3. members - graitec

17
3. Members 3.1. Tension 3.1.1. Column Web in Tension Design resistance of an unstiffened column web in transverse tension according to EN 1993-1-8, 6.2.6.3: ,, = ,, , 0 ฯ‰ โ€“ reduction factor to allow for the interaction with shear in the column web panel, calculated according to the transformation parameter ฮฒ (EN 1993-1-8 Table 6.3). Where ฮฒ value is calculated based on design bending moment (MEd or MEd_Left and MEd_Right ) depending on the joint configuration. For example, for a single-sided connection (moment end plate) with one bending moment ฮฒ = 1 beff,t,wc โ€“ the effective width of column web in tension; twc โ€“ column web thickness For a welded connection: ,, = + 2โˆš2 + 5( + ) where: for a rolled I or H section column: s = rc for a welded I or H section column: s = โˆš2 tfb โ€“ beam flange thickness; tfc โ€“ column flange thickness; ac โ€“ weld thickness between the secondary beam flange and end plate; rc โ€“ root radius; For a bolted end-plate connection: beff,t,wc of column web in tension should be taken as equal to the effective length of equivalent T-stub representing the column flange, see 6.2.6.4 ,, = + 2โˆš2 + 5( + ) + sp โ€“ the length obtained by dispersion at 45ยฐ through the end-plate For a moment end plate connection: ,, = ,, , 0 If ,1, โ‰ค ,2, โ†’ ,, = ,1 ,1, > ,2, โ†’ ,, = ,2 Where Ft1,Rd , Ft2,Rd โ€“ tension resistances of the plate for the first and second mode of failure; leff,1 โ€“ the effective length for the first mode of failure (minimum between effective length of the circular or non-circular failure pattern); leff,2 โ€“ the effective length for the second mode of failure (non-circular failure pattern);

Upload: others

Post on 14-Nov-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3. Members - GRAITEC

3. Members

3.1. Tension

3.1.1. Column Web in Tension

Design resistance of an unstiffened column web in transverse tension according to EN 1993-1-8, 6.2.6.3:

๐น๐‘ก,๐‘ค๐‘,๐‘…๐‘‘ = ๐œ” ๐‘ฅ ๐‘๐‘’๐‘“๐‘“,๐‘ก,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ค๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘ค๐‘

๐›พ๐‘€0

ฯ‰ โ€“ reduction factor to allow for the interaction with shear in the column web panel, calculated according to the transformation parameter ฮฒ (EN 1993-1-8 Table 6.3). Where ฮฒ value is calculated based on design bending moment (MEd or MEd_Left and MEd_Right ) depending on the joint configuration.

For example, for a single-sided connection (moment end plate) with one bending moment ฮฒ = 1

beff,t,wc โ€“ the effective width of column web in tension;

twc โ€“ column web thickness

For a welded connection:

๐‘๐‘’๐‘“๐‘“,๐‘ก,๐‘ค๐‘=๐‘ก๐‘“๐‘ + 2โˆš2๐‘Ž๐‘ + 5(๐‘ก๐‘“๐‘ + ๐‘ )

where:

for a rolled I or H section column: s = rc

for a welded I or H section column: s = โˆš2๐‘Ž๐‘

tfb โ€“ beam flange thickness;

tfc โ€“ column flange thickness;

ac โ€“ weld thickness between the secondary beam flange and end plate;

rc โ€“ root radius;

For a bolted end-plate connection: beff,t,wc of column web in tension should be taken as equal to the effective length of equivalent T-stub representing the column flange, see 6.2.6.4

๐‘๐‘’๐‘“๐‘“,๐‘ก,๐‘ค๐‘ = ๐‘ก๐‘“๐‘ + 2โˆš2๐‘Ž๐‘ + 5(๐‘ก๐‘“๐‘ + ๐‘ ) + ๐‘ ๐‘

sp โ€“ the length obtained by dispersion at 45ยฐ through the end-plate

For a moment end plate connection:

๐น๐‘ก,๐‘ค๐‘,๐‘…๐‘‘ = ๐‘๐‘’๐‘“๐‘“,๐‘ก,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ค๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘ค๐‘

๐›พ๐‘€0

If

๐น๐‘ก,1,๐‘…๐‘‘ โ‰ค ๐น๐‘ก,2,๐‘…๐‘‘ โ†’ ๐‘๐‘’๐‘“๐‘“,๐‘ก,๐‘ค๐‘ = ๐‘™๐‘’๐‘“๐‘“,1

๐น๐‘ก,1,๐‘…๐‘‘ > ๐น๐‘ก,2,๐‘…๐‘‘ โ†’ ๐‘๐‘’๐‘“๐‘“,๐‘ก,๐‘ค๐‘ = ๐‘™๐‘’๐‘“๐‘“,2

Where

Ft1,Rd , Ft2,Rd โ€“ tension resistances of the plate for the first and second mode of failure;

leff,1 โ€“ the effective length for the first mode of failure (minimum between effective length of the circular or non-circular failure pattern);

leff,2 โ€“ the effective length for the second mode of failure (non-circular failure pattern);

Page 2: 3. Members - GRAITEC

3.1.2. Beam Web in Tension

In a bolted end-plate connection, the design tension resistance of the beam web, according to EN 1993-1-8, 6.2.6.8 should be obtained from:

๐น๐‘ก,๐‘ค๐‘,๐‘…๐‘‘ = ๐œ” ๐‘ฅ ๐‘๐‘’๐‘“๐‘“,๐‘ก,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ค๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘ค๐‘

๐›พ๐‘€0

beff,t,wb โ€“ the effective width of the beam web in tension; it is equal to the effective length of equivalent T-stub representing the end-plate in bending for an individual bolt-row or bolt-group.

twb โ€“ beam web thickness;

twb = min( tbeam, thaunch, tst)

For for a moment end plate connection:

For groups with stiffeners:

๐น๐‘ก,๐‘ค๐‘,๐‘…๐‘‘ = ๐‘๐‘’๐‘“๐‘“,๐‘ก๐‘Ÿ,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ ๐‘ก ๐‘ฅ ๐‘“๐‘ฆ,๐‘ ๐‘ก

๐›พ๐‘€0

For groups without stiffeners:

๐น๐‘ก,๐‘ค๐‘,๐‘…๐‘‘ = ๐‘๐‘’๐‘“๐‘“,๐‘ก๐‘Ÿ,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ค๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘

๐›พ๐‘€0

For first bolt row outside tensioned flange or haunch:

๐น๐‘ก,๐‘ค๐‘,๐‘…๐‘‘ = โ„Ž๐‘ ๐‘ก๐‘ฅ ๐‘ก๐‘ ๐‘ก ๐‘ฅ ๐‘“๐‘ฆ,๐‘ ๐‘ก

๐›พ๐‘€0+

๐‘๐‘“๐‘๐‘ฅ๐‘ก๐‘“๐‘

2 ๐‘ฅ

๐‘“๐‘ฆ,๐‘

๐›พ๐‘€0

For other bolt row outside tensioned flange or haunch (only with stiffener):

๐น๐‘ก,๐‘ค๐‘,๐‘…๐‘‘ = ๐‘๐‘’๐‘“๐‘“,๐‘ก๐‘Ÿ,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ ๐‘ก ๐‘ฅ ๐‘“๐‘ฆ,๐‘ ๐‘ก

๐›พ๐‘€0

For first row below tensioned beam flange rows:

๐น๐‘ก,๐‘ค๐‘,๐‘…๐‘‘ = ๐ฟ๐‘ค ๐‘ฅ ๐‘ก๐‘ค๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘

๐›พ๐‘€0+

๐‘๐‘“๐‘๐‘ฅ๐‘ก๐‘“๐‘

2๐‘ฅ

๐‘“๐‘ฆ,๐‘

๐›พ๐‘€0

For end and inner bolt rows:

๐น๐‘ก,๐‘ค๐‘,๐‘…๐‘‘ = ๐‘๐‘’๐‘“๐‘“,๐‘ก๐‘Ÿ,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ค๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘

๐›พ๐‘€0

If

๐น๐‘ก,1,๐‘…๐‘‘ โ‰ค ๐น๐‘ก,2,๐‘…๐‘‘ โ†’ ๐‘๐‘’๐‘“๐‘“,๐‘ก,๐‘ค๐‘ = ๐‘™๐‘’๐‘“๐‘“,1

๐น๐‘ก,1,๐‘…๐‘‘ > ๐น๐‘ก,2,๐‘…๐‘‘ โ†’ ๐‘๐‘’๐‘“๐‘“,๐‘ก,๐‘ค๐‘ = ๐‘™๐‘’๐‘“๐‘“,2

Where

Ft1,Rd , Ft2,Rd โ€“ tension resistances of the plate for the first and second mode of failure;

leff,1 โ€“ the effective length for the first mode of failure (minimum between effective length of the circular or non-circular failure pattern);

leff,2 โ€“ the effective length for the second mode of failure (non-circular failure pattern);

Page 3: 3. Members - GRAITEC

3.1.3. Tension Yielding Verification

- verification for Clip Angle and Gusset -

Check relation: NEd โ‰ค Npl,Rd;

The design plastic resistance on axial force is calculated according to EN 1993-1-1 6.2.4:

๐‘๐‘๐‘™,,๐‘…๐‘‘ =๐‘› ๐‘ฅ ๐ด ๐‘ฅ ๐‘“๐‘ฆ

๐›พ๐‘€0;

Where,

n โ€“ number of objects solicited in the same direction;

A โ€“ profile gross area;

Note: For a (gusset) plate, the tension verification area A is calculated as follows: ๐ด = ๐‘ก๐‘ ๐‘ฅ โ„Ž30

where:

tp โ€“ the plate thickness;

h30 โ€“ the plate length obtained with a 30ยฐ angle diffusion from the bolts on diagonal.

See also the picture below:

Page 4: 3. Members - GRAITEC

3.1.3. Tension Ultimate Verification

- verification for Clip Angle and Gusset -

Check relation: NEd โ‰ค Nu,Rd;

For sections with holes, the design ultimate resistance of the net cross-section is calculated

according to EN 1993-1-1 6.2.3:

๐‘๐‘ข,๐‘…๐‘‘ = 0.9 ๐‘ฅ ๐‘›๐‘œ๐‘๐‘—๐‘ฅ ๐ด๐‘›๐‘’๐‘ก ๐‘ฅ ๐‘“๐‘ข

๐›พ๐‘€2

Note 1: The design ultimate resistance for angles connected by a single row of bolts in one leg is

calculated according to EN 1993-1-8 3.10.3:

For 1 bolt:

๐‘๐‘ข,๐‘…๐‘‘ =2 ๐‘ฅ (๐‘’2โˆ’ 0.5 ๐‘ฅ ๐‘‘0,๐‘ฃ) ๐‘ฅ ๐‘ก๐‘ ๐‘ฅ ๐‘“๐‘ข

๐›พ๐‘€2;

For 2 bolts:

๐‘๐‘ข,๐‘…๐‘‘ =๐›ฝ2 ๐‘ฅ ๐ด๐‘›๐‘’๐‘ก ๐‘ฅ ๐‘“๐‘ข

๐›พ๐‘€2;

For 3 or more bolts:

๐‘๐‘ข,๐‘…๐‘‘ =๐›ฝ3 ๐‘ฅ ๐ด๐‘›๐‘’๐‘ก ๐‘ฅ ๐‘“๐‘ข

๐›พ๐‘€2;

where:

nobj โ€“ number of objects solicited in the same direction;

Anet โ€“ profile net area;

ฮฒ2, ฮฒ3 โ€“ reduction factors depending on the pitch p1, as given in EN 1993-1-8 Table 3.8;

d0,v โ€“ hole diameter on the v direction

Note 2: For a (gusset) plate, the net area Anet is calculated as follows:

๐ด๐‘›๐‘’๐‘ก = (โ„Ž30 โˆ’ ๐‘›๐‘,๐‘ฃ๐‘ฅ๐‘‘0,๐‘ฃ) ๐‘ฅ ๐‘ก๐‘

where:

tp โ€“ plate thickness;

nb,v โ€“ number of bolt rows;

Page 5: 3. Members - GRAITEC

3.2. Compression

3.2.1. Column web in transverse compression

Check relation: Fc,wc,Ed โ‰ค Fc,wc,Rd

The resistance of the column web in transverse compression according to EN 1993-1-8, 6.2.6.2 is equal to the web crushing or the buckling resistance, whichever is the smallest:

๐น๐‘,๐‘ค๐‘,๐‘…๐‘‘ = min (๐œ” ๐‘ฅ ๐‘˜๐‘ค๐‘ ๐‘ฅ ๐‘๐‘’๐‘“๐‘“,๐‘,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ค๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘ค๐‘

๐›พ๐‘€0 ; ๐œ” ๐‘ฅ ๐‘˜๐‘ค๐‘ ๐‘ฅ ๐œŒ ๐‘ฅ ๐‘๐‘’๐‘“๐‘“,๐‘,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ค๐‘ ๐‘ฅ

๐‘“๐‘ฆ,๐‘ค๐‘

๐›พ๐‘€1 )

The design force of column web in transverse compression is determined as follows:

๐น๐‘,๐‘ค๐‘,๐ธ๐‘‘ = |๐‘€๐ธ๐‘‘

โ„Ž๐‘“โˆ’

๐‘๐ธ๐‘‘

2|

Fc,wc,Ed is the design force of the column web in transverse compression

hf is the moment arm between the resultant tensile force and the resultant compressive force

where:

๐‘๐‘’๐‘“๐‘“,๐‘,๐‘ค๐‘ = ๐‘ก๐‘“๐‘ + 2โˆš2๐‘Ž๐‘ + 5(๐‘ก๐‘“๐‘ + ๐‘ ) + ๐‘ ๐‘

๐‘ ๐‘ โ‰ค 2๐‘ก๐‘

For a rolled I or H section column: s = rc

For a welded I or H section column: s = โˆš2๐‘Ž๐‘

ฯ‰ โ€“ reduction factor to allow for the interaction with shear in the column web panel, calculated according to the transformation parameter ฮฒ (EN 1993-1-8 Table 6.3).

kwc โ€“ reduction factor, allowing for coexisting longitudinal compressive stress in the column (EN 1993-1-8 6.2.6.2(2))

ฯ โ€“ reduction factor for plate buckling (EN 1993-1-8 6.2.6.2(1))

beff,t,wc โ€“ the effective width of column web in tension;

ฯƒ com,Ed โ€“ the maximum longitudinal compression stress due to axial force and bending moment in the column web (adjacent to the root radius for a rolled section or the toe of the weld for a welded section)

๐œŽ๐‘๐‘œ๐‘š,๐ธ๐‘‘ = ๐‘€๐ธ๐‘‘

๐‘Š๐‘’๐‘™+

๐‘๐ธ๐‘‘

๐ด

๐œŽ๐‘๐‘œ๐‘š,๐ธ๐‘‘ โ‰ค 0.7 ๐‘ฅ๐‘“๐‘ฆ,๐‘ค๐‘ => ๐‘˜๐‘ค๐‘ = 1

๐œŽ๐‘๐‘œ๐‘š,๐ธ๐‘‘ > 0.7 ๐‘ฅ๐‘“๐‘ฆ,๐‘ค๐‘ => ๐‘˜๐‘ค๐‘ = 1.7 โˆ’ ๐œŽ๐‘๐‘œ๐‘š,๐ธ๐‘‘

๐‘“๐‘ฆ,๐‘ค๐‘

Depending on the plate slenderness ฮปp, the reduction factor is determined as follows:

๐œ†๐‘ โ‰ค 0.72 => ฯ =1.0

Page 6: 3. Members - GRAITEC

๐œ†๐‘ > 0.72 => ฯ = ๐œ†๐‘โˆ’0.2

๐œ†๐‘2

Where: ๐œ†๐‘ = 0.932 โˆš๐‘๐‘’๐‘“๐‘“,๐‘,๐‘ค๐‘ ๐‘ฅ ๐‘‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘ค๐‘

๐ธ ๐‘ฅ ๐‘ก๐‘ค๐‘2

d โ€“ column straight portion of the web;

E โ€“ modulus of elasticity of the column;

For a rolled profile I or H section column : ๐‘‘ = โ„Ž๐‘ โˆ’ 2 ๐‘ฅ ( ๐‘ก๐‘“๐‘ + ๐‘Ÿ๐‘);

For a welded I or H section column: ๐‘‘ = โ„Ž๐‘ โˆ’ 2 ๐‘ฅ ( ๐‘ก๐‘“๐‘ + โˆš2๐‘Ž๐‘);

Note: Whenever the column is provided with stiffeners, the column web resistance will be calculated by adding the compressed stiffeners resistance (see chapter 5.2.2 Compression).

3.2.2. Beam web and flange compression

Compression resistance of the beam is calculated according to EN 1993-1-8, 6.2.6.7:

๐น๐‘,๐‘“๐‘,๐‘…๐‘‘ = ๐‘€๐‘,๐‘…๐‘‘

(โ„Ž โˆ’ ๐‘ก๐‘“๐‘ )

Mc,Rd is the design moment resistance of the beam cross-section;

Wc,pl is the plastic section modulus;

Wc,el is the elastic section modulus;

h is the depth of the section; for a haunched beam, it is the depth of the fabricated section;

tfb is the flange thickness of the connected beam; for a haunched beam, it is the thickness of the haunch flange;

The design bending moment about one main axis of a cross-section is given in EN1993-1-1. 6.2.5, and is determined as follows:

For class 1 or 2 : ๐‘€๐‘,๐‘…๐‘‘ = ๐‘Š๐‘,๐‘๐‘™ ๐‘ฅ ๐‘“๐‘ฆ

๐›พ๐‘€0

For class 3: ๐‘€๐‘,๐‘…๐‘‘ = ๐‘Š๐‘,๐‘’๐‘™ ๐‘ฅ ๐‘“๐‘ฆ

๐›พ๐‘€0

For class 4: ๐‘€๐‘,๐‘…๐‘‘ = ๐‘Š๐‘,๐‘’๐‘“๐‘“ ๐‘ฅ ๐‘“๐‘ฆ

๐›พ๐‘€0

Note: The plastic and elastic section modulus are calculated for the section from the end plate face (including the haunches and reinforcement plates, if they exist).

The presence of reinforcement stiffeners (compressed flange stiffeners) has impact on compression resistance of the beam, but also in other parts of the calculation (e.g.: center of rotation, bolt-rows positioning, T-stub calculation, web plate reference length (EN 1993-1-8, 6.2.6.1 - figure 6.5).

If the height of the beam including the haunch exceeds 600 mm, the contribution of the beam web to the design compression resistance should be limited to 20%. For example, if the resistance of

the beam flange is ๐‘ก๐‘“๐‘ ๐‘ฅ ๐‘๐‘“๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘“๐‘, then ๐น๐‘,๐‘“๐‘,๐‘…๐‘‘ โ‰ค ๐‘ก๐‘“๐‘ ๐‘ฅ ๐‘๐‘“๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘“๐‘

๐›พ๐‘€0.

The design resistance of a haunched beam in compression according to EN 1993-1-8 6.2.6.7(3) should be determined as follows:

๐น๐‘,โ„Ž๐‘,๐‘…๐‘‘ =๐น๐‘,๐‘ค๐‘,๐‘…๐‘‘

๐‘ก๐‘Ž๐‘›๐›ผ

The design resistance of the beam web to transverse compression (according to EN 1993-1-8 6.2.6.2):

๐น๐‘,๐‘ค๐‘,๐‘…๐‘‘ = ๐œ” ๐‘ฅ ๐‘˜๐‘ค๐‘ ๐‘ฅ ๐œŒ ๐‘ฅ ๐‘๐‘’๐‘“๐‘“,๐‘,๐‘ค๐‘ ๐‘ฅ ๐‘ก๐‘ค๐‘ ๐‘ฅ ๐‘“๐‘ฆ,๐‘ค๐‘

๐›พ๐‘€1

Page 7: 3. Members - GRAITEC

The effective width of the beam web in compression:

๐‘๐‘’๐‘“๐‘“,๐‘,๐‘ค๐‘ = ๐‘ก๐‘“๐‘

๐‘ ๐‘–๐‘›๐›ผ+ 5 (๐‘ก๐‘“๐‘ + ๐‘Ÿ๐‘ )

The other parameters from Fc,wb,Rd expression: ฯ‰, ฯ, kwb should be calculated similarly to the resistance of the column web in transverse compression Fc,wc,Rd

3.2.3. Compression Yielding Verification

- verification for Clip Angle and Gusset -

Check relation: NEd โ‰ค Npl,Rd;

The design plastic resistance on the axial force is calculated according to EN 1993-1-1 6.2.4:

๐‘๐‘๐‘™,,๐‘…๐‘‘ =๐‘› ๐‘ฅ ๐ด ๐‘ฅ ๐‘“๐‘ฆ

๐›พ๐‘€0;

Where,

n โ€“ number of objects solicited in the same direction;

A โ€“ profile gross area;

Note: For a (gusset) plate, the compression verification area A is calculated as follows:

๐ด = ๐‘ก๐‘ ๐‘ฅ โ„Ž30 , where

tp โ€“ the plate thickness;

h30 โ€“ the plate length obtained with 30ยฐ angle diffusion from the bolts on diagonal;

See also the picture below:

Page 8: 3. Members - GRAITEC

3.3. Shear

3.3.1. Column Web Panel in Shear

Check relation: Vwp,Ed โ‰ค Vwp,Rd

The design resistance of the web panel in shear for an unstiffened column Vwp,Rd according to EN 1993-1-8 6.2.6.1:

๐‘‰๐‘ค๐‘,,๐‘…๐‘‘ =0.9 ๐‘ฅ๐‘“๐‘ฆ,๐‘ค๐‘๐‘ฅ๐ด๐‘ฃ๐‘

โˆš3 ๐‘ฅ ๐›พ๐‘€0

The expression given above is valid if the column web slenderness satisfies the condition:

๐‘‘

๐‘ก๐‘ค โ‰ค 69 ๐‘ฅ ๐œ€

where, the depth of the column web: ๐‘‘ = โ„Ž โˆ’ 2 ๐‘ฅ ๐‘ก๐‘“๐‘ โˆ’ 2 ๐‘ฅ ๐‘Ÿ

๐œ€ = โˆš235

๐‘“๐‘ฆ,๐‘ค๐‘

Avc โ€“ the shear area of the column

h โ€“ column height;

tfc โ€“ flange thickness;

r โ€“ root radius

tw โ€“ web thickness

The design shear force should be obtained:

๐‘‰๐‘ค๐‘,๐ธ๐‘‘ = |๐‘€๐ธ๐‘‘

โ„Ž๐‘“| + |

๐‘๐ธ๐‘‘

2|

hf โ€“ is calculated according to EN 1993-1-8, 6.2.7, Figure 6.15;

Note: The column web panel in shear resistance for a stiffened column is the sum of the column

web panel in shear for the unstiffened column and the stiffener resistance (see chapter 5.2.3)

3.3.2. Shear Yielding Verification

- verification for Moment End Plate and Apex -

Check relation: VEd โ‰ค Vpl,Rd;

Design plastic shear resistance:

๐‘‰๐‘๐‘™,๐‘…๐‘‘ =๐‘› ๐‘ฅ๐ด๐‘ฃ๐‘๐‘ฅ๐‘“๐‘ฆ,๐‘ค๐‘

โˆš3 ๐‘ฅ ๐›พ๐‘€0

n โ€“ the number of connected objects;

Av โ€“ end plate gross shear area;

Av =hp x tp ;

VEd โ€“ must be used in relations as a projection of the forces on the bolt directions

Page 9: 3. Members - GRAITEC

3.3.3. Shear Ultimate Verification

- verification for Moment End Plate and Apex โ€“

Check relation: VEd โ‰ค Vu,Rd ;

Design ultimate shear resistance:

๐‘‰๐‘ข,๐‘…๐‘‘ =0.9 ๐‘ฅ ๐‘› ๐‘ฅ ๐ด๐‘ฃ,๐‘›๐‘’๐‘ก๐‘ฅ๐‘“๐‘ข

โˆš3 ๐‘ฅ ๐›พ๐‘€2

๐ด๐‘ฃ,๐‘›๐‘’๐‘ก = (โ„Ž โˆ’ ๐‘›๐‘ฃ๐‘ฅ ๐‘‘0,๐‘ฃ) ๐‘ฅ ๐‘ก

Av,net -net shear area;

nv โ€“ number of vertical bolt rows;

d0,v โ€“ diameter of the hole on vertical direction;

3.3.4.Block Tearing Verification

- verification for Moment End Plate and Apex -

Check relation: VEd โ‰ค Veff,Rd ;

Design block shear tearing resistance when bolts are centered on members:

๐‘‰๐‘’๐‘“๐‘“,๐‘…๐‘‘ = ๐‘› ๐‘ฅ ( ๐ด๐‘›,๐‘ก ๐‘ฅ ๐‘“๐‘ข

๐›พ๐‘€2+ ๐ด๐‘›,๐‘ฃ ๐‘ฅ

๐‘“๐‘ฆ

โˆš3 ๐‘ฅ ๐›พ๐‘€0

)

Design block shear tearing resistance when bolts are not centered on members:

๐‘‰๐‘’๐‘“๐‘“,๐‘…๐‘‘ = ๐‘› ๐‘ฅ (0.5๐‘ฅ ๐ด๐‘›,๐‘ก ๐‘ฅ ๐‘“๐‘ข

๐›พ๐‘€2+ ๐ด๐‘›,๐‘ฃ ๐‘ฅ

๐‘“๐‘ฆ

โˆš3 ๐‘ฅ ๐›พ๐‘€0

)

n โ€“ number of end plates;

Net area subjected to tension:

๐ด๐‘›,๐‘ก = ๐‘š๐‘–๐‘›( [๐‘’โ„Ž,๐‘Ÿ + ๐‘’โ„Ž,๐ฟ + (๐‘›โ„Ž โˆ’ 2) ๐‘ฅ ๐‘โ„Ž โˆ’ (๐‘›โ„Ž โˆ’ 1) ๐‘ฅ ๐‘‘0,โ„Ž ]๐‘ฅ ๐‘ก ; [๐‘ค โˆ’ ๐‘’โ„Ž,๐‘Ÿ โˆ’ ๐‘’โ„Ž,๐ฟ โˆ’ (๐‘›โ„Ž โˆ’ 1) ๐‘ฅ ๐‘‘0,โ„Ž ]๐‘ฅ ๐‘ก)

eh,R โ€“ edge distance between the last hole and the plate right edge on horizontal direction;

eh,L โ€“ edge distance between the last hole and the plate left edge on horizontal direction;

nh โ€“ holes number on horizontal direction (from one bolt row);

ph โ€“ intermediate distance between hole center on horizontal direction;

d0,h โ€“ diameter of the hole on horizontal direction;

bp โ€“ end plate width;

t โ€“ end plate thickness;

Net area subjected to shear:

๐ด๐‘›,๐‘ฃ = ๐‘›๐‘๐‘ ๐‘ฅ [โ„Ž โˆ’ ๐‘’๐‘ฃ,๐‘‡ โˆ’ (๐‘›๐‘ฃ โˆ’ 0.5) ๐‘ฅ ๐‘‘0,๐‘ฃ ]๐‘ฅ ๐‘ก

nbc โ€“ coefficient depending of number of bolt columns;

h โ€“ end plate height;

evB โ€“ edge distance between the first hole from bottom and the bottom plate edge on vertical direction;

Page 10: 3. Members - GRAITEC

nv โ€“ holes number on vertical direction (from one bolt column);

d0,v โ€“ diameter of the hole on vertical direction;

3.4. Bending

3.4.1. Column Flange in Bending

Equivalent T-Stub Method is used for the Column Flange Bending Resistance and end plate bending resistance:

1. Design resistance of a T-Stub, if the prying effect is not developed, (Lb>Lb*):

๐น๐‘ก,๐‘…๐‘‘ = min (๐น๐‘ก,1โˆ’2,๐‘…๐‘‘; ๐น๐‘ก,3,๐‘…๐‘‘ ) EN 1993-1-8, 6.2.4.1 (6)

Tension resistance for the 1-2 failure mode (yield in bending of connection)

๐น๐‘ก,1โˆ’2,๐‘…๐‘‘ =2๐‘ฅ๐‘€๐‘๐‘™,1,๐‘…๐‘‘

๐‘š EN 1993-1-8, Table 6.2

Tension resistance of the plate/flange for third mode of failure:

๐น๐‘ก,3,๐‘…๐‘‘ = โˆ‘๐น๐‘ก,๐‘…๐‘‘ = ๐‘›๐‘ฅ๐น๐‘ก,๐‘…๐‘‘ EN 1993-1-8, Table 6.2

Ft,Rd โ€“ the design tension resistance of a bolt, according to EN1993-1-8 Table 3.4

โˆ‘Ft,Rd โ€“ the total value of Ft,Rd for all the bolts in the T-stub;

2. Design resistance of a T-Stub, if the prying effect is developed, (Lb<Lb*):

๐น๐‘ก,๐‘…๐‘‘ = min (๐น๐‘ก,1,๐‘…๐‘‘; ๐น๐‘ก,2,๐‘…๐‘‘ ; ๐น๐‘ก,3,๐‘…๐‘‘) EN 1993-1-8, 6.2.4.1 (6)

According to EN 1993-1-8, Table 6.2 the tension resistance of the plate for the 3 mode of failure:

Tension resistance of the plate/flange for the first mode of failure (complete yielding of the connection at bending of the plate/flange):

๐น๐‘ก,1,๐‘…๐‘‘ =4๐‘ฅ๐‘€๐‘๐‘™,1,๐‘…๐‘‘ + 2๐‘ฅ๐‘€๐‘๐‘,๐‘…๐‘‘

๐‘š

Tension resistance of the plate for the second mode of failure (yielding of the connection at bending with bolt failure in tension):

๐น๐‘ก,2,๐‘…๐‘‘ =2๐‘ฅ๐‘€๐‘๐‘™,2,๐‘…๐‘‘ + โˆ‘๐น๐‘ก,๐‘…๐‘‘

๐‘š + ๐‘›

Tension resistance of the plate for the third mode of failure (bolt failure):

๐น๐‘ก,3,๐‘…๐‘‘ = โˆ‘๐น๐‘ก,๐‘…๐‘‘ = ๐‘›๐‘ฅ๐น๐‘ก,๐‘…๐‘‘

Plastic resistances of the plates for the failure modes according to EN 1993-1-8, Table 6.2:

๐‘€๐‘๐‘™,1,๐‘…๐‘‘ = 0.25๐‘ฅโˆ‘๐‘™๐‘’๐‘“๐‘“,1๐‘ฅ ๐‘ก๐‘“2๐‘ฅ

๐‘“๐‘ฆ

๐›พ๐‘€0

๐‘€๐‘๐‘™,2,๐‘…๐‘‘ = 0.25๐‘ฅโˆ‘๐‘™๐‘’๐‘“๐‘“,2๐‘ฅ ๐‘ก๐‘“2๐‘ฅ

๐‘“๐‘ฆ

๐›พ๐‘€0

Page 11: 3. Members - GRAITEC

Note 1: If there are backing plates:

๐‘€๐‘๐‘™,1,๐‘…๐‘‘ = 0.25๐‘ฅโˆ‘๐‘™๐‘’๐‘“๐‘“,1๐‘ฅ ๐‘ก๐‘๐‘2 ๐‘ฅ

๐‘“๐‘ฆ,๐‘๐‘

๐›พ๐‘€0

fy,bp โ€“ the yield strength of the backing plates;

tbp โ€“ the thickness of the backing plates;

Lb โ€“ is the bolt elongation length, taken as equal to the grip length (total thickness of material and washers), plus half the sum of the height of the bolt head and the height of the nut.

๐ฟ๐‘โˆ— = 8.8 ๐‘ฅ

๐‘š3๐‘ฅ ๐‘›๐‘Ÿ ๐‘ฅ ๐ด๐‘ 

โˆ‘๐‘™๐‘’๐‘“๐‘“,1 ๐‘ฅ ๐‘ก3 EN 1993-1-8, Table 6.11

As tensile stress area of the bolt;

nr number of bolt rows (nr >1, for groups)

Failure patterns effective lengths:

lcp row effective length for a circular failure pattern;

lcp,g group effective length for a circular failure pattern;

lnc row effective length for a non-circular failure pattern;

lnc,g group effective length for a non-circular failure pattern;

leff,1 the effective length for the first mode of failure (minimum between effective length of the circular or non-circular failure pattern);

leff,2 the effective length for the second mode of failure (non-circular failure pattern);

Note 2: There are differences between French (FR) localization (e.g.: member web in tension

exists for outer rows) and other countries. See the availability of member web in tension and end

plate in bending resistances for outer rows/groups presented in the pictures below:

Page 12: 3. Members - GRAITEC
Page 13: 3. Members - GRAITEC
Page 14: 3. Members - GRAITEC

3.4.2. Bending

The design bending moment about one principal axis of a cross-section is given in EN1993-1-1. 6.2.5 and is determined as follows:

For class 1 or 2 : ๐‘€๐‘,๐‘…๐‘‘ = ๐‘Š๐‘,๐‘๐‘™ ๐‘ฅ ๐‘“๐‘ฆ

๐›พ๐‘€0

For class 3: ๐‘€๐‘,๐‘…๐‘‘ = ๐‘Š๐‘,๐‘’๐‘™ ๐‘ฅ ๐‘“๐‘ฆ

๐›พ๐‘€0

For class 4: ๐‘€๐‘,๐‘…๐‘‘ = ๐‘Š๐‘,๐‘’๐‘“๐‘“ ๐‘ฅ ๐‘“๐‘ฆ

๐›พ๐‘€0

Mc,Rd design moment resistance of the beam cross-section;

Wc,pl plastic section modulus;

Wc,el elastic section modulus;

Page 15: 3. Members - GRAITEC

Base Plate. Bending Moment Verification

Check relation: Mj,Ed โ‰ค Mj,Rd ;

Design moment resistance of a column base Mj,Rd depend on eccentricity.

Load eccentricity: ๐‘’ =๐‘€๐‘—,๐ธ๐‘‘

๐‘๐‘—,๐ธ๐‘‘

The tensile force FT is positioned at the centre of anchor bolts.

Compression force Fc is positioned at the centre of the column flange.

The following parameters are used in this method:

The design tension resistance of the left hand side of the joint:

FT,l,Rd = min(Ft,wc,Rd, Ft,pl,Rd)

Ft,wc,Rd โ€“ column web in tension under the left column flange;

Ft,pl,Rd โ€“ base plate in bending under the left column flange

The design tension resistance FT,r,Rd of the right side of the joint:

FT,r,Rd = min(Ft,wc,Rd, Ft,pl,Rd)

Ft,wc,Rd โ€“ column web in tension under the right column flange;

Ft,pl,Rd โ€“ base plate in bending under the right column flange;

The design compressive resistance FC,l,Rd of the left side of the joint:

FC,l,Rd = min(Fc,pl,Rd, Fc,fc,Rd)

Fc,pl,Rd โ€“ concrete in compression under the left column flange;

Fc,fc,Rd โ€“ left column flange and web in compression;

The design compressive resistance FC,r,Rd of the right side of the joint:

FC,r,Rd = min(Fc,pl,Rd, Fc,fc,Rd)

Fc,pl,Rd โ€“ concrete in compression under the right column flange;

Fc,fc,Rd โ€“ right column flange and web in compression;

Determination of the lever arm z depending on the values of MEd and NEd :

a) Column base connection in case of a dominant compressive normal force;

b) Column base connection in case of a dominant tensile normal force;

c) Column base connection in case of a dominant bending moment;

Design moment resistance Mj,Rd of column bases depending on the loading values of M j,Ed and Nj,Ed

according to EN1993-1-8 6.2.8.3 Table 6.7.

Page 16: 3. Members - GRAITEC

Moment End Plate and Apex Haunch. Bending Moment Verification

The design moment resistance Mj,Rd of a beam-to-column joint with a bolted end-plate connection or bolted beam splices with welded end-plates may be determined from:

๐‘€๐‘—,๐‘…๐‘‘ = โˆ‘(๐น๐‘ก๐‘…๐‘‘๐‘ฅโ„Ž๐‘Ÿ)

Ft,Rd โ€“ the effective design tension resistance of bolt-row

hr โ€“ is the distance from bolt-row to the centre of compression;

r- the bolt row number;

Note: If NEd โ‰ค 5% NplRd the design moment resistance Mj,Rd of a beam to column joint or beam

splice may be determined as follows: ๐‘€๐‘—,๐‘…๐‘‘ = โˆ‘(๐น๐‘ก๐‘…๐‘‘๐‘ฅโ„Ž๐‘Ÿ)

๐‘๐‘๐‘™,๐‘…๐‘‘ = ๐ด๐‘ฅ๐‘“๐‘ฆ

๐›พ๐‘€0

3.5. Buckling

Column Web Buckling

Check relation: Fb,wc,Ed โ‰ค Fb,wc,Rd ;

Column web buckling design force:

๐น๐‘,๐‘ค๐‘,๐ธ๐‘‘ = |๐‘€๐ธ๐‘‘

โ„Ž๐‘“โˆ’

๐‘๐ธ๐‘‘

2|

hf โ€“ distance between resultant tensile force and resultant compressive force

NEd โ€“ design axial force

MEd โ€“ design bending moment

Column web buckling design resistance:

๐น๐‘,๐‘ค๐‘,๐‘…๐‘‘ = ๐œ’ ๐‘ฅ ๐ด ๐‘ฅ ๐‘“๐‘ฆ

๐›พ๐‘€1 EN 1993-1-1 6.3.1.1

The column web is stiffened, so:

๐œ€ = โˆš235

๐‘“๐‘ฆ,๐‘ ๐‘ก

The reduction factor for the relevant buckling curve is:

๐œ’ = min (1 ; 1

๐œ™+โˆš๐œ™2โˆ’๐œ†2) EN 1993-1-1 6.3.1.2

๐œ™ = 0.5๐‘ฅ(1 + ๐›ผ ๐‘ฅ (๐œ† โˆ’ 0.2) + ๐œ†2)

ฮฆ โ€“ value to determine the reduction factor;

The imperfection coefficient ฮฑ is chosen according to EN 1993-1-1, tables 6.1 and 6.2.

๐ด = ๐ด๐‘ค๐‘’๐‘ = โ„Ž๐‘ข๐‘›๐‘ ๐‘ก๐‘–๐‘“๐‘“๐‘ฅ ๐‘ก๐‘ค

โ„Ž๐‘ข๐‘›๐‘ ๐‘ก๐‘–๐‘“๐‘“ = โ„Ž๐ฟ + 2๐‘ฅ๐‘ก + ๐‘ก๐‘“

hL โ€“height of the column section;

t โ€“ end plate thickness;

tf โ€“ beam flange thickness or the haunch flange thickness( when the haunch beam stiffener is enabled)

Page 17: 3. Members - GRAITEC

Note: When the column web is stiffened area A is calculated by adding the stiffener area to

web area:

๐ด = ๐ด๐‘ค๐‘’๐‘ + ๐ด๐‘ ๐‘ก

๐ด๐‘ค๐‘’๐‘ = โ„Ž๐‘ ๐‘ก๐‘–๐‘“๐‘“๐‘ฅ ๐‘ก๐‘ค

โ„Ž๐‘ ๐‘ก๐‘–๐‘“๐‘“ = ๐‘ก๐‘ ๐‘ก + 30 ๐‘ฅ ๐œ€

๐ด๐‘ ๐‘ก = ๐‘›๐‘ ๐‘ก ๐‘ฅ ๐‘๐‘ ๐‘ก ๐‘ฅ ๐‘ก๐‘ ๐‘ก

hstiff โ€“ the height of the section subject to buckling;

tw โ€“ thickness of the column web

tst โ€“ stiffener thickness;

bst โ€“ stiffener width;

nst โ€“ number of stiffeners;

I โ€“ moment of inertia of section subject to buckling, according to โ€œweakโ€ axis:

Radius of gyration:

๐‘– = โˆš๐ผ

๐ด

The stiffeners non dimensional slenderness:

๐œ† =๐ฟ๐‘๐‘Ÿ

๐‘– ๐‘ฅ ๐œ†1 EN 1993-1-1 6.3.1.3

ฮป1 โ€“ non dimensional slenderness (limit for elastic buckling);

๐œ†1 = ฯ€ ๐‘ฅ โˆš๐ธ

๐‘“๐‘ฆ

Buckling length:

๐ฟ๐‘๐‘Ÿ = 0.75 ๐‘ฅ ๐‘‘๐‘

dc -column straight portion of the web;

For example for a rolled profile:

๐‘‘๐‘ = โ„Ž๐‘ โˆ’ 2๐‘ฅ(๐‘ก๐‘“๐‘ โˆ’ ๐‘Ÿ๐‘)

hc โ€“ column section height;

rc โ€“ column inner radius;

tfc โ€“ column flange thickness;