1500-2000

Rocks >800 >1600 >2000GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.4

Page 5: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

Vibration velocity (at a point) VVibration velocity (at a point) V

f ( Ct )u f ( x Ct )

* *u u X u x XV u

* *V u

t t x tX X

xV C x

xά V C CD

D

Vibration velocity (at a point) V

f ( Ct )

Vibration velocity (at a point) V

u f ( x Ct ) ATTENTION:

* *u u X u x XV u

The velocity of VIBRATION is different

(2 to 3 orders of magnitude lower!)* *

V ut t x tX X

than the velocity of PROPAGATION

xV C x

xά V C CD

DGEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.5

Page 6: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

Special Case: Harmonic wavesp m

( )( ) ( )

ωi Ct x i ωt kxCf Ct x Ae Ae

+ ++ = =( )af Ct x Ae Ae+ = =

( ) ( ) ( )ω

i Ct x i ωt kxCbf Ct x Ae Ae

- -- = =( )bf Ct x Ae Ae

where

k /C 2 /(Τ C) 2 /λ bk =ω/C = 2π/(Τ•C) = 2π/λ = wave number

Ground VIBRATION at a given POINT (i e x=x )

titiikxf * Harmonic vibration

(i.e. x=xο)

tio

tiikxba exueAef o *, with frequency

ω=2π/Τ

fa,b

T=2π/ω

tku*(xo) =Ae+ikxo

fa,b u*(xo) =Ae+ikxo

xxo

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.6

Page 7: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

Ground DISPLACEMENT at a given INSTANT OF TIME (i e t=t )at a given INSTANT OF TIME (i.e. t=tο)

ikxikxti etueAef o * oba etueAef o ,

Όπως προηγουμένως αλλά τώρα τον ρόλο As before, but now the role of t ς ρ γ μ ς ρ ρτης συχνότητας τον παίζει ο κυματικός

αριθμός k

,frequency is played by

the wave number kΤ=2π/ωx=xkλ=2π => λ=2π/k

Τ=2π/ω

to

x=xo

[k= ω/C λ = 2π/ωC = T·C]u(xo,t)

xo

u(x) t=to

λx

EXAMPLE: Two rods in contact

x k kxti

oeuu 1

xkti2 eu

kxtiB kxtiBeu 1

12ρ C

ρ1,C1

ρ2,C2

i t kx i t kx i t kxou e u u e Be 2 1

x xu uM M M Mx x

2 12 1

i t kx i t kx i t kxoM ke Mu ke MBke GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.7

Page 8: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

EXAMPLE: Two rods in contact

Boundary conditions:

x=0 u1=u2 d l & x=0 u1=u2

σ1=σ2

displacement & stress compatibility

tititioo MBkekeMuekM o21 MBkekeMuekM

22

o C

C

M

M

k

kBu

h k /C M C2 d kΜ C

11CMk

where k=ω/C, M=C2ρ and kΜ=ωCρ

EXAMPLE: Two rods in contact

Buouou 22C1

o21

C

Buouou o

22

11 u

C

C1

C1

B

11

22o C

CBu 11C

S i l

o22

u

C

C1

2

Special cases:

F d C 0 B & Γ 2

11C

Free end: ρ2C2=0 B=uo & Γ=2uo

Fixed end: ρ2C2=∞ B=-u & Γ=0Fixed end: ρ2C2 B uo & Γ 0

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.8

Page 9: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith i t f ) MEDIA ( ith i t f ) MEDIA (with interfaces) MEDIA (with interfaces)

SNELL’s LAW:SNELL’s LAW: 2121

C

sin

C

sin

C

sin

C

sin

2121 sspp CCCC

C1 > C2

VIBRATION AMPLITUDE of reflected & transmitted refracted wavesof reflected & transmitted- refracted waves

I th l d k im l f 1 D ti :

medium 1: ρ1 C1 medium 2: ρ2 C2

In the already known, simple case of 1-D wave propagation:

transmitted incident wave

medium 1: ρ1, C1 medium 2: ρ2, C2

wave

reflected wave Cwave 2 2

1 1. .

2 2

1

1refl inc

CC

u uC

Vibration amplitude u:

2 2

1 1

.

1

1 refl

C

uu u

. .

.

1

2

ftransm inc

inc

u uu

.2 2

1 11

incuCC

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.9

Page 10: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

VIBRATION AMPLITUDE of reflected & transmitted refracted waves

The amplitude of vibration of the reflected and refracted of reflected & transmitted- refracted waves

pwaves in 2-D problems, is computed based on stress equilibrium and strain compatibility (continuity) at the interface. In this case, the amplitude is also a function of the angle of wave incidence.

EXAMPLE: SH waves (Richter 1958)

2 2

. 1 1

cos1

cosrefl

Cu C

θδ

2 2.

1 1

cos1

cosinc

CuC

2

1 1

. . 21refr reflu u

C

θπρ θαν

1

2 2. .

1 1

cos1

cosinc inc

Cu uC

C1>C2SHinc

Criticalrefraction angle: 121 C

sinsinsinsin

refraction angle:1

221

21

1C

i1i

Csinsin

CC

2

2

121

Cii

1C

sin1sin

21

1

2cr2

C

Csinsin

1

21cr2 C

Csin

C1>C2What happens for θ2 > θcr ?

Application:Application:

Seismic refraction method for geophysical exploration geophysical exploration ……….

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.10

Page 11: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

3.3 SURFACE WAVESSURFACE WAVESWave length

αδιατάραχτο μέσοαδιατάραχτο μέσο

P-wave+

SV wave RayleighRayleighSV-wave+

FREE C/CS

Rayleighwave

SURFACECR=0.94CS

Ground displacements due to R-waves

( ) ( )RR Rz z2 5.8 i ωt k xλ λu u z x t iB 0 55 e e e

- - -ì üï ïï ï= = -í ý( )

( ) ( )RR Rz z2 5.8 i ωt k xλ λ

u u z ,x ,t iB 0.55 e e e

w w z x t B 1 66e 0 92e e- - -

= = í ýï ïï ïî þì üï ïï ïí ý( ) ( )RR Rw w z ,x ,t B 1.66e 0.92e e= = -í ýï ïï ïî þ

k / b w/wo & u/uo

/

kR=ω/CR wave numberλR=CRT wave lengthΒ = constant u/uoΒ = constant

λR z/λR

w/wo

R

u

w|w(0)||w(0)|

|u(0)|=1.6

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.11

Page 12: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

LOVE WAVES (in layered soil profile)( y p )

They are SH waves “trapped” within the upper soft layer

of a non-uniform soil profile.of a non uniform soil profile.

CS11 S11

CS22

LOVE WAVES (in layered soil profile)( y p )

They are SH waves “trapped” within the upper soft layer

of a non-uniform soil profile.of a non uniform soil profile.

Ground displacement variation with depth

CS11 S11

CS22

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.12

Page 13: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

( )1 L 1 L Lir k z ir k z i( ωt k x )1u Ae Be e- -= +

C

L

( )2 L Lir k z i( ωt k x )

2u Γe e- -=CS1

C

L Lk ω / C=

CS2

2 2L L

1 22 2

C Cr 1, r 1

C C= - = -

2 2s1 s2C C

( )1 L 1 L Lir k z ir k z i( ωt k x )1u Ae Be e- -= +

C( )2 L Lir k z i( ωt k x )

2u Γe e- -=CS1

C

1( ) : 0z H ύ ά

CS2

1 2 1 20 ( ) : ,z ά u u

1 1 0

0

ir kH ir kHAe Be substituting for

A B

1 1 1 1 2 2

0 , ,

0 :

A B

A G r B G r G r gives

2LC1 «Dispersion»

relationship

L22S 2L 2

2 2S1 1

1CC GωH

tan 1C C G C

-é ùê ú- =-ê úê úë û relationshipL S1 1 L

2S1

C C G C1

Cê úë û -

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.13

Page 14: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

Observe that, since tan(*) must be a real number, the following condition must be satisfied for the previous following condition must be satisfied for the previous equation to have a real solution:

C C CCS1 < CLOVE < CS2

CCs2

2LC1

C

L22S 2L 2

2 2

1CC GωH

tan 1C C G C

-é ùê ú- =-ê úê úë ûCs1

0

L S1 1 L2S1

C C G C1

Cê úë û -

0 ΩΗ/CL

In addition, LOVE waves are not possible unless the surface layer is softer than the underlying mediumy y g(i.e. CS1 < CS2).

Dispersion: Code name for LOVE (and other) waves h h h b f d d l which exhibit a frequency dependent propagation velocity

(even for a uniform medium).

Implications of dispersion:

The propagation velocity CLOVE decreases with increasing frequency ω (decreasing period Τ).q y g pAs a result….. the low-frequency components of the excitation get separated from the high-frequency excitation get separated from the high-frequency components, as they propagate faster. Thus:

Th d ti f h ki i ith di t f The duration of shaking increases with distance from the source

Th f t t f th ti ( th l ti The frequency content of the motion (e.g. the elastic response spectrum) changes with distance from the sourcesource

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.14

Page 15: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

Special Case:Soft soil layer upon BEDROCK (i.e. CS2=∞)

CLOVE

CSH2122

LOVE

H

HC

bedrock

2

sC

bedrock

Fi ll LOVE

CLOVE

Finally, LOVE waves cannot exist for f i l th th frequencies lower than the fundamental vibration frequency of the soft soil

CS

frequency of the soft soil layer, i.e. when

Critical frequency

π/2 ωΗ/CS

ω < ωC= (π/2) Cs/HCritical frequencyωc= (π/2) CS/H

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.15

Page 16: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

PROBLEM SOLVING FOR CHAPTER 3PROBLEM SOLVING FOR CHAPTER 3PROBLEM SOLVING FOR CHAPTER 3PROBLEM SOLVING FOR CHAPTER 3

HWK 3.1:HWK 3.1:The free end of an infinite rod is displaced according to the The free end of an infinite rod is displaced according to the following relationship:

U=0 for t<0U=t (cm) for 0<t<0.1sU=0 2 t for 0 1s<t<0 2sU=0.2-t for 0.1s<t<0.2sU=0 for 0.2s<t

Find the displacement variation along the rod at t=0.3s. Assume that the wave propagation velocity is 300m/s.

(aπό «Σημειώσεις Εδαφοδυναμικής» Γ. Γκαζέτα)

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.16

Page 17: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

HWK 3 2:HWK 3 2:HWK 3.2:HWK 3.2:

To isolate a precision measurement laboratory (e.g. a geotech lab.) from traffic vibrations it is proposed to Α traffic vibrations, it is proposed to construct the trench ΑΑ’. Which of the following two fill materials is Lab

Α

gpreferable :(α) concrete, with ρ=2.5 Mgr/m3 &

Lab

C=2000 m/s, or(b) pumice, with ρ=0.8 Μgr/m3

groundρ=2.0 Mgr/m3

C=100 m/s ?ρ gC=500 m/s

Α’

HWK 3.3:HWK 3.3:D h H h h h h l f l Draw the SH wave propagation path through the soil profile shown below, and compute the horizontal acceleration applied t h il lto each soil layer.

± 0mCs=300m/s ρ=1.6Mgr/m3

- 20mCs=600m/s ρ=1.8Mgr/m3

- 40mCs=1200m/s ρ=2.2Mgr/m3

- 60m

Cs=2400m/s ρ=2.4Mgr/m3

SH50o

SH

(uo=1.6cm, T=0.40s)GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.17

Page 18: 3. HARMONIC ((, , y gP, S, Rayleigh & LOVE) WAVESusers.ntua.gr/...earthquake_eng_Ch3-WAVES-ADERS-16.pdf · 3.2 ELASTIC WAVES IN nonELASTIC WAVES IN non--UNIFORM UNIFORM MEDIA ( ith

HWK 3.4:HWK 3.4:

Draw the reflected and refracted waves

(type and propagation di ti ) direction)

in the special cases h n in th fi shown in the figure .

.

HWKHWK 3 53 5HWKHWK 3.53.5::To get a feeling of the depth (from the free ground surface) which is affected by R-waves,

1) Compute the normalized depth z/λR where ground displacements are reduced to 10% of the value at the free ground surface.

2) What is the value of the above critical depth (range of variation) in the case of soft soil, stiff soil-soft rock and rock;rock;

(Aπό «Σημειώσεις Εδαφοδυναμικής» Γ. Γκαζέτα)

GEORGE BOUCKOVALAS, National Technical University of Athens, 2016 3.18