32 annual workshop & symposium, iea collaborative project on...

23
Molecule design and synthesis of surfactants for Molecule design and synthesis of surfactants for Molecule design and synthesis of surfactants for Molecule design and synthesis of surfactants for Surfactant-Polymer combination flooding Surfactant-Polymer combination flooding Surfactant-Polymer combination flooding Surfactant-Polymer combination flooding State Key Laboratory of Enhanced Oil Recovery, State Key Laboratory of Enhanced Oil Recovery, State Key Laboratory of Enhanced Oil Recovery, State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration & Development, Research Institute of Petroleum Exploration & Development, Research Institute of Petroleum Exploration & Development, Research Institute of Petroleum Exploration & Development, PetroChina PetroChina PetroChina PetroChina Presented by Presented by Presented by Presented by Dr. Zhu Dr. Zhu Dr. Zhu Dr. Zhu Youyi Youyi Youyi Youyi August, 2011 August, 2011 August, 2011 August, 2011 CNPC CNPC CNPC CNPC 32 32 32 32 th th th th Annual Workshop & Symposium, IEA Collaborative Project on Enhanced Oil Recovery Annual Workshop & Symposium, IEA Collaborative Project on Enhanced Oil Recovery Annual Workshop & Symposium, IEA Collaborative Project on Enhanced Oil Recovery Annual Workshop & Symposium, IEA Collaborative Project on Enhanced Oil Recovery

Upload: others

Post on 26-Apr-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

Molecule design and synthesis of surfactants for Molecule design and synthesis of surfactants for Molecule design and synthesis of surfactants for Molecule design and synthesis of surfactants for Surfactant-Polymer combination floodingSurfactant-Polymer combination floodingSurfactant-Polymer combination floodingSurfactant-Polymer combination flooding

State Key Laboratory of Enhanced Oil Recovery, State Key Laboratory of Enhanced Oil Recovery, State Key Laboratory of Enhanced Oil Recovery, State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration & Development, Research Institute of Petroleum Exploration & Development, Research Institute of Petroleum Exploration & Development, Research Institute of Petroleum Exploration & Development, PetroChinaPetroChinaPetroChinaPetroChina

Presented by Presented by Presented by Presented by Dr. Zhu Dr. Zhu Dr. Zhu Dr. Zhu YouyiYouyiYouyiYouyi

August, 2011August, 2011August, 2011August, 2011

CNPCCNPCCNPCCNPC

32323232thththth Annual Workshop & Symposium, IEA Collaborative Project on Enhanced Oil Recovery Annual Workshop & Symposium, IEA Collaborative Project on Enhanced Oil Recovery Annual Workshop & Symposium, IEA Collaborative Project on Enhanced Oil Recovery Annual Workshop & Symposium, IEA Collaborative Project on Enhanced Oil Recovery

Page 2: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

OutlineOutlineOutlineOutlineCNPCCNPCCNPCCNPC

1. 1. 1. 1. introductionintroductionintroductionintroduction

2.2.2.2. The basic requirement of Surfactants for combination The basic requirement of Surfactants for combination The basic requirement of Surfactants for combination The basic requirement of Surfactants for combination floodingfloodingfloodingflooding

3. Molecule design theories of oil-displacement surfactants 3. Molecule design theories of oil-displacement surfactants 3. Molecule design theories of oil-displacement surfactants 3. Molecule design theories of oil-displacement surfactants

4. Synthesis and research progress of surfactants for SP 4. Synthesis and research progress of surfactants for SP 4. Synthesis and research progress of surfactants for SP 4. Synthesis and research progress of surfactants for SP flooding flooding flooding flooding

5. Conclusions 5. Conclusions 5. Conclusions 5. Conclusions

Page 3: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

Present situation, problems, and trend of Chemical floodingPresent situation, problems, and trend of Chemical floodingPresent situation, problems, and trend of Chemical floodingPresent situation, problems, and trend of Chemical flooding

Relatively MatureUnderwayUnderwayMatureStatus of Technique

Very ComplicatedComplicatedRelativelySimpleSimpleInjection Facilities

HighHighRelativelyHigh

RelativelyLowCost of Chemicals

RelativelyLow

RelativelyHighHighHighVisco-elasticity

10-3~10-410-310-2~10-310~100Interfacial Tension (mN/m)

Very ComplicatedComplicatedRelativelySimpleSimpleProduced Liquid Treatment

HighRelativelyHighNoneNoneScaling& Corrosion

HighRelativelyHigh

RelativelyLow

RelativelyLowMaintenance Frequency

17~2315~1913~178~13Chemical Flooding Increment Recovery,%(OOIP)

Strong-alkaliStrong-alkaliStrong-alkaliStrong-alkaliASP FloodingASP FloodingASP FloodingASP Flooding

Weak-alkaliWeak-alkaliWeak-alkaliWeak-alkaliASP FloodingASP FloodingASP FloodingASP Flooding

SP Binary SP Binary SP Binary SP Binary FloodingFloodingFloodingFloodingPolymer FloodingPolymer FloodingPolymer FloodingPolymer Flooding

Displacing systemDisplacing systemDisplacing systemDisplacing system

ItemItemItemItem

Trend of Chemical FloodingTrend of Chemical FloodingTrend of Chemical FloodingTrend of Chemical Flooding::::Polymer Flooding Polymer Flooding Polymer Flooding Polymer Flooding ————>Strong-alkali ASP>Strong-alkali ASP>Strong-alkali ASP>Strong-alkali ASP————>Weak-alkali ASP >Weak-alkali ASP >Weak-alkali ASP >Weak-alkali ASP ————>Alkali-free SP>Alkali-free SP>Alkali-free SP>Alkali-free SP

The main parameter contrastThe main parameter contrastThe main parameter contrastThe main parameter contrast of Chemical Flooding Techniques of Chemical Flooding Techniques of Chemical Flooding Techniques of Chemical Flooding Techniques

CNPCCNPCCNPCCNPC

Page 4: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

Characteristic of surfactant-polymer combination flooding

① On the one hand, surfactant is used to decrease o/w interfacial tension to increase oil displacement efficiency. On the other hand, polymer is intruded to increase the viscosity of displacement liquid to improve swept efficiency.② The concentration of surfactant in SP flooding is low. Usually, surfactant concentration is lower than 0.4%wt.③ SP flooding technique is suitable for high acid value crude oil. It also suitable for crude oil with low or even zero acid value.④ The elimination of alkali can avoid damage of combination flooding to reservoir. The side effects of scaling, emulsification and corrosion on lifting craft and produced liquid treatment can also be prevented. The concentration of polymer in the alkali-free SP flooding can be decreased. The main challenge in the SP flooding technique is that it requires high interfacial performance surfactant. The adsorption of surfactant is relatively high compared with ASP flooding and the adaptability of SP flooding to reservoirs is relatively low.

CNPCCNPCCNPCCNPC

Page 5: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

The The The The basic requirement of Surfactants for combination floodingbasic requirement of Surfactants for combination floodingbasic requirement of Surfactants for combination floodingbasic requirement of Surfactants for combination flooding

� Decrease the Decrease the Decrease the Decrease the IFTsIFTsIFTsIFTs between displacing between displacing between displacing between displacing fluidfluidfluidfluid and crude oil to and crude oil to and crude oil to and crude oil to ultralow level (10ultralow level (10ultralow level (10ultralow level (10-3-3-3-3 mN/mmN/mmN/mmN/m). ). ). ).

� The total concentration of surfactants for SP flood is The total concentration of surfactants for SP flood is The total concentration of surfactants for SP flood is The total concentration of surfactants for SP flood is usually less than 0.4% with good anti-dilution ability.usually less than 0.4% with good anti-dilution ability.usually less than 0.4% with good anti-dilution ability.usually less than 0.4% with good anti-dilution ability.

� Surfactants can be mixed harmoniously with polymers. Surfactants can be mixed harmoniously with polymers. Surfactants can be mixed harmoniously with polymers. Surfactants can be mixed harmoniously with polymers. Phase separation and precipitation should be avoided.Phase separation and precipitation should be avoided.Phase separation and precipitation should be avoided.Phase separation and precipitation should be avoided.

� The adsorption loss of surfactant in the rock should be less The adsorption loss of surfactant in the rock should be less The adsorption loss of surfactant in the rock should be less The adsorption loss of surfactant in the rock should be less than 1mg surfactant per gram of core sand.than 1mg surfactant per gram of core sand.than 1mg surfactant per gram of core sand.than 1mg surfactant per gram of core sand.

� Surfactants should be Surfactants should be Surfactants should be Surfactants should be tolerant to salt and bivalent ions like tolerant to salt and bivalent ions like tolerant to salt and bivalent ions like tolerant to salt and bivalent ions like CaCaCaCa2+2+2+2+ and Mg and Mg and Mg and Mg2+2+2+2+. . . .

� low cost and environmentally friendly.low cost and environmentally friendly.low cost and environmentally friendly.low cost and environmentally friendly.

CNPCCNPCCNPCCNPC

Page 6: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

HLB value experiential estimate of surfactant useHLB value experiential estimate of surfactant useHLB value experiential estimate of surfactant useHLB value experiential estimate of surfactant use

CNPCCNPCCNPCCNPC

Solubilizer15.015.015.015.0~18.018.018.018.0

Detergent13.013.013.013.0~15.015.015.015.0

O/W type emulsifier8.08.08.08.0~18.018.018.018.0

Wetting agent (oil-displacement agent)7.07.07.07.0~9.09.09.09.0 (6-8) (6-8) (6-8) (6-8)

W/O type emulsifier3.53.53.53.5~6.06.06.06.0

Defoamer 1.51.51.51.5~3.03.03.03.0

UseHLB valuevaluevaluevalue

HLB valueHLB valueHLB valueHLB value

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical flooding

Page 7: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

R ratio

CNPCCNPCCNPCCNPC

Aww Aww

Ahco

All

Alco

Aoo

Alcw

Ahh Ahcw

油相 油相

表面活性剂

水相

Oil phaseOil phaseOil phaseOil phase

Water Water Water Water phasephasephasephase

Surfactant Surfactant Surfactant Surfactant

)()( 11

hhwwlcwhcw

oohcolco

AAAAAAAA

+−++−+

==cw

co

AA

R

When R<1, system form O/W microemulsionWhen R>1, system form W/O microemulsionWhen R=1, potential energy of surfactant-oil phase are equal to potential energy of surfactant-water phase. Surfactant molecule enrich in interface, IFT come into minimum.

O/W InterfaceO/W InterfaceO/W InterfaceO/W Interface

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical flooding

Page 8: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

VVVVHHHH-Volume of Hydrophobic GroupVolume of Hydrophobic GroupVolume of Hydrophobic GroupVolume of Hydrophobic Group llllcccc-Effective Length of Hydrophobic GroupEffective Length of Hydrophobic GroupEffective Length of Hydrophobic GroupEffective Length of Hydrophobic Groupaaaa0000-Average Area of Hydrophilic GroupAverage Area of Hydrophilic GroupAverage Area of Hydrophilic GroupAverage Area of Hydrophilic Group

0

Pal

Vc

H

×=

Packing ParameterPacking ParameterPacking ParameterPacking Parameter

Generally, Packing Parameter of conventional straight-chain surfactants for detergent is in range 0.3-0.6

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingCNPCCNPCCNPCCNPC

llllccccaaaa0000

VVVVHHHH

Page 9: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

0

Pal

Vc

H

×= 1111

VVVVHHHH-Increase length of carbon chainIncrease length of carbon chainIncrease length of carbon chainIncrease length of carbon chain llllcccc-Branching or double chainsBranching or double chainsBranching or double chainsBranching or double chainsaaaa0000-Change the structure of connecting group& hydrophilic groupChange the structure of connecting group& hydrophilic groupChange the structure of connecting group& hydrophilic groupChange the structure of connecting group& hydrophilic group

Design ConceptDesign ConceptDesign ConceptDesign Concept

P>1P>1P>1P>1 P=1P=1P=1P=1 P<1P<1P<1P<1

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingCNPCCNPCCNPCCNPC

Page 10: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

y = 4.6666x-2.3628R^2 = 0.9575

|1-P|

Log IFT

TR/OT mixture 1:8(wt)

TR/C16AS mixture 1:1(wt)

TR/OT mixture 1:4(wt)

TR/APGhigh DP mixture 1:2(wt)

TR/APGlow DP mixture 1:2(wt)

2HT/2C mixture 1:4(wt)

2HT/C16TMAC mixture 1:8(wt)

2C

TR/OT mixture 1:20(wt)

2HT/C16TMAC mixture 1:4(wt)

C16-MAMS

Alkamide Le

2HT

TR/C16AS mixture 1:8(wt)

C16-DADS

TM 15-S-5

OT

C12-MAMS

TR

C16-TMAC

C16-AS

C12-1,2-Diol

Relationship of |1-P| and IFTmin

Fig. Relativity of |1-P| and IFTmin

Surfactant system

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingCNPCCNPCCNPCCNPC

Decane, 45℃

Page 11: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

QSPR method

Candidate molecule structure—input data

3D structure optimizemolecule mechanics quantum chemistry calculation

(MMX mechanics from PC model) (AM1 arithmetic from MOPAC)

Calculation of molecule structure descriptor

Set up regressive equation IFT = aIFT = aIFT = aIFT = a0000 + a + a + a + a1111dddd1111 (s) + a (s) + a (s) + a (s) + a2222 d d d d2222 (s) + (s) + (s) + (s) + …………

a0, a1, ….-coefficient,d1, d2, …-descriptor of molecule structure

Outcome forecast

Performance of Performance of Performance of Performance of IFT IFT IFT IFT Statistical analysisStatistical analysisStatistical analysisStatistical analysis

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingCNPCCNPCCNPCCNPC

Page 12: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

Experimental results of IFT between cetane and water with different surfactants

9.239.239.239.23SDDSSDDSSDDSSDDS

4.744.744.744.74SDBSSDBSSDBSSDBS

8.288.288.288.28DTABDTABDTABDTAB

4.784.784.784.78DMNSDMNSDMNSDMNS

4.524.524.524.52C12(EO)2C12(EO)2C12(EO)2C12(EO)2

0.180.180.180.18C12(EO)3C12(EO)3C12(EO)3C12(EO)3

1.1261.1261.1261.126SaturatedC12OHSaturatedC12OHSaturatedC12OHSaturatedC12OH

2.1422.1422.1422.142Un-SaturatedC8OHUn-SaturatedC8OHUn-SaturatedC8OHUn-SaturatedC8OH

3.3173.3173.3173.317SaturatedC8OHSaturatedC8OHSaturatedC8OHSaturatedC8OH

0.90.90.90.9C16C4C16N2C16C4C16N2C16C4C16N2C16C4C16N2

0.410.410.410.41C16C3C16N2C16C3C16N2C16C3C16N2C16C3C16N2

8.1578.1578.1578.157C12CEOC12N2C12CEOC12N2C12CEOC12N2C12CEOC12N2

7.0747.0747.0747.074C12C10C12N2C12C10C12N2C12C10C12N2C12C10C12N2

1.8311.8311.8311.831C12C8C12N2C12C8C12N2C12C8C12N2C12C8C12N2

3.8293.8293.8293.829C12C6C12N2C12C6C12N2C12C6C12N2C12C6C12N2

0.2990.2990.2990.299C12C4C12N2C12C4C12N2C12C4C12N2C12C4C12N2

1.9081.9081.9081.908C12C3C12(SO3)2C12C3C12(SO3)2C12C3C12(SO3)2C12C3C12(SO3)2

2.9092.9092.9092.909C12CpxC12(SO3)2C12CpxC12(SO3)2C12CpxC12(SO3)2C12CpxC12(SO3)2

5.565.565.565.56C10CpxC10(SO3)2C10CpxC10(SO3)2C10CpxC10(SO3)2C10CpxC10(SO3)2

6.4856.4856.4856.485C8CpxC8(SO3)2C8CpxC8(SO3)2C8CpxC8(SO3)2C8CpxC8(SO3)2

8.1898.1898.1898.189C6CpxC6(SO3)2C6CpxC6(SO3)2C6CpxC6(SO3)2C6CpxC6(SO3)2

IFT(mN/mIFT(mN/mIFT(mN/mIFT(mN/m))))Surfactants Surfactants Surfactants Surfactants

0.8870.8870.8870.887Un-saturated C12OHUn-saturated C12OHUn-saturated C12OHUn-saturated C12OH

15151515(C18N)2O(C18N)2O(C18N)2O(C18N)2O

0.050.050.050.05C12(EO)4C12(EO)4C12(EO)4C12(EO)4

3.43.43.43.4C12(EO)8C12(EO)8C12(EO)8C12(EO)8

1.51.51.51.5C16(EO)8C16(EO)8C16(EO)8C16(EO)8

1.1891.1891.1891.189Gemini Sa Gemini Sa Gemini Sa Gemini Sa     

3.43.43.43.4(C12N)2OH(C12N)2OH(C12N)2OH(C12N)2OH

2.72.72.72.7(C14N)2OH(C14N)2OH(C14N)2OH(C14N)2OH

4.74.74.74.7(C16N)2OH(C16N)2OH(C16N)2OH(C16N)2OH

6.46.46.46.4(C10N)2OH(C10N)2OH(C10N)2OH(C10N)2OH

4.54.54.54.5(C16N)2(OH)2(C16N)2(OH)2(C16N)2(OH)2(C16N)2(OH)2

5555(C14N)2(OH)2(C14N)2(OH)2(C14N)2(OH)2(C14N)2(OH)2

5.45.45.45.4(C12N)2(OH)2(C12N)2(OH)2(C12N)2(OH)2(C12N)2(OH)2

5.65.65.65.6(C10N)2(OH)2(C10N)2(OH)2(C10N)2(OH)2(C10N)2(OH)2

6.46.46.46.4(C8N)2(OH)2(C8N)2(OH)2(C8N)2(OH)2(C8N)2(OH)2

7.37.37.37.3(C16N)2O(C16N)2O(C16N)2O(C16N)2O

8.08.08.08.0(C14N)2O(C14N)2O(C14N)2O(C14N)2O

7.87.87.87.8(C12N)2O(C12N)2O(C12N)2O(C12N)2O

IFT(mN/mIFT(mN/mIFT(mN/mIFT(mN/m))))SurfactantsSurfactantsSurfactantsSurfactants

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingCNPCCNPCCNPCCNPC

Page 13: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

0 2 4 6 8 10

0

2

4

6

8

10

Cac

luat

ed IF

T (

mN

/m)

Experimental IFT (mN/m)

39 surfactantsR2=0.8442 F=32.51 S2=0.9794

IFT = IFT = IFT = IFT = –––– 48.39 48.39 48.39 48.39 –––– 14.74MPCH 14.74MPCH 14.74MPCH 14.74MPCH –––– 1.07LUMO + 22.33Ic 1.07LUMO + 22.33Ic 1.07LUMO + 22.33Ic 1.07LUMO + 22.33Ic ––––15.89 MEECH + 9.30AVC15.89 MEECH + 9.30AVC15.89 MEECH + 9.30AVC15.89 MEECH + 9.30AVC

Pertinence of IFT between hexadecane and water by tests and by cacluation

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingCNPCCNPCCNPCCNPC

Page 14: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

MPCH:Electrostatic descriptors. the max charge of a H atom, the molecular electronegativity represents as a geometric mean of atomic electronegativity

Ic: Geometrical descriptors. the principal moment of inertia C,shows both the rigid rotator approximation and the mass distribution in the molecule.

LUMO :Guantum chemical descriptors. the energy of the second lowest unoccupied molecule orbital, estimate the relative activity of the atoms in the molecule for a given series of compounds.

MEECH:Guantum chemical descriptors. the max exchange energy for a C-H bond, determining the conformational changes of the molecule and its spin properties

AVC: Guantum chemical descriptors. the average valence of a C atom, describe the flexible degree of the molecule.

IFT = IFT = IFT = IFT = –––– 48.39 48.39 48.39 48.39 –––– 14.74MPCH 14.74MPCH 14.74MPCH 14.74MPCH –––– 1.07LUMO + 22.33Ic 1.07LUMO + 22.33Ic 1.07LUMO + 22.33Ic 1.07LUMO + 22.33Ic ––––15.89 MEECH + 9.30AVC15.89 MEECH + 9.30AVC15.89 MEECH + 9.30AVC15.89 MEECH + 9.30AVC

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingCNPCCNPCCNPCCNPC

Page 15: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

Potential Surfactant Structure for SP FloodingPotential Surfactant Structure for SP FloodingPotential Surfactant Structure for SP FloodingPotential Surfactant Structure for SP Flooding

CH3R1

R2CH(OCH2CH)m(OC2H4)nOSO-

3

OOOO

CCCC

CCCC

OOOO CCCC CCCC SOSOSOSO3333NaNaNaNa

OOOO

OOOO CCCC CCCC

(CH(CH(CH(CH2222))))nnnnCHCHCHCH3333

(CH(CH(CH(CH2222))))nnnnCHCHCHCH3333

Double chain alkyl Double chain alkyl Double chain alkyl Double chain alkyl sulfonatesulfonatesulfonatesulfonate

Double or branching Double or branching Double or branching Double or branching chain alcohol ether chain alcohol ether chain alcohol ether chain alcohol ether sulfonatesulfonatesulfonatesulfonate

Gemini surfactantsGemini surfactantsGemini surfactantsGemini surfactantsCCCC HHHH 3333 ((((CCCC HHHH 2222 )))) nnnn CCCC HHHH (((( CCCC HHHH 2222 )))) mmmm SSSS OOOO 3333 MMMM

CCCC HHHH 3333 ((((CCCC HHHH 2222 )))) nnnn CCCC HHHH (((( CCCC HHHH 2222 )))) mmmm SSSS OOOO 3333 MMMM

OOOO

Zwitterion surfactantsZwitterion surfactantsZwitterion surfactantsZwitterion surfactants

Molecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingMolecule structure design of surfactants for chemical floodingCNPCCNPCCNPCCNPC

Page 16: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

Two Oil-displacing Surfactants for Chemical Flooding of Oil Two Oil-displacing Surfactants for Chemical Flooding of Oil Two Oil-displacing Surfactants for Chemical Flooding of Oil Two Oil-displacing Surfactants for Chemical Flooding of Oil ChemChemChemChem Technologies(OCTTechnologies(OCTTechnologies(OCTTechnologies(OCT), USA), USA), USA), USA

Branching alcohol Branching alcohol Branching alcohol Branching alcohol propoxylatepropoxylatepropoxylatepropoxylate sulfate(AESsulfate(AESsulfate(AESsulfate(AES) Aryl alkyl sulfonate (SS, Super Sa)) Aryl alkyl sulfonate (SS, Super Sa)) Aryl alkyl sulfonate (SS, Super Sa)) Aryl alkyl sulfonate (SS, Super Sa)

Research progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SP combination floodingcombination floodingcombination floodingcombination floodingCNPCCNPCCNPCCNPC

Page 17: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

TemperatureTemperatureTemperatureTemperature ~~~~100 100 100 100 ℃, API, API, API, API~~~~15151515°

0.00 0.05 0.10 0.15 0.20 0.251E-4

1E-3

0.01

0.1

IFT,

mN/

m

Surfactant concentration,wt%

IFT of surfactant SS-B2550

Research progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SP combination floodingcombination floodingcombination floodingcombination floodingCNPCCNPCCNPCCNPC

Page 18: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

Research progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SP combination floodingcombination floodingcombination floodingcombination flooding

0.0010.0010.0010.001

0.010.010.010.01

0.10.10.10.1

0000 0.10.10.10.1 0.20.20.20.2 0.30.30.30.3 0.40.40.40.4 0.50.50.50.5

wt % SS-5566wt % SS-5566wt % SS-5566wt % SS-5566

IFT,

mN/

mIF

T, m

N/m

IFT,

mN/

mIF

T, m

N/m

High Salinity Reservoir (TDS: 130000mg/L, Divalent: 2400mg/L) High Salinity Reservoir (TDS: 130000mg/L, Divalent: 2400mg/L) High Salinity Reservoir (TDS: 130000mg/L, Divalent: 2400mg/L) High Salinity Reservoir (TDS: 130000mg/L, Divalent: 2400mg/L)

IFT of surfactant SS-5566

CNPCCNPCCNPCCNPC

Page 19: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

AmphotericAmphotericAmphotericAmphoteric Surfactants Surfactants Surfactants Surfactants

++++RRRR NNNN

CHCHCHCH3333

CHCHCHCH3333 (OH)(OH)(OH)(OH)

CHCHCHCH2222CHCHCHCHCHCHCHCH2222SOSOSOSO3333----++++RRRR NNNN

CHCHCHCH3333

CHCHCHCH3333 (OH)(OH)(OH)(OH)

CHCHCHCH2222CHCHCHCHCHCHCHCH2222COOCOOCOOCOO----

BetaineBetaineBetaineBetaine

Gemini Surfactant (Double tail, double head Sa)Gemini Surfactant (Double tail, double head Sa)Gemini Surfactant (Double tail, double head Sa)Gemini Surfactant (Double tail, double head Sa)

OOOOOOOO

OOOO SSSSOOOO3333NNNNaaaa

OOOO SSSSOOOO3333NNNNaaaa

Gemini Gemini Gemini Gemini sulfonatessulfonatessulfonatessulfonates

Research progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SP combination floodingcombination floodingcombination floodingcombination flooding

Oil-displacing Surfactants for Chemical Flooding of CNPC, CHINAOil-displacing Surfactants for Chemical Flooding of CNPC, CHINAOil-displacing Surfactants for Chemical Flooding of CNPC, CHINAOil-displacing Surfactants for Chemical Flooding of CNPC, CHINA

CNPCCNPCCNPCCNPC

Page 20: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

IFT of surfactant BS11

0.00 0.05 0.10 0.15 0.20 0.25 0.301E-4

1E-3

0.01

0.1

IFT,

mN/

m

Surfactant concentration, wt%

Research progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SPResearch progress of Surfactants for SP combination floodingcombination floodingcombination floodingcombination flooding

DaqingDaqingDaqingDaqing oil field, oil field, oil field, oil field, TemperatureTemperatureTemperatureTemperature 45 45 45 45℃, Salinity 4000mg/l, Salinity 4000mg/l, Salinity 4000mg/l, Salinity 4000mg/l

CNPCCNPCCNPCCNPC

Page 21: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

ConclusionsConclusionsConclusionsConclusions

SP flooding can avoid side-effects encountered in alkali-surfactant-polymer combination flooding (ASP flooding), R&D of alkali-free SP binary flooding technique became a focus in recent years. The key technology of limiting the development of SP flooding is the research and synthesis of efficient surfactants. Because of the absence of alkali, surfactants in alkali-free system should have more excellent properties such as high interface activity and low adsorption loss in reservoirs.

(2) Four surfactant molecules design theories can be applied in oil-displacement surfactant molecules design for non-alkali SP flooding. They are HLB value, R-ratio, MGPP and QSPR. HLB value equal 6-8 can be used for primary designing and screening of oil-displacement surfactants, which is very convenience. R-value, MGPP, QSPR methods can be used in fine designing of oil-displacement surfactants. These methods consider more detail of molecule reaction among surfactant, oil and water in interface layer. The coincident ratio of MGPP methods is the best and it is easy to calculate and understand.

CNPCCNPCCNPCCNPC

Page 22: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

ConclusionsConclusionsConclusionsConclusions

(3)Based on molecule design theories, The structure characteristic of surfactants for alkali-free surfactant-polymer combination flooding should mainly focus on branch chains, double trails alkyl and/or aryl sulfonate surfactants, zwitterion surfactants, gemini surfactants and so on. Some of them have been synthesized which have good IFT properties and good prospect of applying in SP flooding.

CNPCCNPCCNPCCNPC

Page 23: 32 Annual Workshop & Symposium, IEA Collaborative Project on …iea-eor.ptrc.ca/2011/assets/13_17-10-2011_16-30... · 2011. 10. 8. · 油相 表面活性剂 水相 Oil phase Water

Thank you!Thank you!Thank you!Thank you!

CNPCCNPCCNPCCNPC