3. physics of josephson junctions: the voltage stateโ‚ฌยฆย ยท 2017) ohmic dependence with sharp...

56
AS-Chap. 3 - 1 R. Gross, A. Marx , F. Deppe, and K. Fedorov ยฉ Walther-MeiรŸner-Institut (2001 - 2017) Chapter 3 Physics of Josephson Junctions: The Voltage State

Upload: others

Post on 22-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 1

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Chapter 3

Physics of Josephson Junctions:

The Voltage State

Page 2: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 2

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

For bias currents ๐ผ > ๐ผsm

Finite junction voltage

Phase difference ๐œ‘ evolves in time: ๐‘‘๐œ‘

๐‘‘๐‘กโˆ ๐‘‰

Finite voltage state of the junction corresponds to a dynamic state

Only part of the total current is carried by the Josephson current additional resistive channel capacitive channel noise channel

Key questions

How does the phase dynamics look like?

Current-voltage characteristics for ๐ผ > ๐ผsm?

What is the influence of the resistive damping ?

3. Physics of Josephson junctions: The voltage state

Page 3: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 3

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

At finite temperature ๐‘‡ > 0

Finite density of โ€œnormalโ€ electrons Quasiparticles Zero-voltage state: No quasiparticle current For ๐‘‰ > 0 Quasiparticle current = Normal current ๐ผN Resistive state

High temperatures close to ๐‘‡c

For ๐‘‡ โ‰ฒ ๐‘‡๐‘ and 2ฮ” ๐‘‡ โ‰ช ๐‘˜๐ต๐‘‡: (almost) all Cooper pairs are broken up Ohmic current-voltage characteristic (IVC)

๐ผN = ๐บN๐‘‰, where ๐บN โ‰ก1

๐‘…Nis the normal conductance

Large voltage ๐‘‰ > ๐‘‰g =ฮ”1+ฮ”2

๐‘’

External circuit provides energy to break up Cooper pairs Ohmic IVC

For ๐‘‡ โ‰ช ๐‘‡c and |V| < Vg

Vanishing quasiparticle density No normal current

3.1 The basic equation of the lumped Josephson junction3.1.1 The normal current: Junction resistance

Page 4: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 4

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

For ๐‘‡ โ‰ช ๐‘‡c and V < ๐‘‰g

IVC depends on sweep direction and on bias type (current/voltage) Hysteretic behavior Current bias ๐ผ = ๐ผs + ๐ผN = ๐‘๐‘œ๐‘›๐‘ ๐‘ก. Circuit model

Equivalent conductance GN at T = 0:

Voltage state

Bias current ๐ผ ๐ผs ๐‘ก = ๐ผc sin๐œ‘ ๐‘ก is time dependent IN is time dependent

Junction voltage ๐‘‰ =๐ผN

๐บNis time

dependent IVC shows time-averaged voltage ๐‘‰

Current-voltage characteristic

3.1.1 The normal current: Junction resistance

Page 5: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 5

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Finite temperature Sub-gap resistance ๐‘…sg ๐‘‡ for ๐‘‰ < ๐‘‰g ๐‘…sg ๐‘‡ determined by amount of thermally excited quasiparticles

๐‘› ๐‘‡ Density of excited quasiparticles

for T > 0 we get

Nonlinear conductance ๐บN ๐‘‰, ๐‘‡

Characteristic voltage (๐ผc๐‘…N-product)

Note: There may be a frequency dependence of the normal channel Normal channel depends on junction type

3.1.1 The normal current: Junction resistance

Page 6: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 6

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

If ๐‘‘๐‘‰

๐‘‘๐‘กโ‰  0 Finite displacement current

Additional current channel

With ๐‘‰ = ๐ฟc๐‘‘๐ผs

๐‘‘๐‘ก, ๐ผN = ๐‘‰๐บN, ๐ผD = ๐ถ

๐‘‘๐‘‰

๐‘‘๐‘ก, ๐ฟs =

๐ฟc

cos ๐œ‘ ๐ฟc and ๐บN ๐‘‰, ๐‘‡ =

1

๐‘…N

Josephson inductance

For planar tunnel junction

๐ถ โ†” junction capacitance

3.1.2 The displacement current: Junction capacitance

Page 7: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 7

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Equivalent parallel ๐ฟ๐‘…๐ถ circuit ๐ฟc, ๐‘…N, C Three characteristic frequencies

Plasma frequency

๐œ”๐‘ โˆ๐ฝc

๐ถ๐ด, where ๐ถ๐ด โ‰ก

๐ถ

๐ดis the specific junction capacitance

๐œ” < ๐œ”p ๐ผD < ๐ผs

Inductive ๐ฟc/๐‘…N time constant

Inverse relaxation time in the normal+supercurrent system ๐œ”c follows from ๐‘‰c (2nd Josephson equation) ๐ผN < ๐ผc for ๐‘‰ < ๐‘‰c or ๐œ” < ๐œ”c

Capacitive ๐‘…N๐ถ time constant

๐ผD < ๐ผN for ๐œ” <1

๐œ๐‘…๐ถ

๐‘‰c = ๐ผc๐‘…N

Characteristic frequencies

3.1.3 Characteristic times and frequencies

Page 8: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 8

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Quality factor

Limiting cases

๐›ฝ๐ถ โ‰ช 1 Small capacitance and/or small resistance Small ๐‘…N๐ถ time constants (๐œ๐‘…๐ถ๐œ”p โ‰ช 1)

Highly damped (overdamped) junctions

๐›ฝ๐ถ โ‰ซ 1 Large capacitance and/or large resistance Large ๐‘…N๐ถ time constants (๐œ๐‘…๐ถ๐œ”p โ‰ซ 1)

Weakly damped (underdamped) junctions

Stewart-McCumber parameter and quality factor

Stewart-McCumber parameter

(๐‘„ compares the decay of oscillation amplitudes to the oscillation period)

3.1.3 Characteristic times and frequencies

Page 9: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 9

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Fluctuation/noise Langevin method: include random source fluctuating noise current type of fluctuations: thermal noise, shot noise, 1/f noise

Thermal Noise

Johnson-Nyquist formula for thermal noise (๐‘˜B๐‘‡ โ‰ซ ๐‘’๐‘‰, โ„๐œ”):

relative noise intensity (thermal energy/Josephson coupling energy):

๐ผ๐‘‡ โ‰ก thermal noise current๐‘‡ = 4.2 K ๐ผ๐‘‡ โ‰ˆ 0.15 ฮผA

(current noise power spectral density)

(voltage noise power spectral density)

3.1.4 The fluctuation current

Page 10: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 10

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Shot Noise

Schottky formula for shot noise (๐‘’๐‘‰ โ‰ซ ๐‘˜B๐‘‡ ๐‘‰ > 0.5 mV@ 4.2 K):

Random fluctuations due to the discreteness of charge carriers Poisson process Poissonian distribution Strength of fluctuations variance ๐›ฅ๐ผ2 โ‰ก ๐ผ โˆ’ ๐ผ 2

Variance depends on frequency Use noise power:

includes equilibriumfluctuations (white noise)

1/f noise

Dominant at low frequencies Physical nature often unclear Josephson junctions: dominant below about 1 Hz - 1 kHz Not considered here

3.1.4 The fluctuation current

Page 11: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 11

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Kirchhoffโ€˜s law: ๐ผ = ๐ผs + ๐ผN + ๐ผD + ๐ผ๐น

Voltage-phase relation: ๐‘‘๐œ‘

๐‘‘๐‘ก=

2๐‘’๐‘‰

โ„

Basic equation of a Josephson junction

Nonlinear differential equation with nonlinear coefficients

Complex behavior, numerical solution

Use approximations (simple models)

Super-current

Normalcurrent

Displace-ment

current

Noise current

3.1.5 The basic junction equation

Page 12: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 12

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Differential equation in dimesionless or energy formulation

โ‰ก ๐‘– โ‰ก ๐‘–F(๐‘ก)

with

Tilted washboard potential

Resistively and Capacitively ShuntedJunction (RCSJ) model

Mechanical analogGauge invariant phase difference โ†” Particle with mass M and damping ๐œ‚ in potential U:

Approximation ๐บ๐‘ ๐‘‰ โ‰ก ๐บ = ๐‘…โˆ’1 = const.๐‘… = Junction normal resistance

3.2 The resistively and capacitively shunted junction (RCSJ) model

Page 13: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 13

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Normalized time:

Stewart-McCumber parameter:

Plasma frequency

Neglect damping, zero driving and small amplitudes (sin๐œ‘ โ‰ˆ ๐œ‘)

Solution:

Plasma frequency = Oscillation frequency around potential minimum

Finite tunneling probability:Macroscopic quantum tunneling (MQT)

Escape by thermal activation Thermally activated phase slips

Motion of โ€žphase particleโ€œ ๐œ‘ in the tilted washboard potential

3.2 The resistively and capacitively shunted junction (RCSJ) model

Page 14: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 14

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) The pendulum analog

Plane mechanical pendulum in uniform gravitational field Mass ๐‘š, length โ„“, deflection angle ๐œƒ Torque ๐ท parallel to rotation axis Restoring torque: ๐‘š๐‘”โ„“ sin ๐œƒ

Equation of motion ๐ท = ๐›ฉ ๐œƒ + ๐›ค ๐œƒ + ๐‘š๐‘”โ„“ sin ๐œƒ

ฮ˜ = ๐‘šโ„“2 Moment of inertiaฮ“ Damping constant

๐ผ โ†” ๐ท๐ผc โ†” ๐‘š๐‘”โ„“๐›ท0

2๐œ‹๐‘… โ†” ๐›ค

C๐›ท0

2๐œ‹โ†” ๐›ฉ

๐œ‘ โ†” ๐œƒ

For ๐ท = 0 Oscillations around equilibrium with

๐œ” =๐‘”

โ„“โ†” Plasma frequency ๐œ”p =

2๐œ‹๐ผc

๐›ท0๐ถ

Finite torque (๐ท > 0) Finite ๐œƒ0 Finite, but constant ๐œ‘0 Zero-voltage stateLarge torque (deflection > 90ยฐ) Rotation of the pendulum Finite-voltage state

Voltage ๐‘‰โ†” Angular velocity of the pendulum

Analogies

3.2 The resistively and capacitively shunted junction (RCSJ) model

Page 15: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 15

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Underdamped junction

๐›ฝ๐ถ =2๐‘’๐ผ๐‘๐‘…

2๐ถ

โ„โ‰ซ 1

Capacitance & resistance large๐‘€ large, ๐œ‚ smallHysteretic IVC

Overdamped junction

๐›ฝ๐ถ =2๐‘’๐ผ๐‘๐‘…

2๐ถ

โ„โ‰ช 1

Capacitance & resistance small๐‘€ small, ๐œ‚ largeNon-hysteretic IVC

(Once the phase is moving, the potential has to be tilt back almost into the horizontal position to stop ist motion)

3.2.1 Under- and overdamped Josephson junctions

(Phase particle will retrap immediately at ๐ผc because of large damping)

Page 16: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 16

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

โ€žApplied Superconductivityโ€œ One central question is

โ€žHow to extract information about the junction experimentally?โ€œ

3.3 Response to driving sources

Typical strategy

Drive junction with a probe signal and measure response

Examples for probe signals

Currents (magnetic fields) Voltages (electric fields) DC or AC Josephson junctions AC means microwaves!

Prototypical experiment

Measure junction IVC Typically done with current bias

Motivation

Page 17: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 17

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Time averaged voltage:2๐œ‹

Total current must be constant (neglecting the fluctuation source):

where:

๐ผ > ๐ผc Part of the current must flow as ๐ผN or ๐ผD

Finite junction voltage ๐‘‰ > 0 Time varying ๐ผs ๐ผN + ๐ผD varies in time Time varying voltage, complicated non-sinusoidal oscillations of ๐ผs,

Oscillating voltage has to be calculated self-consistently Oscillation frequency ๐‘“ = ๐‘‰ ๐›ท0

๐‘‡ = Oscillation period

3.3.1 Response to a dc current source

Page 18: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 18

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

For ๐ผ โ‰ณ ๐ผc

Highly non-sinusoidal oscillations Long oscillation period

๐‘‰ โˆ1

๐‘‡is small

I/Ic = 1.05

I/Ic = 1.1

I/Ic = 1.5

I/Ic = 3.0

Analogy to pendulum

3.3.1 Response to a dc current source

For ๐ผ โ‰ซ ๐ผc

Almost all current flows as normal current Junction voltage is nearly constant Almost sinusoidal Josephson current

oscillations Time averaged Josephson current almost

zero Linear/Ohmic IVC

Page 19: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 19

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Strong damping

๐›ฝ๐ถ โ‰ช 1 & neglecting noise current

๐‘– < 1 Only supercurrent, ๐œ‘ = sinโˆ’1 ๐‘– is a solution, zero junction voltage๐‘– > 1 Finite voltage, temporal evolution of the phase

Integration using

gives

Periodic function with period

Setting ๐œ0 = 0 and using ๐œ =๐‘ก

๐œc

tanโˆ’1 ๐‘Ž tan ๐‘ฅ + ๐‘is ๐œ‹-periodic

3.3.1 Response to a dc current source

Page 20: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 20

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

with

We get for ๐‘– > 1

and

3.3.1 Response to a dc current source

Page 21: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 21

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

๐œ”๐‘…๐ถ =1

๐‘…N๐ถis very small

Large C is effectively shunting oscillating part of junction voltage ๐‘‰ ๐‘ก โ‰ƒ ๐‘‰ Time evolution of the phase

Almost sinusoidal oscillation of Josephson current

Down to ๐‘‰ โ‰ˆโ„๐œ”๐‘…๐ถ

๐‘’โ‰ช ๐‘‰c = ๐ผc๐‘…N

Corresponding current โ‰ช ๐ผc Hysteretic IVC

Weak damping

๐›ฝ๐ถ โ‰ซ 1 & neglecting noise current

Ohmic result valid for ๐‘…N = ๐‘๐‘œ๐‘›๐‘ ๐‘ก.

Real junction IVC determined by voltage dependence of ๐‘…N = ๐‘…N V

3.3.1 Response to a dc current source

Page 22: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 22

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

๐›ฝ๐ถ โ‰ƒ 1

Numerically solve IVC General trend

Increasing ๐›ฝ๐ถ โ†” Increasing hysteresis

Hysteresis characterized by retrapping current ๐ผr

๐ผr โˆ washboard potential tilt whereEnergy dissipated in advancing to next minimum = Work done by drive current

Analytical calculation possible for ๐›ฝ๐ถ โ‰ซ 1 (exercise class)

Intermediate damping

Numericalcalculation

3.3.1 Response to a dc current source

๐ผ r/๐ผc

Page 23: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 23

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Phase evolves linearly in time:

Josephson current ๐ผ๐‘  oscillates sinusoidally Time average of ๐ผs is zero

๐ผD = 0 since๐‘‘๐‘‰dc

๐‘‘๐‘ก= 0

Total current carried by normal current ๐ผ =๐‘‰dc

๐‘…N

RCSJ model Ohmic IVCGeneral case ๐‘… = ๐‘…N ๐‘‰ Nonlinear IVC

3.3.1 Response to a dc voltage source

Page 24: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 24

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Response to an ac voltage source

Strong damping ๐›ฝ๐ถ โ‰ช 1

Integrating the voltage-phase relation:

Current-phase relation:

Superposition of linearly increasing and sinusoidally varying phase

Supercurrent ๐ผs(๐‘ก) and ac voltage ๐‘‰1 have different frequencies Origin Nonlinear current-phase relation

3.3.2 Response to ac driving sources

Page 25: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 25

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Fourier-Bessel series identity:๐’ฅ๐‘› ๐‘ = ๐‘›th order Bessel function of the first kind

and:

Ac driven junction ๐‘ฅ = ๐œ”1๐‘ก, ๐‘ =2๐œ‹

๐›ท0๐œ”1and ๐‘Ž = ๐œ‘0 +๐œ”dc๐‘ก = ๐œ‘0 +

2๐œ‹

๐›ท0๐‘‰dc๐‘ก

Frequency ๐œ”dc couples to multiples of the driving frequency

Imaginary part

Some maths for the analysis of the time-dependent Josephson current

3.3.2 Response to ac driving sources

Page 26: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 26

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Ac voltage results in dc supercurrent if ๐œ”dc โˆ’ ๐‘›๐œ”1 ๐‘ก + ๐œ‘0 is time independent

Amplitude of average dc current for a specific step number ๐‘›

๐‘‰dc โ‰  ๐‘‰๐‘›

๐œ”dc โˆ’ ๐‘›๐œ”1 ๐‘ก + ๐œ‘0 is time dependent Sum of sinusoidally varying terms Time average is zero Vanishing dc component

3.3.2 Response to ac driving sources

Shapiro steps

Page 27: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 27

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Ohmic dependence with sharp current spikes at ๐‘‰dc = ๐‘‰๐‘› Current spike amplitude depends on ac voltage amplitude

๐‘›th step Phase locking of the junction to the ๐‘›th harmonic

Example: ๐œ”1/2๐œ‹ = 10 GHz

Constant dc current at Vdc = 0 and ๐‘‰๐‘› = ๐‘›๐œ”1๐›ท0

2๐œ‹โ‰ƒ ๐‘› ร— 20 ฮผV

3.3.2 Response to ac driving sources

Page 28: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 28

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Difficult to solve Qualitative discussion with washboard potential

Increase ๐ผdc at constant ๐ผ1 Zero-voltage state for ๐ผdc + ๐ผ1 โ‰ค ๐ผc, finite voltage state for ๐ผdc + ๐ผ1 > ๐ผc Complicated dynamics!

๐‘‰๐‘› = ๐‘›๐œ”1ฮฆ0

2๐œ‹Motion of phase particle synchronized by ac driving

Simplifying assumption During each ac cycle the phase particle

moves down ๐‘› minima

Resulting phase change ๐œ‘ = ๐‘›2๐œ‹

๐‘‡= ๐‘›๐œ”1

Average dc voltage ๐‘‰ = ๐‘›๐›ท0

2๐œ‹๐œ”1 โ‰ก ๐‘‰๐‘›

Exact analysis Synchronization of phase dynamics with external ac source for a certain bias current interval

Strong damping ๐›ฝ๐ถ โ‰ช 1 (experimentally relevant)

Kirchhoffโ€™s law (neglecting ID) ๐ผ๐‘ sin ๐œ‘ +1

๐‘…N

๐›ท0

2๐œ‹

๐‘‘๐œ‘

๐‘‘๐‘ก= ๐ผdc + ๐ผ1 sin๐œ”1๐‘ก

3.3.2 Response to ac driving sources

Response to an ac current source

Steps

Page 29: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 29

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Experimental IVCs obtained for an underdamped and overdamped Niobium Josephson junction under microwave irradiation

3.3.2 Response to ac driving sources

Page 30: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 30

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Superconducting tunnel junction Highly nonlinear ๐‘… ๐‘‰

Sharp step at ๐‘‰g =2๐›ฅ

๐‘’

Use quasiparticle (QP) tunneling current ๐ผqp ๐‘‰

Include effect of ac source on QP tunneling

Bessel function identity for ๐‘‰1-term Sum of terms Splitting of qp-levels into many levels ๐ธqp ยฑ ๐‘›โ„๐œ”1Modified density of states!

Tunneling current

Sharp increase of the ๐ผqp ๐‘‰ at ๐‘‰ = ๐‘‰g is broken up into many steps of smaller current

amplitude at ๐‘‰๐‘› = ๐‘‰g ยฑ๐‘›โ„๐œ”1

๐‘’

Model of Tien and Gordon: Ac driving shifts levels in electrode up and down

QP energy: ๐ธqp + ๐‘’๐‘‰1 cos๐œ”1๐‘ก

QM phase factor

3.3.4 Photon-assisted tunneling

Page 31: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 31

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Example QP IVC of a Nb SIS Josephson junction without & with microwave irradiation Frequency ๐œ”1 2๐œ‹ = 230 GHz corresponding to โ„๐œ”1 ๐‘’ โ‰ƒ 950 ฮผV

Shapiro steps

Appear at ๐‘‰๐‘› = ๐‘›โ„

2๐‘’๐œ”1

Amplitude ๐ฝ๐‘›2๐‘’๐‘‰1

โ„๐œ”1

Sharp steps

QP steps

Appear at ๐‘‰๐‘› = ๐‘›โ„

๐‘’๐œ”1

Amplitude ๐ฝ๐‘›๐‘’๐‘‰1

โ„๐œ”1

Broadended steps(depending on ๐ผqp ๐‘‰ )

๐œ”1 2๐œ‹ = 230 GHz

3.3.4 Photon-assisted tunneling

Page 32: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 32

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Thermal fluctuations with correlation function:

Larger fluctuations

Increase probability for escape out of potential well Escape at rates Gnยฑ1

Escape to next minimum Phase change of 2๐œ‹

๐ผ > 0 Gn+1 > Gn-1๐‘‘๐œ‘

๐‘‘๐‘ก> 0

Langevin equation for RCSJ model

Equivalent to Fokker-Planck equation:

Normalized force

Normalized momentum

3.4 Additional topic: Effect of thermal fluctuations

Small fluctuations Phase fluctuations around equilibrium

Page 33: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 33

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) ๐œŽ(๐‘ฃ, ๐œ‘, ๐‘ก) Probability density of finding system at (๐‘ฃ, ๐œ‘) at time ๐‘ก

Static solution (๐‘‘๐œŽ

๐‘‘๐‘ก= 0)

with:

Boltzmann distribution (๐บ = ๐ธโ€“๐น๐‘ฅ is total energy, ๐ธ is free energy)

Constant probability to find system in nth metastable state

statistical average of variable ๐‘‹

3.4 Additional topic: Effect of thermal fluctuations

Small fluctuations

Page 34: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 34

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Attempt frequency ๐œ”A

Weak damping (๐›ฝ๐ถ = ๐œ”๐‘๐œ๐‘…๐ถ โ‰ซ 1) ๐ผ = 0 ๐œ”A = ๐œ”p (Oscillation frequency in the potential well)

๐ผ โ‰ช ๐ผc ๐œ”A ยป ๐œ”p

3.4 Additional topic: Effect of thermal fluctuations

๐‘ can change in time

for ฮ“๐‘›+1 โ‰ซ ฮ“๐‘›โˆ’1 and ๐œ”A

ฮ“๐‘›+1โ‰ซ 1 ๐œ”A = Attempt frequency

Amount of phase slippage

Large fluctuations

Strong damping (๐›ฝ๐ถ = ๐œ”๐‘๐œ๐‘…๐ถ โ‰ช 1)

๐œ”p โ†’ ๐œ”c (Frequency of an overdamped oscillator)

(underdamped junction)

(overdamped junction)

Page 35: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 35

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

For ๐ธJ0 โ‰ซ ๐‘˜B๐‘‡ Small escape probability โˆ exp โˆ’๐‘ˆ0 ๐ผ

๐‘˜B๐‘‡at each attempt

Barrier height: 2๐ธJ0 for ๐ผ = 0

0 for ๐ผ โ†’ ๐ผc

Escape probability ๐œ”A/2๐œ‹ for ๐ผ โ†’ ๐ผcAfter escape Junction switches to IRN

Experiment

Measure distribution of escape current ๐ผM Width ๐›ฟ๐ผ and mean reduction ๐›ฅ๐ผc = ๐ผc โˆ’ ๐ผM Use approximation for ๐‘ˆ0 ๐ผ and escape rate

๐œ”A/2๐œ‹ exp โˆ’๐‘ˆ0 ๐ผ

๐‘˜B๐‘‡

Considerable reduction of Ic when kBT > 0.05 EJ0

3.4.1 Underdamped junctions: Critical current reduction by premature switching

Provides experimental information on real or effective temperature!

Page 36: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 36

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Calculate voltage ๐‘‰ induced by thermally activated phase slips as a function of current

Important parameter:

3.4.2 Overdamped junctions: The Ambegaokar-Halperin theory

Page 37: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 37

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Finite amount of phase slippage Nonvanishing voltage for ๐ผ โ†’ 0 Phase slip resistance for strong damping (๐›ฝ๐ถ โ‰ช 1), for U0 = 2EJ0:

๐ธJ0

๐‘˜B๐‘‡โ‰ซ 1 Approximate Bessel function

or

attempt frequency

Attempt frequency is characteristic frequency ๐œ”c

Plasma frequency has to be replaced by frequency of overdamped oscillator:

Washboard potential Phase diffuses over barrier Activated nonlinear resistance

Modified Bessel function

3.4.2 Overdamped junctions: The Ambegaokar-Halperin theory

Amgegaokar-Halperin theory

Page 38: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 38

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

epitaxial YBa2Cu3O7 film on SrTiO3 bicrystalline substrate

R. Gross et al., Phys. Rev. Lett. 64, 228 (1990)Nature 322, 818 (1988)

Example: YBa2Cu3O7 grain boundary Josephson junctions Strong effect of thermal fluctuations due to high operation temperature

3.4.2 Overdamped junctions: The Ambegaokar-Halperin theory

Page 39: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 39

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Determination of ๐ผc ๐‘‡ close to ๐‘‡c

Overdamped YBa2Cu3O7 grain boundary Josephson junction

R. Gross et al., Phys. Rev. Lett. 64, 228 (1990)

thermally activated

phase slippage

3.4.2 Overdamped junctions: The Ambegaokar-Halperin theory

Page 40: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 40

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

3.5 Voltage state of extended Josephson junctions

So far

Junction treated as lumped element circuit element Spatial extension neglected

Spatially extended junctions

Specific geometry as as in Chapter 2 Insulating barrier in ๐‘ฆ๐‘ง-plane In-plane ๐ต field in ๐‘ฆ-direction Thick electrodes โ‰ซ ๐œ†L1,2 Magnetic thickness ๐‘ก๐ต = ๐‘‘ + ๐œ†๐ฟ,1 + ๐œ†๐ฟ,2 Bias current in ๐‘ฅ-direction

Phase gradient along ๐‘ง-direction

๐œ•๐œ‘ ๐‘ง,๐‘ก

๐œ•๐‘ง=

2๐œ‹

๐›ท0๐‘ก๐ต๐ต๐‘ฆ ๐‘ง, ๐‘ก

Expected effects

Voltage state ๐ธ-field and time-dependence become important Short junction and long junction case

Page 41: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 41

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Neglect self-fields (short junctions)

๐‘ฉ = ๐‘ฉ๐ž๐ฑ

Junction voltage ๐‘‰ = Applied voltage ๐‘‰0 Gauge invariant phase difference:

Josephson vortices moving in ๐‘ง-direction with velocity

3.5.1 Negligible Screening Effects

Page 42: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 42

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Long junctions (๐‘ณ โ‰ซ ๐€๐‰)

Effect of Josephson currents has to be taken into account Magnetic flux density = External + Self-generated field

with B = ๐œ‡0H and D = ํœ€0E:in contrast to static case,

now E/t 0

with ๐ธ๐‘ฅ = โˆ’๐‘‰/๐‘‘, ๐ฝ๐‘ฅ = โˆ’๐ฝ๐‘ sin ๐œ‘ and ๐œ•๐œ‘/๐œ•๐‘ก = 2๐œ‹๐‘‰/ฮฆ0:

consider 1D junction extending in z-direction, B = By, current flow in x-direction

(Josephson penetration depth)

(propagation velocity)

3.5.2 The time dependent Sine-Gordon equation

Page 43: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 43

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Time dependentSine-Gordon equation

๐‘ = velocity of TEM mode in the junction transmission line

Example: ํœ€ โ‰ƒ 5 โˆ’ 10, 2๐œ†L

๐‘‘โ‰ƒ 50 โˆ’ 100 ๐‘ โ‰ƒ 0.1๐‘

Reduced wavelength For f = 10 GHz Free space: 3 cm, in junction: 1 mm

with the Swihart velocity

Other form of time-dependent Sine-Gordon equation

3.5.2 The time dependent Sine-Gordon equation

Page 44: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 44

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Mechanical analogue

Chain of mechanical pendula attached to a twistablerubber ribbon

Restoring torque ๐œ†J2 ๐œ•

2๐œ‘

๐œ•๐‘ง2

Short junction w/o magnetic field 2/z2 = 0 Rigid connection of pendula Corresponds to single pendulum

Time-dependent Sine-Gordon equation:

3.5.2 The time dependent Sine-Gordon equation

Page 45: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 45

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Simple case 1D junction (W โ‰ช ฮปJ), short and long junctions

Short junctions (L โ‰ช ฮปJ) @ low damping

Neglect z-variation of ๐œ‘

Equivalent to RCSJ model for ๐บN = 0, ๐ผ = 0Small amplitudes Plasma oscillations(Oscillation of ๐œ‘ around minimum of washboard potential)

Long junctions (L โ‰ซ ฮปJ)

Solution for infinitely long junction Soliton or fluxon

๐œ‘ = ๐œ‹ at ๐‘ง = ๐‘ง0 + ๐‘ฃ๐‘ง๐‘กgoes from 0 to 2๐œ‹ for โˆ’โˆž โ†’ ๐‘ง โ†’ โˆž Fluxon (antifluxon: โˆž โ†’ ๐‘ง โ†’ โˆ’โˆž)

3.5.3 Solutions of the time dependent SG equation

Page 46: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 46

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Pendulum analog Local 360ยฐ twist of

rubber ribbon

Applied current Lorentz forceMotion of phase twist (fluxon)

Fluxon as particle Lorentz contraction for vz โ†’ c

Local change of phase difference Voltage

Moving fluxon = Voltage pulse

Other solutions: Fluxon-fluxon collisions, โ€ฆ

๐œ‘ = ๐œ‹ at ๐‘ง = ๐‘ง0 + ๐‘ฃ๐‘ง๐‘กgoes from 0 to 2๐œ‹ for โˆ’โˆž โ†’ ๐‘ง โ†’ โˆž Fluxon (antifluxon: โˆž โ†’ ๐‘ง โ†’ โˆ’โˆž)

3.5.3 Solutions of the time dependent SG equation

Page 47: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 47

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Linearized Sine-Gordon equation

๐œ‘1 = Small deviation Approximation

Substitution (keeping only linear terms):

๐œ‘0 solves time independent SGE ๐œ•2๐œ‘0

๐œ•๐‘ง2= ๐œ†J

โˆ’2sin ๐œ‘0

๐œ‘0 slowly varying ๐œ‘0 โ‰ˆ ๐‘๐‘œ๐‘›๐‘ ๐‘ก.

3.5.3 Solutions of the time dependent SG equation

Josephson plasma waves

Page 48: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 48

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

๐œ” < ๐œ”p,J

Wave vector k imaginary No proagating solution๐œ” > ๐œ”p,J

Mode propagation Pendulum analogue Deflect one pendulum Relax Wave like excitation๐œ” = ๐œ”p,J

Infinite wavelength Josephson plasma wave Analogy to plasma frequency in a metal Typically junctions ๐œ”p,J โ‰ƒ 10 GHz

For very large ๐œ†J or very small I

Neglectsin ๐œ‘

๐œ†J2 term Linear wave equation Plane waves with velcoity ๐‘

=๐œ”p2

4๐œ‹2cos๐œ‘0

3.5.3 Solutions of the time dependent SG equation

Solution:

Dispersion relation ฯ‰(k) :

Josephson plasma frequency

(small amplitude plasma waves)

Plane waves

Page 49: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 49

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Interaction of fluxons or plasma waves with oscillating Josephson current

Rich variety of interesting resonance phenomena Require presence of ๐‘ฉ๐ž๐ฑ

Steps in IVC (junction upconverts dc drive)

For ๐ตex > 0

Spatially modulated Josephson currrent density moves at ๐‘ฃ๐‘ง = ๐‘‰ ๐ต๐‘ฆ๐‘ก๐ต Josephson current can excite Josephson plasma waves

On resonance, em waves couple strongly to Josephson current if ๐’„ = ๐’—๐’›

Eck peak at frequency:

Corresponding junction voltage:

3.5.4 Resonance phenomena

Flux-flow steps and Eck peak

Page 50: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 50

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Alternative point of view

Lorentz force Josephson vortices move at ๐‘ฃ๐‘ง =๐‘‰

๐ต๐‘ฆ๐‘ก๐ต

Increase driving force Increase ๐‘ฃ๐‘ง Maximum possible speed is ๐‘ฃ๐‘ง = ๐‘ Further increase of ๐ผ does not increase ๐‘‰) Flux flow step in IVC

๐‘‰ffs = ๐‘๐ต๐‘ฆ๐‘ก๐ต = ๐‘๐›ท

๐ฟ=

๐œ”p

2๐œ‹

๐œ†J

๐ฟ๐›ท0

๐›ท

๐›ท0

Corresponds to Eck voltage

Traveling current wave only excites traveling em wave of same direction Low damping, short junctions Em wave is reflected at open end Eck peak only observed in long junctions at medium damping when

the backward wave is damped

3.5.4 Resonance phenomena

Page 51: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 51

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Standing em waves in junction โ€œcavityโ€ at ๐œ”๐‘› = 2๐œ‹๐‘“๐‘› = 2๐œ‹ ๐‘

2๐ฟ๐‘› =

๐œ‹ ๐‘

๐ฟ๐‘›

Fiske steps at voltages for L ยป 100 ฮผmfirst Fiske step ยป 10 GHz(few 10s of ฮผV)

Interpretation

Wave length of Josephson current density is 2๐œ‹

๐‘˜

Resonance condition ๐ฟ = ๐‘

2๐‘“๐‘›๐‘› =

๐œ†

2๐‘› โ‡’ ๐‘˜๐ฟ = ๐‘›๐œ‹ or ๐›ท = ๐‘›

๐›ท0

2

where maximum Josephson current of short junction vanishes Standing wave pattern of em wave and Josephson current match Steps in IVC

Influence of dissipation

Damping of standing wave pattern by dissipative effects Broadening of Fiske steps Observation only for small and medium damping

๐œ†/2-cavity

๐œ”๐‘› = ๐‘›๐œ‹๐‘ฃph ๐ฟ

๐‘ฃph = Phase velocity

3.5.4 Resonance phenomena

Fiske steps

Page 52: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 52

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) Fiske steps at small damping and/or small magnetic field

Eck peak at medium damping and/or medium magnetic field

For ๐‘‰ โ‰  ๐‘‰Eck and ๐‘‰ โ‰  ๐‘‰๐‘› ๐ผ๐‘  = ๐ผc sin ๐œ”0๐‘ก + ๐‘˜๐‘ง + ๐œ‘0 โ‰ƒ 0 ๐ผ = ๐ผN ๐‘‰ = ๐‘‰/๐‘…N ๐‘‰

3.5.4 Resonance phenomena

Page 53: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 53

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Motion of trapped flux due to Lorentz force (w/o magnetic field) Junction of length L, moving back and forth

Phase change of 4๐œ‹ in period ๐‘‡ =2๐ฟ

๐‘ฃz

At large bias currents (๐‘ฃ๐‘ง โ†’ ๐‘)

๐‘‰zfs = ๐œ‘โ„

2๐‘’=4๐œ‹

๐‘‡

โ„

2๐‘’=

4๐œ‹

2๐ฟ/ ๐‘

โ„

2๐‘’=

โ„Ž

2๐‘’

๐‘

๐ฟ=๐œ”p

๐œ‹

๐œ†J๐ฟ๐›ท0

For ๐‘› fluxons

๐‘‰๐‘›,zfs = ๐‘›๐‘‰๐‘ง๐‘“๐‘  ๐‘‰๐‘›,zf๐‘  = 2 ร— Fiske voltage ๐‘‰๐‘› (fluxon has to move back and forth)

๐‘‰ffs = ๐‘‰๐‘›,zfs for ๐›ท = ๐‘›๐›ท0 (introduce n fluxons = generate n flux quanta)

Example:IVCs of annular Nb/insulator/PbJosephson junction containing adifferent number of trapped fluxons

3.5.4 Resonance phenomena

Zero field steps

Page 54: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 54

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

Voltage state: (Josephson + normal + displacement + fluctuation) current = total current

RCSJ-model (๐บ๐‘ ๐‘‰ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก.)

Motion of phase particle in the tilted washboard potential

Equivalent LCR resonator, characteristic frequencies:

Equation of motion for phase difference ๐œ‘:

Quality factor:

๐‘‘๐œ‘

๐‘‘๐‘ก=2๐‘’๐‘‰

โ„

Summary (Voltage state of short junctions)

๐›ฝ๐ถ = Stewart-McCumber parameter

Page 55: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 55

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

)

IVC for strong damping and ๐›ฝ๐ถ โ‰ช 1

Driving with ๐‘‰ ๐‘ก = ๐‘‰dc + ๐‘‰1 cos๐œ”1๐‘ก

Shapiro steps at ๐‘‰๐‘› = ๐‘›๐›ท0

2๐œ‹๐œ”1

with amplitudes ๐ผs ๐‘› = ๐ผ๐‘ ๐’ฅ๐‘›2๐œ‹๐‘‰1

๐›ท0๐œ”1

Photon assisted tunneling

Voltage steps at ๐‘‰๐‘› = ๐‘›๐›ท0

๐œ‹๐œ”1 due to nonlinear

QP resistance

Summary (Voltage state of short junctions)

Effect of thermal fluctuations

Phase-slips at rate ฮ“๐‘›+1 =๐œ”A

2๐œ‹exp โˆ’

๐‘ˆ0

kB๐‘‡

Finite phase-slip resistance ๐‘…p even below ๐ผc

Premature switching

Page 56: 3. Physics of Josephson Junctions: The Voltage Stateโ‚ฌยฆย ยท 2017) Ohmic dependence with sharp current spikes at dc= ๐‘› Current spike amplitude depends on ac voltage amplitude thstep

AS-Chap. 3 - 56

R. G

ross

, A. M

arx

, F. D

ep

pe

, an

dK

. Fe

do

rov

ยฉ W

alth

er-

Me

iรŸn

er-

Inst

itu

t(2

00

1 -

20

17

) โ€ข voltage state of extended junctionsw/o self-field:

โ€ข with self-field: time dependent Sine-Gordon equation

characteristic velocity of TEM mode in the junction transmission line

Summary

characteristic screening length

Prominent solutions: plasma oscillations and solitons

nonlinear interactions of these excitations with Josephson current: flux-flow steps, Fiske steps, zero-field steps