3. tensor calculus jan 2013

119
Tensor Calculus Differentials & Directional Derivatives

Upload: seyisulu

Post on 17-Apr-2015

154 views

Category:

Documents


13 download

DESCRIPTION

Continuum Mechanics,Linear Spaces,Prof OA Fakinlede,SSG 815,Tensor Analysis,UNILAG,University of Lagos Nigeria,Vectors,Tensor Calculus

TRANSCRIPT

Page 1: 3. Tensor Calculus Jan 2013

Tensor Calculus Differentials & Directional Derivatives

Page 2: 3. Tensor Calculus Jan 2013

We are presently concerned with Inner Product spaces in our treatment of the Mechanics of Continua. Consider a map,

๐‘ญ: V โ†’ W This maps from the domainV to W โ€“ both of which are Euclidean vector spaces. The concepts of limit and continuity carries naturally from the real space to any Euclidean vector space.

The Gateaux Differential

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 2

Page 3: 3. Tensor Calculus Jan 2013

Let ๐’—0 โˆˆ V and ๐’˜0 โˆˆ W, as usual we can say that the limit

lim๐’—โ†’ ๐’—0

๐‘ญ ๐’— = ๐’˜0

if for any pre-assigned real number ๐œ– > 0, no matter how small, we can always find a real number ๐›ฟ > 0 such that ๐‘ญ ๐’— โˆ’ ๐’˜0 โ‰ค ๐œ– whenever ๐’— โˆ’ ๐’—0 < ๐›ฟ.

The function is said to be continuous at ๐’—0 if ๐‘ญ ๐’—0 exists and ๐‘ญ ๐’—0 = ๐’˜0

The Gateaux Differential

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 3

Page 4: 3. Tensor Calculus Jan 2013

Specifically, for ๐›ผ โˆˆ โ„› let this map be:

๐ท๐‘ญ ๐’™, ๐’‰ โ‰ก lim๐›ผโ†’0

๐‘ญ ๐’™ + ๐›ผ๐’‰ โˆ’ ๐‘ญ ๐’™

๐›ผ=

๐‘‘

๐‘‘๐›ผ๐‘ญ ๐’™ + ๐›ผ๐’‰

๐›ผ=0

We focus attention on the second variable โ„Ž while we allow the dependency on ๐’™ to be as general as possible. We shall show that while the above function can be any given function of ๐’™ (linear or nonlinear), the above map is always linear in ๐’‰ irrespective of what kind of Euclidean space we are mapping from or into. It is called the Gateaux Differential.

The Gateaux Differential

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 4

Page 5: 3. Tensor Calculus Jan 2013

Let us make the Gateaux differential a little more familiar in real space in two steps: First, we move to the real space and allow โ„Ž โ†’ ๐‘‘๐‘ฅ and we obtain,

๐ท๐น(๐‘ฅ, ๐‘‘๐‘ฅ) = lim๐›ผโ†’0

๐น ๐‘ฅ + ๐›ผ๐‘‘๐‘ฅ โˆ’ ๐น ๐‘ฅ

๐›ผ=

๐‘‘

๐‘‘๐›ผ๐น ๐‘ฅ + ๐›ผ๐‘‘๐‘ฅ

๐›ผ=0

And let ๐›ผ๐‘‘๐‘ฅ โ†’ ฮ”๐‘ฅ, the middle term becomes,

limฮ”๐‘ฅโ†’0

๐น ๐‘ฅ + ฮ”๐‘ฅ โˆ’ ๐น ๐‘ฅ

ฮ”๐‘ฅ๐‘‘๐‘ฅ =

๐‘‘๐น

๐‘‘๐‘ฅ๐‘‘๐‘ฅ

from which it is obvious that the Gateaux derivative is a generalization of the well-known differential from elementary calculus. The Gateaux differential helps to compute a local linear approximation of any function (linear or nonlinear).

The Gateaux Differential

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 5

Page 6: 3. Tensor Calculus Jan 2013

It is easily shown that the Gateaux differential is linear in its second argument, ie, for ๐›ผ โˆˆ R

๐ท๐‘ญ ๐’™, ๐›ผ๐’‰ = ๐›ผ๐ท๐‘ญ ๐’™, ๐’‰

Furthermore, ๐ท๐‘ญ ๐’™, ๐’ˆ + ๐’‰ = ๐ท๐‘ญ ๐’™, ๐’ˆ + ๐ท๐‘ญ ๐’™, ๐’‰

and that for ๐›ผ, ๐›ฝ โˆˆ R ๐ท๐‘ญ ๐’™, ๐›ผ๐’ˆ + ๐›ฝ๐’‰ = ๐›ผ๐ท๐‘ญ ๐’™, ๐’ˆ + ๐›ฝ๐ท๐‘ญ ๐’™, ๐’‰

The Gateaux Differential

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 6

Page 7: 3. Tensor Calculus Jan 2013

The Frechรฉt derivative or gradient of a differentiable function is the linear operator, grad ๐‘ญ(๐’—) such that, for ๐‘‘๐’— โˆˆ V,

๐‘‘๐‘ญ ๐’—

๐‘‘๐’—๐‘‘๐’— โ‰ก grad ๐‘ญ ๐’— ๐‘‘๐’— โ‰ก ๐ท๐‘ญ ๐’—, ๐‘‘๐’—

Obviously, grad ๐‘ญ(๐’—) is a tensor because it is a linear transformation from one Euclidean vector space to another. Its linearity derives from the second argument of the RHS.

The Frechรฉt Derivative

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 7

Page 8: 3. Tensor Calculus Jan 2013

The Gradient of a Differentiable Real-Valued Function For a real vector function, we have the map:

๐‘“: V โ†’ R The Gateaux differential in this case takes two vector arguments and maps to a real value:

๐ท๐‘“: V ร— V โ†’ R This is the classical definition of the inner product so that we can define the differential as,

๐‘‘๐‘“(๐’—)

๐‘‘๐’—โ‹… ๐‘‘๐’— โ‰ก ๐ท๐‘“ ๐’—, ๐‘‘๐’—

This quantity, ๐‘‘๐‘“(๐’—)

๐‘‘๐’—

defined by the above equation, is clearly a vector.

Differentiable Real-Valued Function

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 8

Page 9: 3. Tensor Calculus Jan 2013

It is the gradient of the scalar valued function of the vector variable. We now proceed to find its components in general coordinates. To do this, we choose a basis ๐ ๐‘– โŠ‚ V. On such a basis, the function,

๐’— = ๐‘ฃ๐‘–๐ ๐‘–

and,

๐‘“ ๐’— = ๐‘“ ๐‘ฃ๐‘–๐ ๐‘–

we may also express the independent vector ๐‘‘๐’— = ๐‘‘๐‘ฃ๐‘–๐ ๐‘–

on this basis.

Real-Valued Function

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 9

Page 10: 3. Tensor Calculus Jan 2013

The Gateaux differential in the direction of the basis vector ๐ ๐‘– is,

๐ท๐‘“ ๐’—, ๐ ๐‘– = lim๐›ผโ†’0

๐‘“ ๐’— + ๐›ผ๐ ๐‘– โˆ’ ๐‘“ ๐’—

๐›ผ= lim

๐›ผโ†’0

๐‘“ ๐‘ฃ๐‘—๐ ๐‘— + ๐›ผ๐ ๐‘– โˆ’ ๐‘“ ๐‘ฃ๐‘–๐ ๐‘–

๐›ผ

= lim๐›ผโ†’0

๐‘“ ๐‘ฃ๐‘— + ๐›ผ๐›ฟ๐‘–๐‘—

๐ ๐‘— โˆ’ ๐‘“ ๐‘ฃ๐‘–๐ ๐‘–

๐›ผ

As the function ๐‘“ does not depend on the vector basis, we can substitute the vector function by the real function of the components ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3 so that,

๐‘“ ๐‘ฃ๐‘–๐ ๐‘– = ๐‘“ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

in which case, the above differential, similar to the real case discussed earlier becomes,

๐ท๐‘“ ๐’—, ๐ ๐‘– =๐œ•๐‘“ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–

Real-Valued Function

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 10

Page 11: 3. Tensor Calculus Jan 2013

Of course, it is now obvious that the gradient ๐‘‘๐‘“(๐’—)

๐‘‘๐’— of

the scalar valued vector function, expressed in its dual basis must be,

๐‘‘๐‘“(๐’—)

๐‘‘๐’—=

๐œ•๐‘“ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐‘–

so that we can recover,

๐ท๐‘“ ๐’—, ๐ ๐‘– =๐‘‘๐‘“ ๐’—

๐‘‘๐’—โ‹… ๐‘‘๐’— =

๐œ•๐‘“ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—๐ ๐‘— โ‹… ๐ ๐‘–

=๐œ•๐‘“ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—๐›ฟ๐‘–

๐‘—=

๐œ•๐‘“ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–

Hence we obtain the well-known result that

grad ๐‘“ ๐’— =๐‘‘๐‘“(๐’—)

๐‘‘๐’—=

๐œ•๐‘“ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐‘–

which defines the Frechรฉt derivative of a scalar valued function with respect to its vector argument.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 11

Page 12: 3. Tensor Calculus Jan 2013

The Gradient of a Differentiable Vector valued Function

The definition of the Frechรฉt clearly shows that the gradient of a vector-valued function is itself a second order tensor. We now find the components of this tensor in general coordinates. To do this, we choose a basis ๐ ๐‘– โŠ‚ V. On such a basis, the function,

๐‘ญ ๐’— = ๐น๐‘˜ ๐’— ๐ ๐‘˜

The functional dependency on the basis vectors are ignorable on account of the fact that the components themselves are fixed with respect to the basis. We can therefore write,

๐‘ญ ๐’— = ๐น๐‘˜ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3 ๐ ๐‘˜

Vector valued Function

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 12

Page 13: 3. Tensor Calculus Jan 2013

๐ท๐‘ญ ๐’—, ๐‘‘๐’— = ๐ท๐‘ญ ๐‘ฃ๐‘–๐ ๐‘– , ๐‘‘๐‘ฃ๐‘–๐ ๐‘–

= ๐ท๐‘ญ ๐‘ฃ๐‘–๐ ๐‘– , ๐ ๐‘– ๐‘‘๐‘ฃ๐‘–

= ๐ท๐น๐‘˜ ๐‘ฃ๐‘–๐ ๐‘– , ๐ ๐‘– ๐ ๐‘˜๐‘‘๐‘ฃ๐‘–

Again, upon noting that the functions ๐ท๐น๐‘˜ ๐‘ฃ๐‘–๐ ๐‘– , ๐ ๐‘– ,

๐‘˜ = 1,2,3 are not functions of the vector basis, they can be written as functions of the scalar components alone so that we have, as before,

๐ท๐‘ญ ๐’—, ๐‘‘๐’— = ๐ท๐น๐‘˜ ๐‘ฃ๐‘–๐ ๐‘– , ๐ ๐‘– ๐ ๐‘˜๐‘‘๐‘ฃ๐‘– = ๐ท๐น๐‘˜ ๐’—, ๐ ๐‘– ๐ ๐‘˜๐‘‘๐‘ฃ๐‘–

Vector Derivatives

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 13

Page 14: 3. Tensor Calculus Jan 2013

Which we can compare to the earlier case of scalar valued function and easily obtain,

๐ท๐‘ญ ๐’—, ๐‘‘๐’— =๐œ•๐น๐‘˜ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—๐ ๐‘— โ‹… ๐ ๐‘– ๐ ๐‘˜๐‘‘๐‘ฃ๐‘–

=๐œ•๐น๐‘˜ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—๐ ๐‘˜ โŠ— ๐ ๐‘— ๐ ๐‘–๐‘‘๐‘ฃ๐‘–

=๐œ•๐น๐‘˜ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—๐ ๐‘˜ โŠ— ๐ ๐‘— ๐‘‘๐’—

= ๐‘‘๐‘ญ ๐’—

๐‘‘๐’—๐‘‘๐’— โ‰ก grad ๐‘ญ ๐’— ๐‘‘๐’—

Clearly, the tensor gradient of the vector-valued vector function is,

๐‘‘๐‘ญ ๐’—

๐‘‘๐’—= grad ๐‘ญ ๐’— =

๐œ•๐น๐‘˜ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—๐ ๐‘˜ โŠ— ๐ ๐‘—

Where due attention should be paid to the covariance of the quotient indices in contrast to the contravariance of the non quotient indices. [email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 14

Page 15: 3. Tensor Calculus Jan 2013

The trace of this gradient is called the divergence of the function:

div ๐‘ญ ๐’— = tr๐œ•๐น๐‘˜ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—๐ ๐‘˜ โŠ— ๐ ๐‘—

=๐œ•๐น๐‘˜ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—๐ ๐‘˜ โ‹… ๐ ๐‘—

=๐œ•๐น๐‘˜ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—๐›ฟ๐‘˜

๐‘—

=๐œ•๐น๐‘— ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘—

The Trace & Divergence

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 15

Page 16: 3. Tensor Calculus Jan 2013

Consider the mapping, ๐‘ป: V โ†’ T

Which maps from an inner product space to a tensor space. The Gateaux differential in this case now takes two vectors and produces a tensor:

๐ท๐‘ป: V ร— V โ†’ T With the usual notation, we may write,

๐ท๐‘ป ๐’—, ๐‘‘๐’— = ๐ท๐‘ป ๐‘ฃ๐‘–๐ ๐‘– , ๐‘‘๐‘ฃ๐‘–๐ ๐‘– = ๐ท๐‘ป ๐‘ฃ๐‘–๐ ๐‘– , ๐‘‘๐‘ฃ๐‘–๐ ๐‘–

= ๐‘‘๐‘ป ๐’—

๐‘‘๐’—๐‘‘๐’— โ‰ก grad ๐‘ป ๐’— ๐‘‘๐’—

= ๐ท๐‘‡๐›ผ๐›ฝ ๐‘ฃ๐‘–๐ ๐‘–, ๐‘‘๐‘ฃ๐‘–๐ ๐‘– ๐ ๐›ผ โŠ— ๐ ๐›ฝ

= ๐ท๐‘‡๐›ผ๐›ฝ ๐’—, ๐ ๐‘– ๐ ๐›ผ โŠ— ๐ ๐›ฝ ๐‘‘๐‘ฃ๐‘–

Each of these nine functions look like the real differential of several variables we considered earlier.

Tensor-Valued Vector Function

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 16

Page 17: 3. Tensor Calculus Jan 2013

The independence of the basis vectors imply, as usual, that

๐ท๐‘‡๐›ผ๐›ฝ ๐’—, ๐ ๐‘– =๐œ•๐‘‡๐›ผ๐›ฝ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–

so that,

๐ท๐‘ป ๐’—, ๐‘‘๐’— = ๐ท๐‘‡๐›ผ๐›ฝ ๐’—, ๐ ๐‘– ๐ ๐›ผ โŠ— ๐ ๐›ฝ ๐‘‘๐‘ฃ๐‘–

= ๐œ•๐‘‡๐›ผ๐›ฝ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐›ผ โŠ— ๐ ๐›ฝ ๐‘‘๐‘ฃ๐‘–

= ๐œ•๐‘‡๐›ผ๐›ฝ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐›ผ โŠ— ๐ ๐›ฝ ๐ ๐‘– โ‹… ๐‘‘๐’—

= ๐œ•๐‘‡๐›ผ๐›ฝ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐›ผ โŠ— ๐ ๐›ฝ โŠ— ๐ ๐‘– ๐‘‘๐’— =

๐‘‘๐‘ป ๐’—

๐‘‘๐’—๐‘‘๐’—

โ‰ก grad ๐‘ป ๐’— ๐‘‘๐’—

Which defines the third-order tensor,

๐‘‘๐‘ป ๐’—

๐‘‘๐’—= grad ๐‘ป ๐’— =

๐œ•๐‘‡๐›ผ๐›ฝ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐›ผ โŠ— ๐ ๐›ฝ โŠ— ๐ ๐‘–

and with no further ado, we can see that a third-order tensor transforms a vector into a second order tensor.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 17

Page 18: 3. Tensor Calculus Jan 2013

The divergence operation can be defined in several ways. Most common is achieved by the contraction of the last two basis so that,

div ๐‘ป ๐’— =๐œ•๐‘‡๐›ผ๐›ฝ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐›ผ โŠ— ๐ ๐›ฝ โ‹… ๐ ๐‘–

=๐œ•๐‘‡๐›ผ๐›ฝ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐›ผ ๐ ๐›ฝ โ‹… ๐ ๐‘–

=๐œ•๐‘‡๐›ผ๐›ฝ ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐›ผ๐›ฟ๐›ฝ

๐‘– =๐œ•๐‘‡๐›ผ๐‘– ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3

๐œ•๐‘ฃ๐‘–๐ ๐›ผ

It can easily be shown that this is the particular vector that gives, for all constant vectors ๐’‚,

div ๐‘ป ๐’‚ โ‰ก div ๐‘ปT๐’‚

The Divergence of a Tensor Function

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 18

Page 19: 3. Tensor Calculus Jan 2013

Two other kinds of functions are critically important in our study. These are real valued functions of tensors and tensor-valued functions of tensors. Examples in the first case are the invariants of the tensor function that we have already seen. We can express stress in terms of strains and vice versa. These are tensor-valued functions of tensors. The derivatives of such real and tensor functions arise in our analysis of continua. In this section these are shown to result from the appropriate Gateaux differentials. The gradients or Frechรฉt derivatives will be extracted once we can obtain the Gateaux differentials.

Real-Valued Tensor Functions

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 19

Page 20: 3. Tensor Calculus Jan 2013

Consider the Map: ๐‘“: T โ†’ R

The Gateaux differential in this case takes two vector arguments and maps to a real value:

๐ท๐‘“: T ร— T โ†’ R Which is, as usual, linear in the second argument. The Frechรฉt derivative can be expressed as the first component of the following scalar product:

๐ท๐‘“ ๐‘ป, ๐‘‘๐‘ป =๐‘‘๐‘“(๐‘ป)

๐‘‘๐‘ป: ๐‘‘๐‘ป

which, we recall, is the trace of the contraction of one tensor with the transpose of the other second-order tensors. This is a scalar quantity.

Frechรฉt Derivative

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 20

Page 21: 3. Tensor Calculus Jan 2013

Guided by the previous result of the gradient of the scalar valued function of a vector, it is not difficult to see that,

๐‘‘๐‘“(๐‘ป)

๐‘‘๐‘ป=

๐œ•๐‘“(๐‘‡11, ๐‘‡12, โ€ฆ , ๐‘‡33)

๐œ•๐‘‡๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

In the dual to the same basis, we can write,

๐‘‘๐‘ป = ๐‘‘๐‘‡๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘—

Clearly, ๐‘‘๐‘“(๐‘ป)

๐‘‘๐‘ป: ๐‘‘๐‘ป =

๐œ•๐‘“(๐‘‡11, ๐‘‡12, โ€ฆ , ๐‘‡33)

๐œ•๐‘‡๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ : ๐‘‘๐‘‡๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘—

=๐œ•๐‘“(๐‘‡11, ๐‘‡12, โ€ฆ , ๐‘‡33)

๐œ•๐‘‡๐‘–๐‘—๐‘‘๐‘‡๐‘–๐‘—

Again, note the covariance of the quotient indices.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 21

Page 22: 3. Tensor Calculus Jan 2013

Let ๐’ be a symmetric and positive definite tensor and let ๐ผ1 ๐‘บ , ๐ผ2 ๐‘บ and ๐ผ3 ๐‘บ be the three principal invariants of

๐’ show that (a) ๐œ•๐‘ฐ1 ๐’

๐œ•๐’= ๐Ÿ the identity tensor, (b)

๐œ•๐‘ฐ2 ๐’

๐œ•๐’= ๐ผ1 ๐’ ๐Ÿ โˆ’ ๐’ and (c)

๐œ•๐ผ3 ๐’

๐œ•๐’= ๐ผ3 ๐’ ๐’โˆ’1

๐œ•๐‘ฐ1 ๐’

๐œ•๐’ can be written in the invariant component form

as, ๐œ•๐ผ1 ๐’

๐œ•๐’=

๐œ•๐ผ1 ๐’

๐œ•๐‘†๐‘–๐‘—

๐ ๐‘– โŠ— ๐ ๐‘—

Examples

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 22

Page 23: 3. Tensor Calculus Jan 2013

Recall that ๐ผ1 ๐’ = tr ๐’ = ๐‘†ฮฑฮฑ hence

๐œ•๐ผ1 ๐’

๐œ•๐’=

๐œ•๐ผ1 ๐’

๐œ•๐‘†๐‘–๐‘—

๐ ๐‘– โŠ— ๐ ๐‘—

=๐œ•๐‘†ฮฑ

ฮฑ

๐œ•๐‘†๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘—

= ๐›ฟ๐›ผ๐‘– ๐›ฟ๐‘—

๐›ผ๐ ๐‘–โŠ— ๐ ๐‘—

= ๐›ฟ๐‘—๐‘–๐ ๐‘–โŠ— ๐ ๐‘— = ๐Ÿ

which is the identity tensor as expected.

(a) Continued

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 23

Page 24: 3. Tensor Calculus Jan 2013

๐œ•๐ผ2 ๐’

๐œ•๐’ in a similar way can be written in the invariant component form

as, ๐œ•๐ผ2 ๐’

๐œ•๐’=

1

2

๐œ•๐ผ1 ๐’

๐œ•๐‘†๐‘–๐‘—

๐‘†ฮฑฮฑ๐‘†๐›ฝ

๐›ฝโˆ’ ๐‘†๐›ฝ

ฮฑ๐‘†ฮฑ๐›ฝ

๐ ๐‘– โŠ— ๐ ๐‘—

where we have utilized the fact that ๐ผ2 ๐’ =1

2tr2 ๐’ โˆ’ tr(๐’2) .

Consequently, ๐œ•๐ผ2 ๐’

๐œ•๐’=

1

2

๐œ•

๐œ•๐‘†๐‘–๐‘—

๐‘†ฮฑฮฑ๐‘†๐›ฝ

๐›ฝโˆ’ ๐‘†๐›ฝ

ฮฑ๐‘†ฮฑ๐›ฝ

๐ ๐‘– โŠ— ๐ ๐‘—

=1

2๐›ฟ๐›ผ

๐‘– ๐›ฟ๐‘—๐›ผ๐‘†๐›ฝ

๐›ฝ+ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐‘—๐›ฝ๐‘†ฮฑ

ฮฑ โˆ’ ๐›ฟ๐›ฝ๐‘– ๐›ฟ๐‘—

๐›ผ๐‘†ฮฑ๐›ฝ

โˆ’ ๐›ฟ๐›ผ๐‘– ๐›ฟ๐‘—

๐›ฝ๐‘†๐›ฝ

ฮฑ ๐ ๐‘– โŠ— ๐ ๐‘—

=1

2๐›ฟ๐‘—

๐‘–๐‘†๐›ฝ๐›ฝ

+ ๐›ฟ๐‘—๐‘–๐‘†ฮฑ

ฮฑ โˆ’ ๐‘†๐‘–๐‘—โˆ’ ๐‘†๐‘–

๐‘—๐ ๐‘– โŠ— ๐ ๐‘—

= ๐›ฟ๐‘—๐‘–๐‘†ฮฑ

ฮฑ โˆ’ ๐‘†๐‘–๐‘—

๐ ๐‘– โŠ— ๐ ๐‘— = ๐ผ1 ๐’ ๐Ÿ โˆ’ ๐’

(b) ๐œ•๐ผ2 ๐’

๐œ•๐’= ๐ผ1 ๐’ ๐Ÿ โˆ’ ๐’

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 24

Page 25: 3. Tensor Calculus Jan 2013

๐œ•๐‘ฐ3 ๐’

๐œ•๐’=

๐œ•det ๐’

๐œ•๐’= ๐’๐œ

the cofactor of ๐’. Clearly ๐’๐œ = det ๐’ ๐’โˆ’1 = ๐‘ฐ3 ๐’ ๐’โˆ’1 as required. Details of this for the contravariant components of a tensor is presented below. Let

๐’ = ๐‘† =1

3!๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘Ÿ๐‘ ๐‘ก๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก

Differentiating wrt ๐‘†๐›ผ๐›ฝ, we obtain,

๐œ•๐‘†

๐œ•๐‘†๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ=

1

3!๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘Ÿ๐‘ ๐‘ก

๐œ•๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐‘—๐‘ 

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ 

๐œ•๐‘†๐‘˜๐‘ก

๐œ•๐‘†๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

3!๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘Ÿ๐‘ ๐‘ก ๐›ฟ๐‘–

๐›ผ๐›ฟ๐‘Ÿ๐›ฝ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐›ฟ๐‘—

๐›ผ๐›ฟ๐‘ ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐›ฟ๐‘˜

๐›ผ๐›ฟ๐‘ก๐›ฝ

๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

3!๐‘’๐›ผ๐‘—๐‘˜๐‘’๐›ฝ๐‘ ๐‘ก ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก ๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

2!๐‘’๐›ผ๐‘—๐‘˜๐‘’๐›ฝ๐‘ ๐‘ก๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก๐ ๐›ผ โŠ— ๐ ๐›ฝโ‰ก ๐‘†c ๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Which is the cofactor of ๐‘†๐›ผ๐›ฝ

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 25

Page 26: 3. Tensor Calculus Jan 2013

Consider the function ๐‘“(๐‘บ) = tr ๐‘บ๐‘˜ where ๐‘˜ โˆˆ โ„›, and

๐‘บ is a tensor.

๐‘“ ๐‘บ = tr ๐‘บ๐‘˜ = ๐‘บ๐‘˜: ๐Ÿ

To be specific, let ๐‘˜ = 3.

Real Tensor Functions

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 26

Page 27: 3. Tensor Calculus Jan 2013

The Gateaux differential in this case,

๐ท๐‘“ ๐‘บ, ๐‘‘๐‘บ =๐‘‘

๐‘‘๐›ผ๐‘“ ๐‘บ + ๐›ผ๐‘‘๐‘บ

๐›ผ=0

=๐‘‘

๐‘‘๐›ผtr ๐‘บ + ๐›ผ๐‘‘๐‘บ 3

๐›ผ=0

=๐‘‘

๐‘‘๐›ผtr ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ

๐›ผ=0

= tr๐‘‘

๐‘‘๐›ผ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ

๐›ผ=0

= tr ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ+ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ

+ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐‘บ ๐›ผ=0

= tr ๐‘‘๐‘บ ๐‘บ ๐‘บ + ๐‘บ ๐‘‘๐‘บ ๐‘บ + ๐‘บ ๐‘บ ๐’…๐‘บ = 3 ๐‘บ2 T: ๐‘‘๐‘บ

Real Tensor Functions

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 27

Page 28: 3. Tensor Calculus Jan 2013

With the last equality coming from the definition of the Inner product while noting that a circular permutation does not alter the value of the trace. It is easy to establish inductively that in the most general case, for ๐‘˜ > 0, we have,

๐ท๐‘“ ๐‘บ, ๐‘‘๐‘บ = ๐‘˜ ๐‘บ๐‘˜โˆ’1 T: ๐‘‘๐‘บ

Clearly, ๐‘‘

๐‘‘๐‘บ tr ๐‘บ๐‘˜ = ๐‘˜ ๐‘บ๐‘˜โˆ’1

T

Real Tensor Functions

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 28

Page 29: 3. Tensor Calculus Jan 2013

When ๐‘˜ = 1,

๐ท๐‘“ ๐‘บ, ๐‘‘๐‘บ =๐‘‘

๐‘‘๐›ผ๐‘“ ๐‘บ + ๐›ผ๐‘‘๐‘บ

๐›ผ=0

=๐‘‘

๐‘‘๐›ผtr ๐‘บ + ๐›ผ๐‘‘๐‘บ

๐›ผ=0

= tr ๐Ÿ ๐‘‘๐‘บ = ๐Ÿ: ๐‘‘๐‘บ

Or that, ๐‘‘

๐‘‘๐‘บ tr ๐‘บ = ๐Ÿ.

Real Tensor Functions

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 29

Page 30: 3. Tensor Calculus Jan 2013

Derivatives of the other two invariants of the tensor ๐‘บ can be found as follows:

๐‘‘

๐‘‘๐‘บ ๐ผ2(๐‘บ)

=1

2

๐‘‘

๐‘‘๐‘บtr2 ๐‘บ โˆ’ tr ๐‘บ2

=1

22tr ๐‘บ ๐Ÿ โˆ’ 2 ๐‘บT = tr ๐‘บ ๐Ÿ โˆ’ ๐‘บT

.

Real Tensor Functions

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 30

Page 31: 3. Tensor Calculus Jan 2013

To Determine the derivative of the third invariant, we begin with the trace of the Cayley-Hamilton for ๐‘บ: tr ๐‘บ3 โˆ’ ๐ผ1๐‘บ

2 + ๐ผ2๐‘บ โˆ’ ๐ผ3๐‘ฐ = tr(๐‘บ3) โˆ’ ๐ผ1tr ๐‘บ2 + ๐ผ2tr ๐‘บโˆ’ 3๐ผ3 = 0

Therefore, 3๐ผ3 = tr(๐‘บ3) โˆ’ ๐ผ1tr ๐‘บ2 + ๐ผ2tr ๐‘บ

๐ผ2 ๐‘บ =1

2tr2 ๐‘บ โˆ’ tr ๐‘บ2

.

Real Tensor Functions

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 31

Page 32: 3. Tensor Calculus Jan 2013

We can therefore write, 3๐ผ3 ๐‘บ = tr(๐‘บ3) โˆ’ tr ๐‘บ tr ๐‘บ2

+1

2tr2 ๐‘บ โˆ’ tr ๐‘บ2 tr ๐‘บ

so that, in terms of traces only,

๐ผ3 ๐‘บ =1

6tr3 ๐‘บ โˆ’ 3tr ๐‘บ tr ๐‘บ2 + 2tr(๐‘บ3)

Differentiating the Invariants

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 32

Page 33: 3. Tensor Calculus Jan 2013

Clearly, ๐‘‘๐ผ3(๐‘บ)

๐‘‘๐‘บ=

1

63tr2 ๐‘บ ๐Ÿ โˆ’ 3tr ๐‘บ2 โˆ’ 3tr ๐‘บ 2๐‘บ๐‘‡ + 2 ร— 3 ๐‘บ2 ๐‘‡

= ๐ผ2๐Ÿ โˆ’ tr ๐‘บ ๐‘บ๐‘‡ + ๐‘บ2๐‘‡

Real Tensor Functions

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 33

Page 34: 3. Tensor Calculus Jan 2013

.

Real Tensor Functions

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 34

Page 35: 3. Tensor Calculus Jan 2013

In Classical Theory, the world is a Euclidean Point Space of dimension three. We shall define this concept now and consequently give specific meanings to related concepts such as

Frames of Reference,

Coordinate Systems and

Global Charts

The Euclidean Point Space

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 35

Page 36: 3. Tensor Calculus Jan 2013

Scalars, Vectors and Tensors we will deal with in general vary from point to point in the material. They are therefore to be regarded as functions of position in the physical space occupied.

Such functions, associated with positions in the Euclidean point space, are called fields.

We will therefore be dealing with scalar, vector and tensor fields.

The Euclidean Point Space

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 36

Page 37: 3. Tensor Calculus Jan 2013

The Euclidean Point Space โ„ฐ is a set of elements called points. For each pair of points ๐’™, ๐’š โˆˆ โ„ฐ, โˆƒ ๐’– ๐’™, ๐’š โˆˆ E with the following two properties:

1. ๐’– ๐’™, ๐’š = ๐’– ๐’™, ๐’› + ๐’– ๐’›, ๐’š โˆ€๐’™, ๐’š, ๐’› โˆˆ โ„ฐ

2. ๐’– ๐’™, ๐’š = ๐’– ๐’™, ๐’› โ‡” ๐’š = ๐’›

Based on these two, we proceed to show that, ๐’– ๐’™, ๐’™ = ๐ŸŽ

And that, ๐’– ๐’™, ๐’› = โˆ’๐’– ๐’›, ๐’™

The Euclidean Point Space

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 37

Page 38: 3. Tensor Calculus Jan 2013

From property 1, let ๐’š โ†’ ๐’™ it is clear that, ๐’– ๐’™, ๐’™ = ๐’– ๐’™, ๐’› + ๐’– ๐’›, ๐’™

And it we further allow ๐’› โ†’ ๐’™, we find that, ๐’– ๐’™, ๐’™ = ๐’– ๐’™, ๐’™ + ๐’– ๐’™, ๐’™ = 2๐’– ๐’™, ๐’™

Which clearly shows that ๐’– ๐’™, ๐’™ = ๐’ the zero vector.

Similarly, from the above, we find that, ๐’– ๐’™, ๐’™ = ๐’ = ๐’– ๐’™, ๐’› + ๐’– ๐’›, ๐’™

So that ๐’– ๐’™, ๐’› = โˆ’๐’– ๐’›, ๐’™

The Euclidean Point Space

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 38

Page 39: 3. Tensor Calculus Jan 2013

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 39

Page 40: 3. Tensor Calculus Jan 2013

Coordinate System

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 40

Page 41: 3. Tensor Calculus Jan 2013

Coordinate System

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 41

Page 42: 3. Tensor Calculus Jan 2013

Note that โ„ฐ is NOT a vector space. In our discussion, the vector space E to which ๐’– belongs, is associated as we have shown. It is customary to oscillate between these two spaces. When we are talking about the vectors, they are in E while the points are in โ„ฐ. We adopt the convention that ๐’™ ๐’š โ‰ก ๐’– ๐’™, ๐’š referring to the vector ๐’–. If therefore we choose an arbitrarily fixed point ๐ŸŽ โˆˆ โ„ฐ, we are associating ๐’™ ๐ŸŽ , ๐’š ๐ŸŽ and ๐’› ๐ŸŽ respectively with ๐’– ๐’™, ๐ŸŽ , ๐’– ๐’š, ๐ŸŽ and ๐’– ๐’›, ๐ŸŽ .

These are vectors based on the points ๐’™, ๐’š and ๐’› with reference to the origin chosen. To emphasize the association with both points of โ„ฐ as well as members of E they are called Position Vectors.

Position Vectors

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 42

Page 43: 3. Tensor Calculus Jan 2013

Recall that by property 1, ๐’™ ๐’š โ‰ก ๐’– ๐’™, ๐’š = ๐’– ๐’™, ๐ŸŽ + ๐’– ๐ŸŽ, ๐’š

Furthermore, we have deduced that ๐’– ๐ŸŽ, ๐’š = โˆ’๐’–(๐’š, ๐ŸŽ)

We may therefore write that, ๐’™ ๐’š = ๐’™ ๐ŸŽ โˆ’ ๐’š(๐ŸŽ)

Which, when there is no ambiguity concerning the chosen origin, we can write as,

๐’™ ๐’š = ๐’™ โˆ’ ๐’š

And the distance between the two is,

๐’… ๐’™ ๐’š = ๐’… ๐’™ โˆ’ ๐’š = ๐’™ โˆ’ ๐’š

Length in the Point Space

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 43

Page 44: 3. Tensor Calculus Jan 2013

The norm of a vector is the square root of the inner product of the vector with itself. If the coordinates of ๐’™ and ๐’š on a set of independent vectors are ๐‘ฅ๐‘– and ๐‘ฆ๐‘–, then the distance we seek is,

๐’… ๐’™ โˆ’ ๐’š = ๐’™ โˆ’ ๐’š = ๐‘”๐‘–๐‘—(๐‘ฅ๐‘– โˆ’ ๐‘ฆ๐‘–)(๐‘ฅ๐‘— โˆ’ ๐‘ฆ๐‘—)

The more familiar Pythagorean form occurring only when ๐‘”๐‘–๐‘— = 1.

Metric Properties

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 44

Page 45: 3. Tensor Calculus Jan 2013

Consider a Cartesian coordinate system ๐‘ฅ, ๐‘ฆ, ๐‘ง or ๐‘ฆ1, ๐‘ฆ2 and ๐‘ฆ3with an orthogonal basis. Let us now have the possibility of transforming to another coordinate system of an arbitrary nature: ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3. We can represent the transformation and its inverse in the equations:

๐‘ฆ๐‘– = ๐‘ฆ๐‘– ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 , ๐‘ฅ๐‘– = ๐‘ฅ๐‘–(๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3)

And if the Jacobian of transformation,

Coordinate Transformations

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 45

Page 46: 3. Tensor Calculus Jan 2013

๐œ•๐‘ฆ๐‘–

๐œ•๐‘ฅ๐‘—โ‰ก

๐œ• ๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3

๐œ• ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 โ‰ก

๐œ•๐‘ฆ1

๐œ•๐‘ฅ1

๐œ•๐‘ฆ1

๐œ•๐‘ฅ2

๐œ•๐‘ฆ1

๐œ•๐‘ฅ3

๐œ•๐‘ฆ2

๐œ•๐‘ฅ1

๐œ•๐‘ฆ2

๐œ•๐‘ฅ2

๐œ•๐‘ฆ2

๐œ•๐‘ฅ3

๐œ•๐‘ฆ3

๐œ•๐‘ฅ1

๐œ•๐‘ฆ3

๐œ•๐‘ฅ2

๐œ•๐‘ฆ3

๐œ•๐‘ฅ3

does not vanish, then the inverse transformation will exist. So that,

๐‘ฅ๐‘– = ๐‘ฅ๐‘–(๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3)

Jacobian Determinant

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 46

Page 47: 3. Tensor Calculus Jan 2013

Given a position vector ๐ซ = ๐ซ(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3)

In the new coordinate system, we can form a set of three vectors,

๐ ๐‘– =๐œ•๐ซ

๐œ•๐‘ฅ๐‘–, ๐‘– = 1,2,3

Which represent vectors along the tangents to the coordinate lines. (This is easily established for the Cartesian system and it is true in all systems. ๐ซ = ๐ซ ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 = ๐‘ฆ1๐ข +๐‘ฆ2๐ฃ + ๐‘ฆ3๐ค So that

๐ข =๐œ•๐ซ

๐œ•๐‘ฆ1 , ๐ฃ =๐œ•๐ซ

๐œ•๐‘ฆ2 and ๐ค =๐œ•๐ซ

๐œ•๐‘ฆ3

The fact that this is true in the general case is easily seen when we consider that along those lines, only the variable we are differentiating with respect to varies. Consider the general case where,

๐ซ = ๐ซ ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 The total differential of ๐ซ is simply,

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 47

Page 48: 3. Tensor Calculus Jan 2013

๐‘‘๐ซ =๐œ•๐ซ

๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 +

๐œ•๐ซ

๐œ•๐‘ฅ2๐‘‘๐‘ฅ2 +

๐œ•๐ซ

๐œ•๐‘ฅ3๐‘‘๐‘ฅ3

โ‰ก ๐‘‘๐‘ฅ1๐ 1 + ๐‘‘๐‘ฅ2๐ 2 + ๐‘‘๐‘ฅ3๐ 3

With ๐ ๐‘– ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 , ๐‘– = 1,2,3 now depending in general on ๐‘ฅ1, ๐‘ฅ2 and ๐‘ฅ3 now forming a basis on which we can describe other vectors in the coordinate system. We have no guarantees that this vectors are unit in length nor that they are orthogonal to one another. In the Cartesian case, ๐ ๐‘– , ๐‘– = 1,2,3 are constants, normalized and orthogonal. They are our familiar

๐ข =๐œ•๐ซ

๐œ•๐‘ฆ1, ๐ฃ =

๐œ•๐ซ

๐œ•๐‘ฆ2 and ๐ค =

๐œ•๐ซ

๐œ•๐‘ฆ3.

Natural Dual Bases

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 48

Page 49: 3. Tensor Calculus Jan 2013

We now proceed to show that the set of basis vectors, ๐ ๐‘– โ‰ก ๐›ป๐‘ฅ๐‘–

is reciprocal to ๐ ๐‘–. The total differential ๐‘‘๐ซ can be written in terms of partial differentials as,

๐‘‘๐ซ =๐œ•๐ซ

๐œ•๐‘ฆ๐‘–๐‘‘๐‘ฆ๐‘–

Which when expressed in component form yields,

๐‘‘๐‘ฅ1 =๐œ•๐‘ฅ1

๐œ•๐‘ฆ1๐‘‘๐‘ฆ1 +

๐œ•๐‘ฅ1

๐œ•๐‘ฆ2๐‘‘๐‘ฆ2 +

๐œ•๐‘ฅ1

๐œ•๐‘ฆ3๐‘‘๐‘ฆ3

๐‘‘๐‘ฅ2 =๐œ•๐‘ฅ2

๐œ•๐‘ฆ1๐‘‘๐‘ฆ1 +

๐œ•๐‘ฅ2

๐œ•๐‘ฆ2๐‘‘๐‘ฆ2 +

๐œ•๐‘ฅ2

๐œ•๐‘ฆ3๐‘‘๐‘ฆ3

๐‘‘๐‘ฅ3 =๐œ•๐‘ฅ3

๐œ•๐‘ฆ1๐‘‘๐‘ฆ1 +

๐œ•๐‘ฅ3

๐œ•๐‘ฆ2๐‘‘๐‘ฆ2 +

๐œ•๐‘ฅ3

๐œ•๐‘ฆ3๐‘‘๐‘ฆ3

Or, more compactly that,

๐‘‘๐‘ฅ๐‘— =๐œ•๐‘ฅ๐‘—

๐œ•๐‘ฆ๐‘–๐‘‘๐‘ฆ๐‘– = ๐›ป๐‘ฅ๐‘— โ‹… ๐‘‘๐ซ

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 49

Page 50: 3. Tensor Calculus Jan 2013

In Cartesian coordinates, ๐‘ฆ๐‘– , ๐‘– = 1, . . , 3 for any scalar field ๐œ™ (๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3),

๐œ•๐œ™

๐œ•๐‘ฆ๐‘–๐‘‘๐‘ฆ๐‘– =

๐œ•๐œ™

๐œ•๐‘ฅ๐‘‘๐‘ฅ +

๐œ•๐œ™

๐œ•๐‘ฆ๐‘‘๐‘ฆ +

๐œ•๐œ™

๐œ•๐‘ง๐‘‘๐‘ง = grad ๐œ™ โ‹… ๐‘‘๐ซ

We are treating each curvilinear coordinate as a scalar field, ๐‘ฅ๐‘— = ๐‘ฅ๐‘—(๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3).

๐‘‘๐‘ฅ๐‘— = ๐›ป๐‘ฅ๐‘— โ‹…๐œ•๐ซ

๐œ•๐‘ฅ๐‘š ๐‘‘๐‘ฅ๐‘š

= ๐ ๐‘— โ‹… ๐ ๐‘š๐‘‘๐‘ฅ๐‘š

= ๐›ฟ๐‘š๐‘—๐‘‘๐‘ฅ๐‘š.

The last equality arises from the fact that this is the only way one component of the coordinate differential can equal another.

โ‡’ ๐ ๐‘— โ‹… ๐ ๐‘š = ๐›ฟ๐‘š๐‘—

Which recovers for us the reciprocity relationship and shows that ๐ ๐‘— and ๐ ๐‘š are reciprocal systems.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 50

Page 51: 3. Tensor Calculus Jan 2013

The position vector in Cartesian coordinates is ๐’“ = ๐’™๐’Š๐’†๐’Š. Show that (a) ๐๐ข๐ฏ ๐’“ = ๐Ÿ‘, (b) ๐๐ข๐ฏ ๐’“ โŠ— ๐’“ = ๐Ÿ’๐’“, (c) ๐๐ข๐ฏ ๐’“ = ๐Ÿ‘, and (d) ๐ ๐ซ๐š๐ ๐’“ = ๐Ÿ and (e) ๐œ๐ฎ๐ซ๐ฅ ๐’“ โŠ— ๐’“ = โˆ’๐’“ ร—

grad ๐’“ = ๐‘ฅ๐‘– ,๐’‹ ๐’†๐‘– โŠ— ๐’†๐’‹ = ๐›ฟ๐‘–๐‘—๐’†๐‘– โŠ— ๐’†๐’‹ = ๐Ÿ

div ๐’“ = ๐‘ฅ๐‘– ,๐’‹ ๐’†๐‘– โ‹… ๐’†๐’‹ = ๐›ฟ๐‘–๐‘—๐›ฟ๐‘–๐‘— = ๐›ฟ๐‘—๐‘— = 3.

๐’“ โŠ— ๐’“ = ๐‘ฅ๐‘–๐’†๐‘– โŠ— ๐‘ฅ๐‘—๐’†๐‘— = ๐‘ฅ๐‘–๐‘ฅ๐‘—๐’†๐‘– โŠ— ๐’†๐’‹

grad ๐’“ โŠ— ๐’“ = ๐‘ฅ๐‘–๐‘ฅ๐‘— ,๐‘˜ ๐’†๐‘– โŠ— ๐’†๐’‹ โŠ— ๐’†๐’Œ

div ๐’“ โŠ— ๐’“ = ๐‘ฅ๐‘– ,๐‘˜ ๐‘ฅ๐‘— + ๐‘ฅ๐‘–๐‘ฅ๐‘— ,๐‘˜ ๐’†๐‘– โŠ— ๐’†๐’‹ โ‹… ๐’†๐’Œ

= ๐›ฟ๐‘–๐‘˜๐’™๐’‹ + ๐’™๐’Š๐›ฟ๐‘—๐‘˜ ๐›ฟ๐‘—๐‘˜๐’†๐‘– = ๐›ฟ๐‘–๐‘˜๐’™๐’Œ + ๐’™๐’Š๐›ฟ๐‘—๐‘— ๐’†๐‘– = 4๐‘ฅ๐‘–๐’†๐‘– = 4๐’“

curl ๐’“ โŠ— ๐’“ = ๐œ–๐›ผ๐›ฝ๐›พ ๐‘ฅ๐‘–๐‘ฅ๐›พ ,๐›ฝ ๐’†๐›ผ โŠ— ๐’†๐’Š

= ๐œ–๐›ผ๐›ฝ๐›พ ๐‘ฅ๐‘– ,๐›ฝ ๐‘ฅ๐›พ + ๐‘ฅ๐‘–๐‘ฅ๐›พ,๐›ฝ ๐’†๐›ผ โŠ— ๐’†๐’Š

= ๐œ–๐›ผ๐›ฝ๐›พ ๐›ฟ๐‘–๐›ฝ๐‘ฅ๐›พ + ๐‘ฅ๐‘–๐›ฟ๐›พ๐›ฝ ๐’†๐›ผ โŠ— ๐’†๐’Š = ๐œ–๐›ผ๐‘–๐›พ ๐‘ฅ๐›พ๐’†๐›ผ โŠ— ๐’†๐’Š + ๐œ–๐›ผ๐›ฝ๐›ฝ๐‘ฅ๐‘–๐’†๐›ผ โŠ— ๐’†๐’Š

= โˆ’๐œ–๐›ผ๐›พ๐‘– ๐‘ฅ๐›พ๐’†๐›ผ โŠ— ๐’†๐’Š = โˆ’๐’“ ร—

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 51

Page 52: 3. Tensor Calculus Jan 2013

For a scalar field ๐“ and a tensor field ๐“ show that ๐ ๐ซ๐š๐ ๐“๐“ = ๐“๐ ๐ซ๐š๐ ๐“ + ๐“ โŠ— ๐ ๐ซ๐š๐๐“. Also show that ๐๐ข๐ฏ ๐“๐“ = ๐“ ๐๐ข๐ฏ ๐“ + ๐“๐ ๐ซ๐š๐๐“.

grad ๐œ™๐“ = ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜

= ๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜ = ๐“ โŠ— grad๐œ™ + ๐œ™grad ๐“

Furthermore, we can contract the last two bases and obtain,

div ๐œ™๐“ = ๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— โ‹… ๐ ๐‘˜

= ๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ ๐ ๐‘–๐›ฟ๐‘—๐‘˜

= ๐‘‡๐‘–๐‘˜ ๐œ™,๐‘˜ ๐ ๐‘– + ๐œ™๐‘‡๐‘–๐‘˜ ,๐‘˜ ๐ ๐‘– = ๐“grad๐œ™ + ๐œ™ div ๐“

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 52

Page 53: 3. Tensor Calculus Jan 2013

For two arbitrary vectors, ๐’– and ๐’—, show that ๐ ๐ซ๐š๐ ๐’– โŠ— ๐’— = ๐’– ร— ๐ ๐ซ๐š๐๐’— โˆ’ ๐’— ร— ๐ ๐ซ๐š๐๐’–

grad ๐’– โŠ— ๐’— = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= ๐‘ข๐‘— ,๐‘™ ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ + ๐‘ฃ๐‘˜ ,๐‘™ ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ๐ ๐‘– โŠ— ๐ ๐‘™

= โˆ’ ๐’— ร— grad๐’– + ๐’– ร— grad๐’—

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 53

Page 54: 3. Tensor Calculus Jan 2013

For any two tensor fields ๐ฎ and ๐ฏ, Show that, ๐ฎ ร— : grad ๐ฏ = ๐ฎ โ‹… curl ๐ฏ

๐ฎ ร— : grad ๐ฏ = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐ ๐‘– โŠ— ๐ ๐‘˜ : ๐‘ฃ๐›ผ,๐›ฝ ๐ ๐›ผ โŠ— ๐ ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐›ผ,๐›ฝ ๐ ๐‘– โ‹… ๐ ๐›ผ ๐ ๐‘˜ โ‹… ๐ ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐›ผ,๐›ฝ ๐›ฟ๐‘–๐›ผ๐›ฟ๐‘˜

๐›ฝ= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘– ,๐‘˜

= ๐ฎ โ‹… curl ๐ฏ

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 54

Page 55: 3. Tensor Calculus Jan 2013

For a vector field ๐’–, show that ๐ ๐ซ๐š๐ ๐’– ร— is a third ranked tensor. Hence or otherwise show that ๐๐ข๐ฏ ๐’– ร— = โˆ’๐œ๐ฎ๐ซ๐ฅ ๐’–.

The secondโ€“order tensor ๐’– ร— is defined as ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐ ๐‘– โŠ—

๐ ๐‘˜. Taking the covariant derivative with an independent base, we have

grad ๐’– ร— = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘˜ โŠ— ๐ ๐‘™

This gives a third order tensor as we have seen. Contracting on the last two bases,

div ๐’– ร— = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘˜ โ‹… ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘–๐›ฟ๐‘˜๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘˜ ๐ ๐‘– = โˆ’curl ๐’–

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 55

Page 56: 3. Tensor Calculus Jan 2013

Show that ๐œ๐ฎ๐ซ๐ฅ ๐œ™๐Ÿ = grad ๐œ™ ร—

Note that ๐œ™๐Ÿ = ๐œ™๐‘”๐›ผ๐›ฝ ๐ ๐›ผ โŠ— ๐ ๐›ฝ, and that curl ๐‘ป =

๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ so that,

curl ๐œ™๐Ÿ = ๐œ–๐‘–๐‘—๐‘˜ ๐œ™๐‘”๐›ผ๐‘˜ ,๐’‹ ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜ ๐œ™,๐’‹ ๐‘”๐›ผ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐›ผ = ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐’‹ ๐ ๐‘– โŠ— ๐ ๐‘˜ = grad ๐œ™ ร—

Show that curl ๐’— ร— = div ๐’— ๐Ÿ โˆ’ grad ๐’—

๐’— ร— = ๐œ–๐›ผ๐›ฝ๐‘˜๐‘ฃ๐›ฝ ๐ ๐›ผ โŠ— ๐ ๐‘˜

curl ๐‘ป = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

so that

curl ๐’— ร— = ๐œ–๐‘–๐‘—๐‘˜๐œ–๐›ผ๐›ฝ๐‘˜๐‘ฃ๐›ฝ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐‘”๐‘–๐›ผ๐‘”๐‘—๐›ฝ โˆ’ ๐‘”๐‘–๐›ฝ๐‘”๐‘—๐›ผ ๐‘ฃ๐›ฝ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐‘ฃ๐‘— ,๐‘— ๐ ๐›ผ โŠ— ๐ ๐›ผ โˆ’ ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘— = div ๐’— ๐Ÿ โˆ’ grad ๐’—

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 56

Page 57: 3. Tensor Calculus Jan 2013

Show that ๐๐ข๐ฏ ๐’– ร— ๐’— = ๐’— โ‹… ๐œ๐ฎ๐ซ๐ฅ ๐’– โˆ’ ๐’– โ‹… ๐œ๐ฎ๐ซ๐ฅ ๐’—

div ๐’– ร— ๐’— = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘–

Noting that the tensor ๐œ–๐‘–๐‘—๐‘˜ behaves as a constant under a covariant differentiation, we can write,

div ๐’– ร— ๐’— = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘– = ๐’— โ‹… curl ๐’– โˆ’ ๐’– โ‹… curl ๐’—

Given a scalar point function ฯ• and a vector field ๐ฏ, show that ๐œ๐ฎ๐ซ๐ฅ ๐œ™๐ฏ = ๐œ™ curl ๐ฏ + grad๐œ™ ร— ๐ฏ.

curl ๐œ™๐ฏ = ๐œ–๐‘–๐‘—๐‘˜ ๐œ™๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐‘ฃ๐‘˜ + ๐œ™๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘ฃ๐‘˜๐ ๐‘– + ๐œ–๐‘–๐‘—๐‘˜๐œ™๐‘ฃ๐‘˜,๐‘— ๐ ๐‘– = grad๐œ™ ร— ๐ฏ + ๐œ™ curl ๐ฏ

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 57

Page 58: 3. Tensor Calculus Jan 2013

Given that ๐œ‘ ๐‘ก = ๐€(๐‘ก) , Show that ๐œ‘ ๐‘ก =๐€

๐€ ๐‘ก: ๐€

๐œ‘2 โ‰ก ๐€: ๐€

Now, ๐‘‘

๐‘‘๐‘ก๐œ‘2 = 2๐œ‘

๐‘‘๐œ‘

๐‘‘๐‘ก=

๐‘‘๐€

๐‘‘๐‘ก: ๐€ + ๐€:

๐‘‘๐€

๐‘‘๐‘ก= 2๐€:

๐‘‘๐€

๐‘‘๐‘ก

as inner product is commutative. We can therefore write that

๐‘‘๐œ‘

๐‘‘๐‘ก=

๐€

๐œ‘:๐‘‘๐€

๐‘‘๐‘ก=

๐€

๐€ ๐‘ก: ๐€

as required.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 58

Page 59: 3. Tensor Calculus Jan 2013

Given a tensor field ๐‘ป, obtain the vector ๐’˜ โ‰ก ๐‘ป๐“๐ฏ and show that its divergence is ๐‘ป: ๐›๐ฏ + ๐ฏ โ‹… ๐๐ข๐ฏ ๐‘ป

The divergence of ๐’˜ is the scalar sum , ๐‘‡๐‘—๐‘–๐‘ฃ๐‘— ,๐‘–.

Expanding the product covariant derivative we obtain,

div ๐‘ปT๐ฏ = ๐‘‡๐‘—๐‘–๐‘ฃ๐‘— ,๐‘– = ๐‘‡๐‘—๐‘– ,๐‘– ๐‘ฃ๐‘— + ๐‘‡๐‘—๐‘–๐‘ฃ

๐‘— ,๐‘–

= div ๐‘ป โ‹… ๐ฏ + tr ๐‘ปTgrad๐ฏ

= div ๐‘ป โ‹… ๐ฏ + ๐‘ป: grad ๐ฏ

Recall that scalar product of two vectors is commutative so that

div ๐‘ปT๐ฏ = ๐‘ป: grad๐ฏ + ๐ฏ โ‹… div ๐‘ป

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 59

Page 60: 3. Tensor Calculus Jan 2013

For a second-order tensor ๐‘ป define

curl ๐‘ป โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘ป๐›ผ๐‘˜ ,๐‘— ๐ ๐’Š โŠ— ๐ ๐œถ show that for any constant

vector ๐’‚, curl ๐‘ป ๐’‚ = curl ๐‘ป๐‘ป๐’‚

Express vector ๐’‚ in the invariant form with

contravariant components as ๐’‚ = ๐‘Ž๐›ฝ๐ ๐›ฝ. It follows that

curl ๐‘ป ๐’‚ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ ๐’‚

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐‘Ž๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ ๐ ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐‘Ž๐›ฝ๐ ๐‘–๐›ฟ๐›ฝ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘–๐‘Ž๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜ ๐‘‡๐›ผ๐‘˜๐‘Ž๐›ผ ,๐‘— ๐ ๐‘–

The last equality resulting from the fact that vector ๐’‚ is a constant vector. Clearly,

curl ๐‘ป ๐’‚ = curl ๐‘ป๐‘‡๐’‚

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 60

Page 61: 3. Tensor Calculus Jan 2013

For any two vectors ๐ฎ and ๐ฏ, show that curl ๐ฎ โŠ— ๐ฏ =grad ๐ฎ ๐ฏ ร— ๐‘ป + curl ๐ฏ โŠ— ๐’– where ๐ฏ ร— is the skew tensor

๐œ–๐‘–๐‘˜๐‘—๐‘ฃ๐‘˜ ๐ ๐’Š โŠ— ๐ ๐’‹.

Recall that the curl of a tensor ๐‘ป is defined by curl ๐‘ป โ‰ก

๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ. Clearly therefore,

curl ๐’– โŠ— ๐’— = ๐œ–๐‘–๐‘—๐‘˜ ๐‘ข๐›ผ๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜ ๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐‘˜ + ๐‘ข๐›ผ๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐›ผ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›ผ๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ๐ ๐‘– โŠ— ๐‘ข๐›ผ ,๐‘— ๐ ๐›ผ + ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐‘ข๐›ผ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— ๐‘ข๐›ผ ,๐›ฝ ๐ ๐›ฝ โŠ— ๐ ๐›ผ + ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–

โŠ— ๐‘ข๐›ผ๐ ๐›ผ = โˆ’ ๐’— ร— grad ๐’– ๐‘ป + curl ๐’— โŠ— ๐’–= grad ๐’– ๐’— ร— ๐‘ป + curl ๐’— โŠ— ๐’–

upon noting that the vector cross is a skew tensor.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 61

Page 62: 3. Tensor Calculus Jan 2013

Show that curl ๐’– ร— ๐’— = div ๐’– โŠ— ๐’— โˆ’ ๐’— โŠ— ๐’–

The vector ๐’˜ โ‰ก ๐’– ร— ๐’— = ๐‘ค๐’Œ๐ ๐’Œ = ๐œ–๐‘˜๐›ผ๐›ฝ๐‘ข๐›ผ๐‘ฃ๐›ฝ๐ ๐’Œ and

curl ๐’˜ = ๐œ–๐‘–๐‘—๐‘˜๐‘ค๐‘˜ ,๐‘— ๐ ๐‘–. Therefore,

curl ๐’– ร— ๐’— = ๐œ–๐‘–๐‘—๐‘˜๐‘ค๐‘˜ ,๐‘— ๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘˜๐›ผ๐›ฝ ๐‘ข๐›ผ๐‘ฃ๐›ฝ ,๐‘— ๐ ๐‘–

= ๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ

๐‘—โˆ’ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐›ผ๐‘—

๐‘ข๐›ผ๐‘ฃ๐›ฝ ,๐‘— ๐ ๐‘–

= ๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ

๐‘—โˆ’ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐›ผ๐‘—

๐‘ข๐›ผ,๐‘— ๐‘ฃ๐›ฝ + ๐‘ข๐›ผ๐‘ฃ๐›ฝ,๐‘— ๐ ๐‘–

= ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘— ,๐‘— โˆ’ ๐‘ข๐‘— ,๐‘— ๐‘ฃ๐‘– + ๐‘ข๐‘—๐‘ฃ๐‘– ,๐‘— ๐ ๐‘–

= ๐‘ข๐‘–๐‘ฃ๐‘— ,๐‘— โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘– ,๐‘— ๐ ๐‘– = div ๐’– โŠ— ๐’— โˆ’ ๐’— โŠ— ๐’–

since div ๐’– โŠ— ๐’— = ๐‘ข๐‘–๐‘ฃ๐‘— ,๐›ผ ๐ ๐‘– โŠ— ๐ ๐‘— โ‹… ๐ ๐›ผ = ๐‘ข๐‘–๐‘ฃ๐‘— ,๐‘— ๐ ๐‘–.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 62

Page 63: 3. Tensor Calculus Jan 2013

Given a scalar point function ๐œ™ and a second-order tensor field ๐‘ป,

show that ๐œ๐ฎ๐ซ๐ฅ ๐œ™๐‘ป = ๐œ™ ๐œ๐ฎ๐ซ๐ฅ ๐‘ป + grad๐œ™ ร— ๐‘ป๐‘ป where

grad๐œ™ ร— is the skew tensor ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ ๐’Š โŠ— ๐ ๐’Œ

curl ๐œ™๐‘ป โ‰ก ๐œ–๐‘–๐‘—๐‘˜ ๐œ™๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜ ๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ + ๐œ™๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐›ผ + ๐œ™๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘˜ ๐‘‡๐›ผ๐›ฝ๐ ๐›ฝ โŠ— ๐ ๐›ผ + ๐œ™๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ™ curl ๐‘ป + grad๐œ™ ร— ๐‘ป๐‘‡

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 63

Page 64: 3. Tensor Calculus Jan 2013

For a second-order tensor field ๐‘ป, show that

div curl ๐‘ป = curl div ๐‘ป๐“

Define the second order tensor ๐‘† as

curl ๐‘ป โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ = ๐‘†.๐›ผ๐‘– ๐ ๐‘– โŠ— ๐ ๐›ผ

The gradient of ๐‘บ is

๐‘†.๐›ผ๐‘– ,๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ โŠ— ๐ ๐›ฝ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘—๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Clearly,

div curl ๐‘ป = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘—๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ โ‹… ๐ ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘—๐›ฝ ๐ ๐‘– ๐‘”๐›ผ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜ ,๐‘—๐›ฝ ๐ ๐‘– = curl div ๐‘ปT

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 64

Page 65: 3. Tensor Calculus Jan 2013

If the volume ๐‘ฝ is enclosed by the surface ๐‘บ, the position vector ๐’“ = ๐’™๐’Š๐ ๐’Š and ๐’ is the external unit normal to each surface

element, show that ๐Ÿ

๐Ÿ” ๐› ๐’“ โ‹… ๐’“ โ‹… ๐’๐’…๐‘บ๐‘บ

equals the volume

contained in ๐‘ฝ.

๐’“ โ‹… ๐’“ = ๐‘ฅ๐‘–๐‘ฅ๐‘—๐ ๐‘– โ‹… ๐ ๐‘— = ๐‘ฅ๐‘–๐‘ฅ๐‘—๐‘”๐‘–๐‘—

By the Divergence Theorem,

๐›ป ๐’“ โ‹… ๐’“ โ‹… ๐’๐‘‘๐‘†๐‘†

= ๐›ป โ‹… ๐›ป ๐’“ โ‹… ๐’“ ๐‘‘๐‘‰๐‘‰

= ๐œ•๐‘™ ๐œ•๐‘˜ ๐‘ฅ๐‘–๐‘ฅ๐‘—๐‘”๐‘–๐‘— ๐ ๐‘™ โ‹… ๐ ๐‘˜ ๐‘‘๐‘‰๐‘‰

= ๐œ•๐‘™ ๐‘”๐‘–๐‘— ๐‘ฅ๐‘– ,๐‘˜ ๐‘ฅ๐‘— + ๐‘ฅ๐‘–๐‘ฅ๐‘— ,๐‘˜ ๐ ๐‘™ โ‹… ๐ ๐‘˜ ๐‘‘๐‘‰๐‘‰

= ๐‘”๐‘–๐‘—๐‘”๐‘™๐‘˜ ๐›ฟ๐‘˜

๐‘– ๐‘ฅ๐‘— + ๐‘ฅ๐‘–๐›ฟ๐‘˜๐‘—

,๐‘™ ๐‘‘๐‘‰๐‘‰

= 2๐‘”๐‘–๐‘˜๐‘”๐‘™๐‘˜๐‘ฅ๐‘–,๐‘™ ๐‘‘๐‘‰๐‘‰

= 2๐›ฟ๐‘–๐‘™๐›ฟ๐‘™

๐‘– ๐‘‘๐‘‰๐‘‰

= 6 ๐‘‘๐‘‰๐‘‰

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 65

Page 66: 3. Tensor Calculus Jan 2013

For any Euclidean coordinate system, show that div ๐ฎ ร— ๐ฏ =๐ฏ curl ๐ฎ โˆ’ ๐ฎ curl ๐ฏ

Given the contravariant vector ๐‘ข๐‘– and ๐‘ฃ๐‘– with their associated vectors ๐‘ข๐‘– and ๐‘ฃ๐‘–, the contravariant component of the above cross product is ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ .The required divergence is simply the contraction of the covariant ๐‘ฅ๐‘– derivative of this quantity:

๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘–= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—,๐‘–๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘–

where we have treated the tensor ๐œ–๐‘–๐‘—๐‘˜ as a constant under the covariant derivative.

Cyclically rearranging the RHS we obtain,

๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘–= ๐‘ฃ๐‘˜๐œ–๐‘˜๐‘–๐‘—๐‘ข๐‘—,๐‘– + ๐‘ข๐‘—๐œ–

๐‘—๐‘˜๐‘–๐‘ฃ๐‘˜,๐‘– = ๐‘ฃ๐‘˜๐œ–๐‘˜๐‘–๐‘—๐‘ข๐‘—,๐‘– + ๐‘ข๐‘—๐œ–๐‘—๐‘–๐‘˜๐‘ฃ๐‘˜,๐‘–

where we have used the anti-symmetric property of the tensor ๐œ–๐‘–๐‘—๐‘˜. The last expression shows clearly that

div ๐ฎ ร— ๐ฏ = ๐ฏ curl ๐ฎ โˆ’ ๐ฎ curl ๐ฏ

as required.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 66

Page 67: 3. Tensor Calculus Jan 2013

For a scalar variable ๐›ผ, if the tensor ๐“ = ๐“(๐›ผ) and ๐“ โ‰ก๐‘‘๐“

๐‘‘๐›ผ, Show that

๐‘‘

๐‘‘๐›ผdet ๐“ =

det ๐“ tr(๐“ ๐“โˆ’๐Ÿ) Proof:

Let ๐€ โ‰ก ๐“ ๐“โˆ’1 so that, ๐“ = ๐€๐“. In component form, we have ๐‘‡ ๐‘—๐‘– = ๐ด๐‘š

๐‘– ๐‘‡๐‘—๐‘š.

Therefore, ๐‘‘

๐‘‘๐›ผdet ๐“ =

๐‘‘

๐‘‘๐›ผ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐‘–

1๐‘‡๐‘—2๐‘‡๐‘˜

3 = ๐œ–๐‘–๐‘—๐‘˜ ๐‘‡ ๐‘–1๐‘‡๐‘—

2๐‘‡๐‘˜3 + ๐‘‡๐‘–

1๐‘‡ ๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐‘‡๐‘—

2๐‘‡ ๐‘˜3

= ๐œ–๐‘–๐‘—๐‘˜ ๐ด๐‘™1๐‘‡๐‘–

๐‘™๐‘‡๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐ด๐‘š

2 ๐‘‡๐‘—๐‘š๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐‘‡๐‘—

2๐ด๐‘›3๐‘‡๐‘˜

๐‘›

= ๐œ–๐‘–๐‘—๐‘˜ ๐ด11๐‘‡๐‘–

1 + ๐ด21๐‘‡๐‘–

2 + ๐ด31๐‘‡๐‘–

3 ๐‘‡๐‘—2๐‘‡๐‘˜

3

+ ๐‘‡๐‘–1 ๐ด1

2๐‘‡๐‘—1 + ๐ด2

2๐‘‡๐‘—2 + ๐ด3

2๐‘‡๐‘—3 ๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐‘‡๐‘—

2 ๐ด13๐‘‡๐‘˜

1 + ๐ด23๐‘‡๐‘˜

2 + ๐ด33๐‘‡๐‘˜

3

All the boxed terms in the above equation vanish on account of the contraction of a symmetric tensor with an antisymmetric one.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 67

Liouville Formula

Page 68: 3. Tensor Calculus Jan 2013

(For example, the first boxed term yields, ๐œ–๐‘–๐‘—๐‘˜๐ด21๐‘‡๐‘–

2๐‘‡๐‘—2๐‘‡๐‘˜

3

Which is symmetric as well as antisymmetric in ๐‘– and ๐‘—. It

therefore vanishes. The same is true for all other such terms.)

๐‘‘

๐‘‘๐›ผdet ๐“ = ๐œ–๐‘–๐‘—๐‘˜ ๐ด1

1๐‘‡๐‘–1 ๐‘‡๐‘—

2๐‘‡๐‘˜3 + ๐‘‡๐‘–

1 ๐ด22๐‘‡๐‘—

2 ๐‘‡๐‘˜3 + ๐‘‡๐‘–

1๐‘‡๐‘—2 ๐ด3

3๐‘‡๐‘˜3

= ๐ด๐‘š๐‘š ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐‘–

1๐‘‡๐‘—2๐‘‡๐‘˜

3

= tr ๐“ ๐“โˆ’1 det ๐“

as required.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 68

Liouville Theorem Contโ€™d

Page 69: 3. Tensor Calculus Jan 2013

For a general tensor field ๐‘ป show that, ๐œ๐ฎ๐ซ๐ฅ ๐œ๐ฎ๐ซ๐ฅ ๐‘ป =๐›๐Ÿ ๐ญ๐ซ ๐‘ป โˆ’ ๐๐ข๐ฏ ๐๐ข๐ฏ ๐‘ป ๐‘ฐ + ๐ ๐ซ๐š๐ ๐๐ข๐ฏ ๐‘ป + ๐ ๐ซ๐š๐ ๐๐ข๐ฏ ๐‘ป

๐“โˆ’

๐ ๐ซ๐š๐ ๐ ๐ซ๐š๐ ๐ญ๐ซ๐‘ป โˆ’ ๐›๐Ÿ๐‘ป๐“

curl ๐‘ป = ๐๐›ผ๐‘ ๐‘ก๐‘‡๐›ฝ๐‘ก ,๐‘  ๐ ๐›ผ โŠ— ๐ ๐›ฝ

= ๐‘† .๐›ฝ๐›ผ ๐ ๐›ผ โŠ— ๐ ๐›ฝ

curl ๐‘บ = ๐œ–๐‘–๐‘—๐‘˜๐‘† .๐‘˜๐›ผ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

so that

curl ๐‘บ = curl curl ๐‘ป = ๐œ–๐‘–๐‘—๐‘˜๐œ–๐›ผ๐‘ ๐‘ก๐‘‡๐‘˜๐‘ก,๐‘ ๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

=

๐‘”๐‘–๐›ผ ๐‘”๐‘–๐‘  ๐‘”๐‘–๐‘ก

๐‘”๐‘—๐›ผ ๐‘”๐‘—๐‘  ๐‘”๐‘—๐‘ก

๐‘”๐‘˜๐›ผ ๐‘”๐‘˜๐‘  ๐‘”๐‘˜๐‘ก

๐‘‡๐‘˜๐‘ก ,๐‘ ๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

=๐‘”๐‘–๐›ผ ๐‘”๐‘—๐‘ ๐‘”๐‘˜๐‘ก โˆ’ ๐‘”๐‘—๐‘ก๐‘”๐‘˜๐‘  + ๐‘”๐‘–๐‘  ๐‘”๐‘—๐‘ก๐‘”๐‘˜๐›ผ โˆ’ ๐‘”๐‘—๐›ผ๐‘”๐‘˜๐‘ก

+๐‘”๐‘–๐‘ก ๐‘”๐‘—๐›ผ๐‘”๐‘˜๐‘  โˆ’ ๐‘”๐‘—๐‘ ๐‘”๐‘˜๐›ผ๐‘‡๐‘˜๐‘ก ,๐‘ ๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐‘”๐‘—๐‘ ๐‘‡ .๐‘ก๐‘ก ,๐‘ ๐‘— โˆ’๐‘‡ ..

๐‘ ๐‘— ,๐‘ ๐‘— ๐ ๐›ผ โŠ— ๐ ๐›ผ + ๐‘‡ ..๐›ผ๐‘— ,๐‘ ๐‘— โˆ’๐‘”๐‘—๐›ผ๐‘‡ .๐‘ก

๐‘ก ,๐‘ ๐‘— ๐ ๐‘  โŠ— ๐ ๐›ผ

+ ๐‘”๐‘—๐›ผ๐‘‡ .๐‘ก๐‘ .,๐‘ ๐‘— โˆ’๐‘”๐‘—๐‘ ๐‘‡ .๐‘ก

๐›ผ.,๐‘ ๐‘— ๐ ๐‘ก โŠ— ๐ ๐›ผ

= ๐›ป2 tr ๐‘ป โˆ’ div div ๐‘ป ๐‘ฐ + grad div ๐‘ปT

โˆ’ grad grad tr๐‘ป

+ grad div ๐‘ป โˆ’ ๐›ป2๐‘ปT [email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 69

Page 70: 3. Tensor Calculus Jan 2013

When ๐‘ป is symmetric, show that tr(curl ๐‘ป) vanishes.

curl ๐‘ป = ๐๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ฝ

tr curl ๐‘ป = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜ ,๐‘— ๐ ๐‘– โ‹… ๐ ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜ ,๐‘— ๐›ฟ๐‘–๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐‘–๐‘˜ ,๐‘—

which obviously vanishes on account of the symmetry and antisymmetry in ๐‘– and ๐‘˜. In this case, curl curl ๐‘ป

= ๐›ป2 tr ๐‘ป โˆ’ div div ๐‘ป ๐‘ฐ โˆ’ grad grad tr๐‘ป

+ 2 grad div ๐‘ป โˆ’ ๐›ป2๐‘ป

as grad div ๐‘ปT

= grad div ๐‘ป if the order of

differentiation is immaterial and T is symmetric.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 70

Page 71: 3. Tensor Calculus Jan 2013

For a scalar function ฮฆ and a vector ๐‘ฃ๐‘– show that the divergence of the vector ๐‘ฃ๐‘–ฮฆ is equal to, ๐ฏ โ‹… gradฮฆ +ฮฆ div ๐ฏ

๐‘ฃ๐‘–ฮฆ,๐‘–

= ฮฆ๐‘ฃ๐‘–,๐‘– + ๐‘ฃ๐‘–ฮฆ,i

Hence the result.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 71

Page 72: 3. Tensor Calculus Jan 2013

Show that ๐’„๐’–๐’“๐’ ๐ฎ ร— ๐ฏ = ๐ฏ โˆ™ ๐›๐ฎ + ๐ฎ โ‹… div ๐ฏ โˆ’ ๐ฏ โ‹… div ๐ฎ โˆ’๐ฎ โˆ™ ๐› ๐ฏ

Taking the associated (covariant) vector of the expression for the cross product in the last example, it is straightforward to see that the LHS in indicial notation is,

๐œ–๐‘™๐‘š๐‘– ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘š

Expanding in the usual way, noting the relation between the alternating tensors and the Kronecker deltas,

๐œ–๐‘™๐‘š๐‘– ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘š

= ๐›ฟ๐‘—๐‘˜๐‘–๐‘™๐‘š๐‘– ๐‘ข๐‘—

,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘š

= ๐›ฟ๐‘—๐‘˜๐‘™๐‘š ๐‘ข๐‘—

,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘š =

๐›ฟ๐‘—๐‘™ ๐›ฟ๐‘—

๐‘š

๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘˜

๐‘š๐‘ข๐‘—

,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘š

= ๐›ฟ๐‘—๐‘™๐›ฟ๐‘˜

๐‘š โˆ’ ๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘—

๐‘š ๐‘ข๐‘—,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘˜

,๐‘š

= ๐›ฟ๐‘—๐‘™๐›ฟ๐‘˜

๐‘š๐‘ข๐‘—,๐‘š๐‘ฃ๐‘˜ โˆ’ ๐›ฟ๐‘—

๐‘™๐›ฟ๐‘˜๐‘š๐‘ข๐‘—๐‘ฃ๐‘˜

,๐‘š + ๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘—

๐‘š๐‘ข๐‘—,๐‘š๐‘ฃ๐‘˜

โˆ’ ๐›ฟ๐‘˜๐‘™ ๐›ฟ๐‘—

๐‘š๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘š

= ๐‘ข๐‘™,๐‘š๐‘ฃ๐‘š โˆ’ ๐‘ข๐‘š

,๐‘š๐‘ฃ๐‘™ + ๐‘ข๐‘™๐‘ฃ๐‘š,๐‘š โˆ’ ๐‘ข๐‘š๐‘ฃ๐‘™

,๐‘š

Which is the result we seek in indicial notation.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 72

Page 73: 3. Tensor Calculus Jan 2013

Given a vector point function ๐’– ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 and its covariant components, ๐‘ข๐›ผ ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 , ๐›ผ = 1,2,3, with ๐ ๐›ผas the reciprocal basis vectors, Let

๐’– = ๐‘ข๐›ผ๐ ๐›ผ , then ๐‘‘๐’– =๐œ•

๐œ•๐‘ฅ๐‘˜๐‘ข๐›ผ๐ ๐›ผ ๐‘‘๐‘ฅ๐‘˜ =

๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜๐ ๐›ผ +

๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜๐‘ข๐›ผ ๐‘‘๐‘ฅ๐‘˜

Clearly, ๐œ•๐’–

๐œ•๐‘ฅ๐‘˜=

๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜๐ ๐›ผ +

๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜๐‘ข๐›ผ

And the projection of this quantity on the ๐ ๐‘–direction is, ๐œ•๐’–

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘– =

๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜๐ ๐›ผ +

๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜๐‘ข๐›ผ โˆ™ ๐ ๐‘– =

๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜๐ ๐›ผ โˆ™ ๐ ๐‘– +

๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘–๐‘ข๐›ผ

=๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜๐›ฟ๐‘–

๐›ผ +๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘–๐‘ข๐›ผ

Differentiation of Fields

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 73

Page 74: 3. Tensor Calculus Jan 2013

Now, ๐ ๐‘– โˆ™ ๐ ๐‘— = ๐›ฟ๐‘–๐‘— so that

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘— + ๐ ๐‘– โˆ™

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜= 0.

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘— = โˆ’๐ ๐‘– โˆ™

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜โ‰ก โˆ’

๐‘–๐‘—๐‘˜

.

This important quantity, necessary to quantify the derivative of a tensor in general coordinates, is called the Christoffel Symbol of the second kind.

Christoffel Symbols

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 74

Page 75: 3. Tensor Calculus Jan 2013

Using this, we can now write that, ๐œ•๐’–

๐œ•๐‘ฅ๐‘˜ โˆ™ ๐ ๐‘– =๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜ ๐›ฟ๐‘–๐›ผ +

๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜ โˆ™ ๐ ๐‘–๐‘ข๐›ผ =๐œ•๐‘ข๐‘–

๐œ•๐‘ฅ๐‘˜ โˆ’๐›ผ๐‘–๐‘˜

๐‘ข๐›ผ

The quantity on the RHS is the component of the derivative of vector ๐’– along the ๐ ๐‘– direction using covariant components. It is the covariant derivative of ๐’–. Using contravariant components, we could write,

๐‘‘๐’– =๐œ•๐‘ข๐‘–

๐œ•๐‘ฅ๐‘˜ ๐ ๐‘– +๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜ ๐‘ข๐‘– ๐‘‘๐‘ฅ๐‘˜ =๐œ•๐‘ข๐‘–

๐œ•๐‘ฅ๐‘˜ ๐ ๐‘– +๐›ผ๐‘–๐‘˜

๐ ๐›ผ๐‘ข๐‘– ๐‘‘๐‘ฅ๐‘˜

So that, ๐œ•๐’–

๐œ•๐‘ฅ๐‘˜ =๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜ ๐ ๐›ผ +๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜ ๐‘ข๐›ผ

The components of this in the direction of ๐ ๐‘– can be obtained by taking a dot product as before:

๐œ•๐’–

๐œ•๐‘ฅ๐‘˜ โˆ™ ๐ ๐‘– =๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜ ๐ ๐›ผ +๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜ ๐‘ข๐›ผ โˆ™ ๐ ๐‘– =๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜ ๐›ฟ๐›ผ๐‘– +

๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜ โˆ™ ๐ ๐‘–๐‘ข๐›ผ =๐œ•๐‘ข๐‘–

๐œ•๐‘ฅ๐‘˜ +๐‘–

๐›ผ๐‘˜๐‘ข๐›ผ

Derivatives in General Coordinates

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 75

Page 76: 3. Tensor Calculus Jan 2013

The two results above are represented symbolically as,

๐‘ข๐‘–,๐‘˜ =๐œ•๐‘ข๐‘–

๐œ•๐‘ฅ๐‘˜ โˆ’๐›ผ๐‘–๐‘˜

๐‘ข๐›ผ and ๐‘ข,๐‘˜๐‘– =

๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜ +๐‘–

๐›ผ๐‘˜๐‘ข๐›ผ

Which are the components of the covariant derivatives in terms of the covariant and contravariant components respectively.

It now becomes useful to establish the fact that our definition of the Christoffel symbols here conforms to the definition you find in the books using the transformation rules to define the tensor quantities.

Covariant Derivatives

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 76

Page 77: 3. Tensor Calculus Jan 2013

We observe that the derivative of the covariant basis, ๐ ๐‘– =๐œ•๐ซ

๐œ•๐‘ฅ๐‘– ,

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘—=

๐œ•2๐ซ

๐œ•๐‘ฅ๐‘—๐œ•๐‘ฅ๐‘–=

๐œ•2๐ซ

๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—=

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘–

Taking the dot product with ๐ ๐‘˜, ๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘—โˆ™ ๐ ๐‘˜ =

1

2

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘–โˆ™ ๐ ๐‘˜ +

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘—โˆ™ ๐ ๐‘˜

=1

2

๐œ•

๐œ•๐‘ฅ๐‘–๐ ๐‘— โˆ™ ๐ ๐‘˜ +

๐œ•

๐œ•๐‘ฅ๐‘—๐ ๐‘– โˆ™ ๐ ๐‘˜ โˆ’ ๐ ๐‘— โˆ™

๐œ•๐ ๐‘˜

๐œ•๐‘ฅ๐‘–โˆ’ ๐ ๐‘– โˆ™

๐œ•๐ ๐‘˜

๐œ•๐‘ฅ๐‘—

=1

2

๐œ•

๐œ•๐‘ฅ๐‘–๐ ๐‘— โˆ™ ๐ ๐‘˜ +

๐œ•

๐œ•๐‘ฅ๐‘—๐ ๐‘– โˆ™ ๐ ๐‘˜ โˆ’ ๐ ๐‘— โˆ™

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ’ ๐ ๐‘– โˆ™

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

=1

2

๐œ•

๐œ•๐‘ฅ๐‘–๐ ๐‘— โˆ™ ๐ ๐‘˜ +

๐œ•

๐œ•๐‘ฅ๐‘—๐ ๐‘– โˆ™ ๐ ๐‘˜ โˆ’

๐œ•

๐œ•๐‘ฅ๐‘˜๐ ๐‘– โˆ™ ๐ ๐‘—

=1

2

๐œ•๐‘”๐‘—๐‘˜

๐œ•๐‘ฅ๐‘–+

๐œ•๐‘”๐‘˜๐‘–

๐œ•๐‘ฅ๐‘—โˆ’

๐œ•๐‘”๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜

Christoffel Symbols

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 77

Page 78: 3. Tensor Calculus Jan 2013

Which is the quantity defined as the Christoffel symbols of the first kind in the textbooks. It is therefore possible for us to write,

๐‘–๐‘—, ๐‘˜ โ‰ก ๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘—โˆ™ ๐ ๐‘˜ =

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘–โˆ™ ๐ ๐‘˜ =

1

2

๐œ•๐‘”๐‘—๐‘˜

๐œ•๐‘ฅ๐‘–+

๐œ•๐‘”๐‘˜๐‘–

๐œ•๐‘ฅ๐‘—โˆ’

๐œ•๐‘”๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜

It should be emphasized that the Christoffel symbols, even though the play a critical role in several tensor relationships, are themselves NOT tensor quantities. (Prove this). However, notice their symmetry in the ๐‘– and ๐‘—. The extension of this definition to the Christoffel symbols of the second kind is immediate:

The First Kind

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 78

Page 79: 3. Tensor Calculus Jan 2013

Contract the above equation with the conjugate metric tensor, we have,

๐‘”๐‘˜๐›ผ ๐‘–๐‘—, ๐›ผ โ‰ก ๐‘”๐‘˜๐›ผ ๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘—โˆ™ ๐ ๐›ผ = ๐‘”๐‘˜๐›ผ

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘–โˆ™ ๐ ๐›ผ =

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘—โˆ™ ๐ ๐‘˜ =

๐‘˜๐‘–๐‘—

= โˆ’๐œ•๐ ๐‘˜

๐œ•๐‘ฅ๐‘—โˆ™ ๐ ๐‘–

Which connects the common definition of the second Christoffel symbol with the one defined in the above derivation. The relationship,

๐‘”๐‘˜๐›ผ ๐‘–๐‘—, ๐›ผ =๐‘˜๐‘–๐‘—

apart from defining the relationship between the Christoffel symbols of the first kind and that second kind, also highlights, once more, the index-raising property of the conjugate metric tensor.

The Second Kind

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 79

Page 80: 3. Tensor Calculus Jan 2013

We contract the above equation with ๐‘”๐‘˜๐›ฝand obtain,

๐‘”๐‘˜๐›ฝ๐‘”๐‘˜๐›ผ ๐‘–๐‘—, ๐›ผ = ๐‘”๐‘˜๐›ฝ๐‘˜๐‘–๐‘—

๐›ฟ๐›ฝ๐›ผ ๐‘–๐‘—, ๐›ผ = ๐‘–๐‘—, ๐›ฝ = ๐‘”๐‘˜๐›ฝ

๐‘˜๐‘–๐‘—

so that,

๐‘”๐‘˜๐›ผ

๐›ผ๐‘–๐‘— = ๐‘–๐‘—, ๐‘˜

Showing that the metric tensor can be used to lower the contravariant index of the Christoffel symbol of the second kind to obtain the Christoffel symbol of the first kind.

Two Christoffel Symbols Related

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 80

Page 81: 3. Tensor Calculus Jan 2013

We are now in a position to express the derivatives of higher order tensor fields in terms of the Christoffel symbols.

For a second-order tensor ๐“, we can express the components in dyadic form along the product basis as follows:

๐“ = ๐‘‡๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘—= ๐‘‡๐‘–๐‘—๐ ๐‘–โจ‚๐ ๐‘— = ๐‘‡.๐‘—

๐‘– ๐ ๐‘– โŠ— ๐ ๐‘—= ๐‘‡๐‘—.๐‘–๐ ๐‘—โจ‚๐ ๐‘–

This is perfectly analogous to our expanding vectors in terms of basis and reciprocal bases. Derivatives of the tensor may therefore be expressible in any of these product bases. As an example, take the product covariant bases.

Higher Order Tensors

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 81

Page 82: 3. Tensor Calculus Jan 2013

We have:

๐œ•๐“

๐œ•๐‘ฅ๐‘˜=

๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โจ‚๐ ๐‘— + ๐‘‡๐‘–๐‘—

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โจ‚๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ ๐‘–โจ‚

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

Recall that, ๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜ โˆ™ ๐ ๐‘— =๐‘—๐‘–๐‘˜

. It follows therefore that,

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘— โˆ’

๐›ผ๐‘–๐‘˜

๐›ฟ๐›ผ๐‘—

=๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘— โˆ’

๐›ผ๐‘–๐‘˜

๐ ๐›ผ โˆ™ ๐ ๐‘—

=๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ’

๐›ผ๐‘–๐‘˜

๐ ๐›ผ โˆ™ ๐ ๐‘— = 0.

Clearly, ๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜ =๐›ผ๐‘–๐‘˜

๐ ๐›ผ

(Obviously since ๐ ๐‘— is a basis vector it cannot vanish)

Higher Order Tensors

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 82

Page 83: 3. Tensor Calculus Jan 2013

๐œ•๐“

๐œ•๐‘ฅ๐‘˜=

๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โจ‚๐ ๐‘— + ๐‘‡๐‘–๐‘—

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โจ‚๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ ๐‘–โจ‚

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜ ๐ ๐‘–โจ‚๐ ๐‘— + ๐‘‡๐‘–๐‘— ๐›ผ๐‘–๐‘˜

๐ ๐›ผ โจ‚๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ ๐‘–โจ‚๐›ผ๐‘—๐‘˜ ๐ ๐›ผ

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜ ๐ ๐‘–โจ‚๐ ๐‘— + ๐‘‡๐›ผ๐‘— ๐‘–๐›ผ๐‘˜

๐ ๐‘– โจ‚๐ ๐‘— + ๐‘‡๐‘–๐›ผ๐ ๐‘–โจ‚๐‘—

๐›ผ๐‘˜๐ ๐‘—

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜ +๐‘‡๐›ผ๐‘— ๐‘–๐›ผ๐‘˜

+ ๐‘‡๐‘–๐›ผ ๐‘—๐›ผ๐‘˜

๐ ๐‘–โจ‚๐ ๐‘— = ๐‘‡ ,๐‘˜๐‘–๐‘—

๐ ๐‘–โจ‚๐ ๐‘—

Where

๐‘‡ ,๐‘˜

๐‘–๐‘—=

๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜ +๐‘‡๐›ผ๐‘— ๐‘–๐›ผ๐‘˜

+ ๐‘‡๐‘–๐›ผ ๐‘—๐›ผ๐‘˜

or ๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜ +๐‘‡๐›ผ๐‘— ฮ“๐›ผ๐‘˜๐‘– + ๐‘‡๐‘–๐›ผฮ“๐›ผ๐‘˜

๐‘—

are the components of the covariant derivative of the tensor ๐“ in terms of contravariant components on the product covariant bases as shown.

Higher Order Tensors

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 83

Page 84: 3. Tensor Calculus Jan 2013

In the same way, by taking the tensor expression in the dyadic form of its contravariant product bases, we can write,

๐œ•๐“

๐œ•๐‘ฅ๐‘˜ =๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— +๐‘‡๐‘–๐‘—

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜ โŠ— ๐ ๐‘— +๐‘‡๐‘–๐‘—๐ ๐‘– โŠ—

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— +๐‘‡๐‘–๐‘—ฮ“๐›ผ๐‘˜๐‘– โŠ— ๐ ๐‘— +๐‘‡๐‘–๐‘—๐ 

๐‘– โŠ—๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

Again, notice from previous derivation above, ๐‘–๐‘—๐‘˜

= โˆ’๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜ โˆ™ ๐ ๐‘— so that, ๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜ = โˆ’๐‘–

๐›ผ๐‘˜๐ ๐›ผ = โˆ’ฮ“๐›ผ๐‘˜

๐‘– ๐ ๐›ผ Therefore,

๐œ•๐“

๐œ•๐‘ฅ๐‘˜=

๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘– โŠ— ๐ ๐‘— +๐‘‡๐‘–๐‘—

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โŠ— ๐ ๐‘— +๐‘‡๐‘–๐‘—๐ 

๐‘– โŠ—๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘– โŠ— ๐ ๐‘— โˆ’๐‘‡๐‘–๐‘—ฮ“๐›ผ๐‘˜

๐‘– ๐ ๐›ผ โŠ— ๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ ๐‘– โŠ— ฮ“๐›ผ๐‘˜

๐‘—๐ ๐›ผ

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜โˆ’ ๐‘‡๐›ผ๐‘—ฮ“๐‘–๐‘˜

๐›ผ โˆ’ ๐‘‡๐‘–๐›ผฮ“๐‘—๐‘˜๐›ผ ๐ ๐‘– โŠ— ๐ ๐‘—= ๐‘‡๐‘–๐‘—,๐‘˜๐ ๐‘– โŠ— ๐ ๐‘—

So that

๐‘‡๐‘–๐‘—,๐‘˜ =๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜ โˆ’ ๐‘‡๐›ผ๐‘—ฮ“๐‘–๐‘˜๐›ผ โˆ’ ๐‘‡๐‘–๐›ผฮ“๐‘—๐‘˜

๐›ผ

Higher Order Tensors

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 84

Page 85: 3. Tensor Calculus Jan 2013

Two other expressions can be found for the covariant derivative components in terms of the mixed tensor components using the mixed product bases defined above. It is a good exercise to derive these.

The formula for covariant differentiation of higher order tensors follow the same kind of logic as the above definitions. Each covariant index will produce an additional term similar to that in 3 with a dummy index supplanting the appropriate covariant index. In the same way, each contravariant index produces an additional term like that in 3 with a dummy index supplanting an appropriate contravariant index.

Higher Order Tensors

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 85

Page 86: 3. Tensor Calculus Jan 2013

The covariant derivative of the mixed tensor, ๐ด๐‘–1 ,๐‘–2 ,โ€ฆ,๐‘–๐‘›

๐‘—1 ,๐‘—2 ,โ€ฆ,๐‘—๐‘š is the

most general case for the covariant derivative of an absolute tensor:

๐ด๐‘–1 ,๐‘–2 ,โ€ฆ,๐‘–๐‘›

๐‘—1 ,๐‘—2 ,โ€ฆ,๐‘—๐‘š

,๐‘—

= ๐œ•๐ด๐‘–1 ,๐‘–2 ,โ€ฆ,๐‘–๐‘›

๐‘—1 ,๐‘—2 ,โ€ฆ,๐‘—๐‘š

๐œ•๐‘ฅ๐‘—โˆ’

๐›ผ๐‘–1๐‘—

๐ด๐›ผ ,๐‘–2 ,โ€ฆ,๐‘–๐‘›

๐‘—1 ,๐‘—2 ,โ€ฆ,๐‘—๐‘š โˆ’ ๐›ผ๐‘–2๐‘—

๐ด๐‘–1,๐›ผ,โ€ฆ,๐‘–๐‘›

๐‘—1 ,๐‘—2 ,โ€ฆ,๐‘—๐‘š โˆ’ โ‹ฏ โˆ’๐›ผ๐‘–๐‘›๐‘— ๐ด๐‘–1 ,๐‘–2 ,โ€ฆ,๐›ผ

๐‘—1 ,๐‘—2 ,โ€ฆ,๐‘—๐‘š

+ ๐‘—1๐›ฝ๐‘—

๐ด๐‘–1 ,๐‘–2 ,โ€ฆ,๐‘–๐‘›

๐›ฝ ,๐‘—2 ,โ€ฆ,๐‘—๐‘š + ๐‘—2๐›ฝ๐‘—

๐ด๐‘–1 ,๐‘–2 ,โ€ฆ,๐‘–๐‘›

๐‘—1 ,๐›ฝ,โ€ฆ,๐‘—๐‘š + โ‹ฏ+ ๐‘—๐‘š๐›ฝ๐‘—

๐ด๐‘–1 ,๐‘–2 ,โ€ฆ,๐‘–๐‘›

๐‘—1 ,๐‘—2,โ€ฆ,๐›ฝ

Higher Order Mixed Tensors

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 86

Page 87: 3. Tensor Calculus Jan 2013

The metric tensor components behave like constants under a covariant differentiation. The proof that this is so is due to Ricci:

๐‘”๐‘–๐‘— ,๐‘˜ =๐œ•๐‘”๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜โˆ’

๐›ผ๐‘–๐‘˜

๐‘”๐›ผ๐‘— โˆ’๐›ฝ๐‘˜๐‘—

๐‘”๐‘–๐›ฝ

=๐œ•๐‘”๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜โˆ’ ๐‘–๐‘˜, ๐‘— โˆ’ ๐‘˜๐‘—, ๐‘–

=๐œ•๐‘”๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜โˆ’

1

2

๐œ•๐‘”๐‘—๐‘˜

๐œ•๐‘ฅ๐‘–+

๐œ•๐‘”๐‘—๐‘–

๐œ•๐‘ฅ๐‘˜โˆ’

๐œ•๐‘”๐‘–๐‘˜

๐œ•๐‘ฅ๐‘—โˆ’

1

2

๐œ•๐‘”๐‘˜๐‘—

๐œ•๐‘ฅ๐‘—+

๐œ•๐‘”๐‘–๐‘˜

๐œ•๐‘ฅ๐‘—โˆ’

๐œ•๐‘”๐‘—๐‘˜

๐œ•๐‘ฅ๐‘–

= 0.

Ricciโ€™s Theorem

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 87

Page 88: 3. Tensor Calculus Jan 2013

The conjugate metric tensor behaves the same way as can be seen from the relationship,

๐‘”๐‘–๐‘™๐‘”๐‘™๐‘— = ๐›ฟ๐‘–

๐‘—

The above can be differentiated covariantly with respect to ๐‘ฅ๐‘˜ to obtain

๐‘”๐‘–๐‘™ ,๐‘˜ ๐‘”๐‘™๐‘— + ๐‘”๐‘–๐‘™๐‘”๐‘™๐‘— ,๐‘˜ = ๐›ฟ๐‘–

๐‘—,๐‘˜

0 + ๐‘”๐‘–๐‘™๐‘”๐‘™๐‘— ,๐‘˜ =

๐œ•๐›ฟ๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜ โˆ’๐›ผ๐‘–๐‘˜

๐›ฟ๐›ผ๐‘—

+๐‘—

๐›ผ๐‘˜๐›ฟ๐‘–

๐›ผ

๐‘”๐‘–๐‘™๐‘”๐‘™๐‘— ,๐‘˜ = 0 โˆ’

๐‘—๐‘–๐‘˜

+๐‘—๐‘–๐‘˜

= 0

The contraction of ๐‘”๐‘–๐‘™ with ๐‘”๐‘™๐‘— ,๐‘˜ vanishes. Since we know that the metric tensor cannot vanish in general, we can only conclude that

๐‘”๐‘–๐‘— ,๐‘˜ = 0

Ricciโ€™s Theorem

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 88

Page 89: 3. Tensor Calculus Jan 2013

Which is the second part of the Ricci theorem. With these two, we can treat the metric tensor as well as its conjugate as constants in covariant differentiation. Notice that along with this proof, we also obtained the result that the Kronecker Delta vanishes under a partial derivative (an obvious fact since it is a constant), as well as under the covariant derivative. We summarize these results as follows:

The metric tensors ๐‘”๐‘–๐‘—and ๐‘”๐‘–๐‘— as well as the alternating tensors ๐œ–๐‘–๐‘—๐‘˜ , ๐œ–๐‘–๐‘—๐‘˜ are all constants under a covariant

differention. The Kronecker delta ๐›ฟ๐‘–๐‘— is a constant under

both covariant as well as the regular partial differentiation

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 89

Page 90: 3. Tensor Calculus Jan 2013

The divergence theorem is central to several other results in Continuum Mechanics. We present here a generalized form [Ogden] which states that,

Gauss Divergence Theorem

For a tensor field ๐šต, The volume integral in the region ฮฉ โŠ‚ โ„ฐ,

grad ๐šตฮฉ

๐‘‘๐‘ฃ = ๐šต โŠ— ๐ง๐œ•ฮฉ

๐‘‘๐‘ 

where ๐ง is the outward drawn normal to ๐œ•ฮฉ โ€“ the boundary of ฮฉ.

Integral Theorems

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 90

Page 91: 3. Tensor Calculus Jan 2013

Vector field. Replacing the tensor with the vector field ๐Ÿ and contracting, we have,

div ๐Ÿฮฉ

๐‘‘๐‘ฃ = ๐Ÿ โ‹… ๐ง๐œ•ฮฉ

๐‘‘๐‘ 

Which is the usual form of the Gauss theorem.

Special Cases: Vector Field

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 91

Page 92: 3. Tensor Calculus Jan 2013

For a scalar field ๐œ™, the divergence becomes a gradient and the scalar product on the RHS becomes a simple multiplication. Hence the divergence theorem becomes,

grad ๐œ™ฮฉ

๐‘‘๐‘ฃ = ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

The procedure here is valid and will become obvious if we write, ๐Ÿ = ๐œ™๐’‚ where ๐’‚ is an arbitrary constant vector.

Scalar Field

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 92

Page 93: 3. Tensor Calculus Jan 2013

div ๐œ™๐’‚ฮฉ

๐‘‘๐‘ฃ = ๐œ™๐’‚ โ‹… ๐ง๐œ•ฮฉ

๐‘‘๐‘  = ๐’‚ โ‹… ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

For the LHS, note that, div ๐œ™๐’‚ = tr grad ๐œ™๐’‚

grad ๐œ™๐’‚ = ๐œ™๐‘Ž๐‘– ,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

= ๐‘Ž๐‘–๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

The trace of which is,

๐‘Ž๐‘–๐œ™,๐‘— ๐ ๐‘– โ‹… ๐ ๐‘— = ๐‘Ž๐‘–๐œ™,๐‘— ๐›ฟ๐‘–๐‘—

= ๐‘Ž๐‘–๐œ™,๐‘– = ๐’‚ โ‹… grad ๐œ™

For the arbitrary constant vector ๐’‚, we therefore have that,

div ๐œ™๐’‚ฮฉ

๐‘‘๐‘ฃ = ๐’‚ โ‹… grad ๐œ™ ฮฉ

๐‘‘๐‘ฃ = ๐’‚ โ‹… ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

grad ๐œ™ ฮฉ

๐‘‘๐‘ฃ = ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 93

Page 94: 3. Tensor Calculus Jan 2013

For a second-order tensor ๐“, the Gauss Theorem becomes,

div๐“ฮฉ

๐‘‘๐‘ฃ = ๐“๐ง๐œ•ฮฉ

๐‘‘๐‘ 

The original outer product under the integral can be expressed in dyadic form:

grad ๐“ฮฉ

๐‘‘๐‘ฃ = ๐‘‡๐‘–๐‘— ,๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜

ฮฉ

๐‘‘๐‘ฃ

= ๐“ โŠ— ๐ง๐œ•ฮฉ

๐‘‘๐‘ 

= ๐‘‡๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐‘›๐‘˜๐ ๐‘˜

๐œ•ฮฉ

๐‘‘๐‘ 

Second-Order Tensor field

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 94

Page 95: 3. Tensor Calculus Jan 2013

Or

๐‘‡๐‘–๐‘— ,๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— โŠ—ฮฉ

๐ ๐‘˜๐‘‘๐‘ฃ = ๐‘‡๐‘–๐‘—๐‘›๐‘˜๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜

๐œ•ฮฉ

๐‘‘๐‘ 

Contracting, we have

๐‘‡๐‘–๐‘— ,๐‘˜ฮฉ

๐ ๐‘– โŠ— ๐ ๐‘— ๐ ๐‘˜๐‘‘๐‘ฃ = ๐‘‡๐‘–๐‘—๐‘›๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— ๐ ๐‘˜

๐œ•ฮฉ

๐‘‘๐‘ 

๐‘‡๐‘–๐‘— ,๐‘˜ ๐›ฟ๐‘—๐‘˜๐ ๐‘–

ฮฉ

๐‘‘๐‘ฃ = ๐‘‡๐‘–๐‘—๐‘›๐‘˜๐›ฟ๐‘—๐‘˜๐ ๐‘–

๐œ•ฮฉ

๐‘‘๐‘ 

๐‘‡๐‘–๐‘— ,๐‘— ๐ ๐‘–ฮฉ

๐‘‘๐‘ฃ = ๐‘‡๐‘–๐‘—๐‘›๐‘—๐ ๐‘–๐œ•ฮฉ

๐‘‘๐‘ 

Which is the same as,

div๐“ฮฉ

๐‘‘๐‘ฃ = ๐“๐ง๐œ•ฮฉ

๐‘‘๐‘ 

Second-Order Tensor field

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 95

Page 96: 3. Tensor Calculus Jan 2013

The components of a vector or tensor in a Cartesian system are projections of the vector on directions that have no dimensions and a value of unity.

These components therefore have the same units as the vectors themselves.

It is natural therefore to expect that the components of a tensor have the same dimensions.

In general, this is not so. In curvilinear coordinates, components of tensors do not necessarily have a direct physical meaning. This comes from the fact that base vectors are not guaranteed to have unit values (โ„Ž๐‘– โ‰  1 in general).

Physical Components of Tensors

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 96

Page 97: 3. Tensor Calculus Jan 2013

They may not be dimensionless. For example, in orthogonal spherical polar, the base vectors are ๐ 1, ๐ 2 and ๐ 3.

These can be expressed in terms of dimensionless unit vectors as, ๐œŒ๐ž๐œŒ, ๐œŒ sin ๐œ™ ๐ž๐œƒ , and ๐ž๐œ™ since the

magnitudes of the basis vectors are ๐œŒ, ๐œŒ sin๐œ™ , and 1

or ๐‘”11, ๐‘”22, ๐‘”33 respectively.

As an example consider a force with the contravariant components ๐น1, ๐น2 and ๐น3,

๐… = ๐น1๐ 1 + ๐น2๐ 2 + ๐น3 ๐ 3

= ๐œŒ๐น1๐ž๐œŒ + ๐œŒ sin ๐œ™ ๐น2๐ž๐œƒ + ๐น3๐ž๐œ™

Physical Components

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 97

Page 98: 3. Tensor Calculus Jan 2013

Which may also be expressed in terms of physical components,

๐… = ๐น๐œŒ๐ž๐œŒ + ๐น๐œƒ๐ž๐œƒ + ๐น๐œ™๐ž๐œ™.

While these physical components {๐น๐œŒ, ๐น๐œƒ , ๐น๐œ™} have the

dimensions of force, for the contravariant components normalized by the in terms of the unit vectors along these axes to be consistent, {๐œŒ๐น1, ๐œŒ sin ๐œƒ ๐น2, ๐น3} must each be in the units of a force. Hence, ๐น1, ๐น2 and ๐น3 may not themselves be in force units. The consistency requirement implies, ๐น๐œŒ = ๐œŒ๐น1, ๐น๐œƒ = ๐œŒ sin ๐œƒ ๐น2, and ๐น๐œ™ = ๐น3

Physical Components

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 98

Page 99: 3. Tensor Calculus Jan 2013

For the same reasons, if we had used covariant components, the relationships,

๐น๐œŒ = ๐น1

๐œŒ, ๐น๐œƒ =

๐น2

๐œŒ sin ๐œƒ, and ๐น๐œ™ = ๐น3

The magnitudes of the reciprocal base vectors are 1

๐œŒ,

1

๐œŒ sin ๐œ™, and 1. While the physical components have the

dimensions of force, ๐น1 = ๐œŒ๐น๐œŒ and ๐น2 = ๐œŒ sin ๐œ™ ๐น๐œƒ have the

dimensions of moment, while ๐น1 =๐น๐œŒ

๐œŒ and ๐น2 =

๐น๐œƒ

๐œŒ sin ๐œ™ are

in dimensions of force per unit length. Only the third components in both cases are given in the dimensions of force.

Physical Components

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 99

Page 100: 3. Tensor Calculus Jan 2013

The physical components of a vector or tensor are components that have physically meaningful units and magnitudes. Often it is convenient to derive the governing equations for a problem in terms of the tensor components but to solve the problem in physical components.

In an orthogonal system of coordinates, to obtain a physical component from a tensor component we must divide by the magnitude of the relevant coordinate for each covariant index and multiply by each contravariant index. To illustrate this point, consider the evaluation of the physical

components of the symmetric tensor components ๐œ๐‘–๐‘— or ๐œ๐‘—๐‘– or

๐œ๐‘–๐‘— in spherical polar coordinates. Here, as we have seen, the

magnitudes of the base vectors ๐‘”11, ๐‘”22, ๐‘”33 or โ„Ž1, โ„Ž2 and โ„Ž3 are ๐œŒ, ๐œŒ sin ๐œ™ and 1. Using the rule specified above, the table below computes the physical components from the three associated tensors as follows:

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 100

Page 101: 3. Tensor Calculus Jan 2013

Physical

Component

Contravariant Covariant Mixed

๐‰(๐†๐†) ๐œ11โ„Ž1โ„Ž1 = ๐œ11๐œŒ2 ๐œ11

โ„Ž1 โ„Ž1=

๐œ11

๐œŒ2 ๐œ1

1

โ„Ž1โ„Ž1 = ๐œ1

1

๐‰(๐†๐œฝ) ๐œ12โ„Ž1โ„Ž2 = ๐œ12๐œŒ2 sin๐œ™ ๐œ12

โ„Ž1 โ„Ž1=

๐œ12

๐œŒ2 sin ๐œ™ ๐œ2

1

โ„Ž2โ„Ž1 =

๐œ21

sin ๐œ™

๐‰(๐œฝ๐œฝ) ๐œ22โ„Ž2โ„Ž2 = ๐œ22๐œŒ2 sin2 ๐œ™ ๐œ22

โ„Ž2 โ„Ž2=

๐œ22

๐œŒ2 sin2 ๐œ™ ๐œ2

2

โ„Ž2โ„Ž2 = ๐œ2

2

๐‰(๐œฝ๐“) ๐œ23โ„Ž2โ„Ž3 = ๐œ23๐œŒ sin ๐œ™ ๐œ23

โ„Ž2 โ„Ž3=

๐œ23

๐œŒ sin ๐œ™ ๐œ3

2

โ„Ž3โ„Ž2 = ๐œ3

2๐œŒ sin ๐œ™

๐‰(๐“๐“) ๐œ33โ„Ž3โ„Ž3 = ๐œ33 ๐œ33

โ„Ž3 โ„Ž3= ๐œ33 ๐œ3

3

โ„Ž3โ„Ž3 = ๐œ3

3

๐‰(๐†๐“) ๐œ31โ„Ž3โ„Ž1 = ๐œ31๐œŒ ๐œ31

โ„Ž3 โ„Ž1=

๐œ31

๐œŒ ๐œ1

3

โ„Ž1โ„Ž3 =

๐œ13

๐œŒ

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 101

Page 102: 3. Tensor Calculus Jan 2013

17. The transformation equations from the Cartesian to the oblate spheroidal coordinates ๐ƒ, ๐œผ and ๐‹ are: ๐’™ = ๐’‡๐ƒ๐œผ ๐ฌ๐ข๐ง๐‹, ๐’š = ๐’‡ ๐ƒ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ โˆ’ ๐œผ๐Ÿ , and ๐’› = ๐’‡๐ƒ๐œผ ๐œ๐จ๐ฌ ๐‹, where f is a constant representing the half the distance between the foci of a family of confocal ellipses. Find the components of the metric tensor in this system. The metric tensor components are:

๐‘”๐œ‰๐œ‰ =๐œ•๐‘ฅ

๐œ•๐œ‰

2

+๐œ•๐‘ฆ

๐œ•๐œ‰

2

+๐œ•๐‘ง

๐œ•๐œ‰

2

= ๐‘“๐œ‚ sin๐œ‘ 2 + ๐‘“2๐œ‰21 โˆ’ ๐œ‚2

๐œ‰2 โˆ’ 1+ ๐‘“๐œ‚ cos ๐œ‘ 2 = ๐‘“2

๐œ‰2 โˆ’ ๐œ‚2

๐œ‰2 โˆ’ 1

๐‘”๐œ‚๐œ‚ =๐œ•๐‘ฅ

๐œ•๐œ‚

2

+๐œ•๐‘ฆ

๐œ•๐œ‚

2

+๐œ•๐‘ง

๐œ•๐œ‚

2

= ๐‘“2๐œ‰2 โˆ’ ๐œ‚2

1 โˆ’ ๐œ‰2

๐‘”๐œ‘๐œ‘ =๐œ•๐‘ฅ

๐œ•๐œ‘

2

+๐œ•๐‘ฆ

๐œ•๐œ‘

2

+๐œ•๐‘ง

๐œ•๐œ‘

2

= ๐‘“๐œ‰๐œ‚ 2

๐‘”๐œ‰๐œ‚ =๐œ•๐‘ฅ

๐œ•๐œ‰

๐œ•๐‘ฅ

๐œ•๐œ‚+

๐œ•๐‘ฆ

๐œ•๐œ‰

๐œ•๐‘ฆ

๐œ•๐œ‚+

๐œ•๐‘ง

๐œ•๐œ‰

๐œ•๐‘ง

๐œ•๐œ‚

= ๐‘“๐œ‚ sin ๐œ‘ ๐‘“๐œ‰ sin๐œ‘ โˆ’ ๐‘“๐œ‚๐œ‰2 โˆ’ 1

1 โˆ’ ๐œ‚2๐‘“๐œ‰

1 โˆ’ ๐œ‚2

๐œ‰2 โˆ’ 1+ ๐‘“๐œ‚ cos ๐œ‘ ๐‘“๐œ‰ cos ๐œ‘

= 0 = ๐‘”๐œ‚๐œ‘ = ๐‘”๐œ‘๐œ‰

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 102

Page 103: 3. Tensor Calculus Jan 2013

Find an expression for the divergence of a vector in orthogonal curvilinear coordinates.

The gradient of a vector ๐‘ญ = ๐น๐‘–๐ ๐‘– is ๐›ป โŠ— ๐‘ญ = ๐ ๐‘—๐œ•๐‘— โŠ— ๐น๐‘–๐ ๐‘– =๐น๐‘–

,๐‘—๐ ๐‘— โŠ— ๐ ๐‘–. The divergence is the contraction of the gradient. While

we may use this to evaluate the divergence directly it is often easier to use the computation formula in equation Ex 15:

๐›ป โ‹… ๐… = ๐น๐‘–,๐‘—๐ 

๐‘— โ‹… ๐ ๐‘– = ๐น๐‘– ,๐‘– =1

๐‘”

๐œ• ๐‘” ๐น๐‘–

๐œ•๐‘ฅ๐‘–

=1

โ„Ž1โ„Ž2โ„Ž3

๐œ•

๐œ•๐‘ฅ1โ„Ž1โ„Ž2โ„Ž3๐น

1 +๐œ•

๐œ•๐‘ฅ2โ„Ž1โ„Ž2โ„Ž3๐น

2 +๐œ•

๐œ•๐‘ฅ3โ„Ž1โ„Ž2โ„Ž3๐น

3

Recall that the physical (components having the same units as the tensor in question) components of a contravariant tensor are not equal to the tensor components unless the coordinate system is Cartesian. The physical component ๐น(๐‘–) = ๐น๐‘–โ„Ž๐‘– (no sum on i). In terms of the physical components therefore, the divergence becomes,

=1

โ„Ž1โ„Ž2โ„Ž3

๐œ•

๐œ•๐‘ฅ1โ„Ž2โ„Ž3๐น(1) +

๐œ•

๐œ•๐‘ฅ2โ„Ž1โ„Ž3๐น(2) +

๐œ•

๐œ•๐‘ฅ3โ„Ž1โ„Ž2๐น(3)

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 103

Page 104: 3. Tensor Calculus Jan 2013

Find an expression for the Laplacian operator in Orthogonal coordinates. For the contravariant component of a vector, ๐น๐‘—,

๐น๐‘—,๐‘— =

1

๐‘”

๐œ• ๐‘” ๐น๐‘—

๐œ•๐‘ฅ๐‘—.

Now the contravariant component of gradient ๐น๐‘— = ๐‘”๐‘–๐‘—๐œ‘,๐‘–. Using this in place of the vector ๐น๐‘—, we can write,

๐‘”๐‘–๐‘—๐œ‘,๐‘—๐‘– =1

๐‘”

๐œ• ๐‘” ๐‘”๐‘–๐‘—๐œ‘,๐‘—

๐œ•๐‘ฅ๐‘–

given scalar ๐œ‘, the Laplacian ๐›ป2๐œ‘ is defined as, ๐‘”๐‘–๐‘—๐œ‘,๐‘—๐‘– so that,

๐›ป2๐œ‘ = ๐‘”๐‘–๐‘—๐œ‘,๐‘—๐‘– =1

๐‘”

๐œ•

๐œ•๐‘ฅ๐‘–๐‘” ๐‘”๐‘–๐‘—

๐œ•๐œ‘

๐œ•๐‘ฅ๐‘—

When coordinates are orthogonal, ๐‘”๐‘–๐‘— = ๐‘”๐‘–๐‘— = 0 whenever ๐‘– โ‰  ๐‘—. Expanding the computation formula therefore, we can write,

๐›ป2๐œ‘ =1

โ„Ž1โ„Ž2โ„Ž3

๐œ•

๐œ•๐‘ฅ1

โ„Ž1โ„Ž2โ„Ž3

โ„Ž1

๐œ•๐œ‘

๐œ•๐‘ฅ1 +๐œ•

๐œ•๐‘ฅ2

โ„Ž1โ„Ž2โ„Ž3

โ„Ž2

๐œ•๐œ‘

๐œ•๐‘ฅ2 +๐œ•

๐œ•๐‘ฅ3

โ„Ž1โ„Ž2โ„Ž3

โ„Ž3

๐œ•๐œ‘

๐œ•๐‘ฅ3

=1

โ„Ž1โ„Ž2โ„Ž3

๐œ•

๐œ•๐‘ฅ1 โ„Ž2โ„Ž3

๐œ•๐œ‘

๐œ•๐‘ฅ1 +๐œ•

๐œ•๐‘ฅ2 โ„Ž1โ„Ž3

๐œ•๐œ‘

๐œ•๐‘ฅ2 +๐œ•

๐œ•๐‘ฅ3 โ„Ž1โ„Ž2

๐œ•๐œ‘

๐œ•๐‘ฅ3

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 104

Page 105: 3. Tensor Calculus Jan 2013

Show that the oblate spheroidal coordinate systems are orthogonal. Find an expression for the Laplacian of a scalar function in this system.

Example above shows that ๐‘”๐œ‰๐œ‚ = ๐‘”๐œ‚๐œ‘ = ๐‘”๐œ‘๐œ‰ = 0 . This is the required proof of orthogonality. Using the computation formula in example 11, we may write for the oblate spheroidal coordinates that,

๐›ป2ฮฆ =๐œ‰2 โˆ’ 1 1 โˆ’ ๐œ‚2

๐‘“3๐œ‰2 ๐œ‰2 โˆ’ ๐œ‚2 ๐œ•

๐œ•๐œ‰๐‘“๐œ‰๐œ‚

๐œ‰2 โˆ’ 1

1 โˆ’ ๐œ‚2

๐œ•ฮฆ

๐œ•๐œ‰

+๐œ•

๐œ•๐œ‚๐‘“๐œ‰๐œ‚

1 โˆ’ ๐œ‚2

๐œ‰2 โˆ’ 1

๐œ•ฮฆ

๐œ•๐œ‚

+๐œ•

๐œ•๐œ‚

๐‘“ ๐œ‰2 โˆ’ ๐œ‚2

๐œ‰๐œ‚ ๐œ‰2 โˆ’ 1 1 โˆ’ ๐œ‚2

๐œ•ฮฆ

๐œ•๐œ‚

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 105

Page 106: 3. Tensor Calculus Jan 2013

For a vector field ๐’–, show that grad ๐’– ร— is a third ranked tensor. Hence or otherwise show that div ๐’– ร— = โˆ’curl ๐’–.

The secondโ€“order tensor ๐’– ร— is defined as ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐ ๐‘– โŠ—๐ ๐‘˜. Taking the covariant derivative with an independent base, we have

grad ๐’– ร— = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘˜ โŠ— ๐ ๐‘™

This gives a third order tensor as we have seen. Contracting on the last two bases,

div ๐’– ร— = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘˜ โ‹… ๐ ๐‘™ = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘–๐›ฟ๐‘˜

๐‘™ = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘˜ ๐ ๐‘– = โˆ’curl ๐’–

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 106

Page 107: 3. Tensor Calculus Jan 2013

Begin with our familiar Cartesian system of coordinates. We can represent the position of a point (position vector) with three coordinates ๐‘ฅ, ๐‘ฆ, ๐‘ง (โˆˆ R) such that,

๐ซ = ๐‘ฅ๐’Š + ๐‘ฆ๐’‹ + ๐‘ง๐’Œ

That is, the choice of any three scalars can be used to locate a point. We now introduce a transformation (called a polar transformation) of ๐‘ฅ, ๐‘ฆ โ†’ {๐‘Ÿ, ๐œ™} such that, ๐‘ฅ = ๐‘Ÿ cos ๐œ™, and ๐‘ฆ = ๐‘Ÿ sin ๐œ™. Note also that this

transformation is invertible: ๐‘Ÿ = ๐‘ฅ2 + ๐‘ฆ2,and

๐œ™ = tanโˆ’1 ๐‘ฆ

๐‘ฅ

Coordinate transformations

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 107

Page 108: 3. Tensor Calculus Jan 2013

With such a transformation, we can locate any point in the 3-D space with three scalars {๐‘Ÿ, ๐œ™, ๐‘ง} instead of our previous set ๐‘ฅ, ๐‘ฆ, ๐‘ง . Our position vector is now,

๐ซ = ๐‘Ÿ cos ๐œ™ ๐’Š + ๐‘Ÿ sin ๐œ™ ๐’‹ + ๐‘ง๐’Œ = ๐‘Ÿ๐’†๐‘Ÿ + ๐‘ง๐’†๐‘ง

where we define ๐’†๐‘Ÿ โ‰ก cos ๐œ™ ๐’Š + sin ๐œ™ ๐’‹, ๐’†๐‘ง is no different from ๐’Œ. In order to complete our triad of basis vectors, we need a third vector, ๐‘’๐œ™. In selecting

๐’†๐œ™, we want it to be such that ๐’†๐‘Ÿ , ๐’†๐œ™, ๐’†๐‘ง can form an

orthonormal basis.

Curvilinear Coordinates

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 108

Page 109: 3. Tensor Calculus Jan 2013

Let ๐’†๐œ™ = ๐œ‰๐’Š + ๐œ‚๐’‹

To satisfy our conditions,

๐’†๐œ™ โ‹… ๐’†๐‘Ÿ = 0, ๐’†๐œ™ โ‹… ๐’†๐‘ง = 0, and ๐œ‰2 + ๐œ‚2 = 1.

It is easy to see that ๐’†๐œ™ โ‰ก โˆ’sin ๐œ™ ๐’Š + cos ๐œ™ ๐’‹ satisfies

these requirements. ๐’†๐‘Ÿ , ๐’†๐œ™, ๐’†๐‘ง forms an orthonormal (that is, each member has unit magnitude and they are pairwise orthogonal) triad just like ๐’Š, ๐’‹, ๐’Œ . The transformation we have just described

can be given a geometric interpretation. In either case, it is the definition of the Cylindrical Polar coordinate system.

Cylindrical Polar coordinate system

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 109

Page 110: 3. Tensor Calculus Jan 2013

Unlike our Cartesian system, we note that

๐’†๐‘Ÿ(๐œ™), ๐’†๐œ™(๐œ™), ๐’†๐‘ง as the first two of these are not

constants but vary with angular orientation. ๐’†๐‘ง remains a constant vector as in the Cartesian case.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 110

Page 111: 3. Tensor Calculus Jan 2013

Continuing further with our transformation, we may again introduce two new scalars such that ๐‘Ÿ, ๐‘ง โ†’ {๐œŒ, ๐œƒ} in such a way that the position vector,

๐ซ = ๐‘Ÿ๐’†๐‘Ÿ + ๐‘ง๐’†๐‘ง = ๐œŒ sin ๐œƒ ๐’†๐‘Ÿ + ๐œŒ cos ๐œƒ ๐’†๐‘ง โ‰ก ๐œŒ๐’†๐œŒ

Here, ๐‘Ÿ = ๐œŒ sin ๐œƒ , ๐‘ง = ๐œŒ cos ๐œƒ. As before, we can use three scalars, ๐œŒ, ๐œƒ, ๐œ™ instead of {๐‘Ÿ, ๐œ™, ๐‘ง}. In comparison to the original Cartesian system we began with, we have that,

๐ซ = ๐‘ฅ๐’Š + ๐‘ฆ๐’‹ + ๐‘ง๐’Œ = ๐œŒ sin ๐œƒ ๐’†๐‘Ÿ + ๐œŒ cos ๐œƒ ๐’†๐‘ง = ๐œŒ sin ๐œƒ cos ๐œ™ ๐’Š + sin ๐œ™ ๐’‹ + ๐œŒ cos ๐œƒ ๐’Œ = ๐œŒ sin ๐œƒ cos ๐œ™ ๐’Š +๐œŒ sin ๐œƒ sin๐œ™ ๐’‹ + ๐œŒ cos ๐œƒ ๐’Œ โ‰ก ๐œŒ๐’†๐œŒ

from which it is clear that the unit vector ๐’†๐œŒ โ‰ก sin ๐œƒ cos ๐œ™ ๐’Š + sin ๐œƒ sin ๐œ™ ๐’‹ + cos ๐œƒ ๐’Œ.

Spherical Polar

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 111

Page 112: 3. Tensor Calculus Jan 2013

Again, we introduce the unit vector, ๐’†๐œƒ โ‰ก cos ๐œƒ cos ๐œ™ ๐’Š + cos ๐œƒ sin๐œ™ ๐’‹ โˆ’ sin ๐œƒ ๐’Œ and retain ๐’†๐œ™ = โˆ’ sin๐œ™ ๐’Š + cos ๐œ™ ๐’‹ as before.

It is easy to demonstrate the fact that these vectors constitute another orthonormal set. Combining the two transformations, we can move from ๐‘ฅ, ๐‘ฆ, ๐‘ง system of coordinates to ๐œŒ, ๐œƒ, ๐œ™ directly by the transformation equations, ๐‘ฅ = ๐œŒ sin ๐œƒ cos ๐œ™, ๐‘ฆ = ๐œŒ sin ๐œƒ sin๐œ™ and ๐‘ง =๐œŒ cos ๐œƒ.

The orthonormal set of basis for the ๐œŒ, ๐œƒ, ๐œ™ system is

๐’†๐œŒ ๐œƒ, ๐œ™ , ๐’†๐œƒ ๐œƒ, ๐œ™ , ๐’†๐œ™ ๐œ™ .

This is the Spherical Polar Coordinate System.

Spherical Polar

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 112

Page 113: 3. Tensor Calculus Jan 2013

There two main points to note in transforming from Cartesian to Cylindrical or Spherical polar coordinate systems. The latter two (also called curvilinear systems) have unit basis vector sets that are dependent on location. Explicitly, we may write,

๐’†๐‘Ÿ ๐‘Ÿ, ๐œ™, ๐‘ง = cos ๐œ™ ๐’Š + sin ๐œ™ ๐’‹ ๐’†๐œ™(๐‘Ÿ, ๐œ™, ๐‘ง) = โˆ’sin ๐œ™ ๐’Š + cos ๐œ™ ๐’‹ ๐’†๐‘ง ๐‘Ÿ, ๐œ™, ๐‘ง = ๐’Œ

Variable Bases

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 113

Page 114: 3. Tensor Calculus Jan 2013

For Cylindrical Polar, and for Spherical Polar,

๐’†๐œŒ(๐œŒ, ๐œƒ, ๐œ™) = sin ๐œƒ cos ๐œ™ ๐’Š + sin ๐œƒ sin๐œ™ ๐’‹ + cos ๐œƒ ๐’Œ

๐’†๐œƒ ๐œŒ, ๐œƒ, ๐œ™ = cos ๐œƒ cos ๐œ™ ๐’Š + cos ๐œƒ sin๐œ™ ๐’‹ โˆ’ sin ๐œƒ ๐’Œ ๐’†๐œ™ ๐œŒ, ๐œƒ, ๐œ™ = โˆ’ sin๐œ™ ๐’Š + cos ๐œ™ ๐’‹.

Of course, there are specific cases in which some of these basis vectors are constants as we can see. It is instructive to note that curvilinear (so called because coordinate lines are now curves rather than straight lines) coordinates generally have basis vectors that depend on the coordinate variables.

Unlike the Cartesian system, we will no longer be able to assume that the derivatives of the basis vectors vanish.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 114

Page 115: 3. Tensor Calculus Jan 2013

The second point to note is more subtle. While it is true that a vector referred to a curvilinear basis will have coordinate projections in each of the basis so that, a typical vector

๐ฏ = ๐‘ฃ1๐ 1 + ๐‘ฃ2๐ 2 + ๐‘ฃ3๐ 3

when referred to the basis vectors {๐ 1, ๐ 2, ๐ 3}, for position vectors, in order that the transformation refers to the same position vector we started with in the Cartesian system

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 115

Page 116: 3. Tensor Calculus Jan 2013

We have for Cylindrical Polar, the vector, ๐ซ(๐‘Ÿ, ๐œ™, ๐‘ง) = ๐‘Ÿ๐’†๐‘Ÿ(๐œ™) + ๐‘ง๐’†๐‘ง

and for Spherical Polar, ๐ซ(๐‘Ÿ, ๐œƒ, ๐œ™) = ๐œŒ๐’†๐œŒ(๐œƒ, ๐œ™)

Expressing position vectors in Curvilinear coordinates must be done carefully. We do well to take into consideration the fact that in curvilinear systems, the basis vectors are not fully specified until they are expressly specified with their locational dependencies.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 116

Page 117: 3. Tensor Calculus Jan 2013

It is only in this situation that we can express the position vector of a specific location Spherical and Cylindrical Polar coordinates are two more commonly used curvilinear systems. Others will be introduced as necessary in due course.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 117

Page 118: 3. Tensor Calculus Jan 2013

Beginning from the position vector, given a system with coordinate variables ๐›ผ1, ๐›ผ2, ๐›ผ3 , it is easy to prove that the set of vectors,

๐œ•๐ซ ๐›ผ1, ๐›ผ2, ๐›ผ3

๐œ•๐›ผ1,๐œ•๐ซ ๐›ผ1, ๐›ผ2, ๐›ผ3

๐œ•๐›ผ1,๐œ•๐ซ ๐›ผ1, ๐›ผ2, ๐›ผ3

๐œ•๐›ผ1

Which we can write more compactly as

๐ ๐‘– โ‰ก๐œ•๐ซ

๐œ•๐›ผ๐‘–, ๐‘– = 1,2,3

constitute an independent set. This set, with its dual set

of vectors, ๐ ๐‘— such that ๐ ๐‘– โ‹… ๐ ๐‘—= ๐›ฟ๐‘—๐‘–, constitute the

โ€œNatural basesโ€ for the coordinate system.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 118

Natural Bases

Page 119: 3. Tensor Calculus Jan 2013

We can only guarantee the independence of the bases for any arbitrary system. They may NOT be normalized neither are they guaranteed of mutual orthogonality.

HW. Show that the natural bases for Spherical and Cylindrical polar systems are orthogonal but not normalized. And that the dual natural bases for the Cartesian system coincide.

[email protected] 12/27/2012 Dept of Systems Engineering, University of Lagos 119

Orthonormality of Natural Bases