32 ebers-moll model - nanohub

16
ECE-305: Spring 2015 BJTs: Ebers-Moll Model Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 4/27/15 Pierret, Semiconductor Device Fundamentals (SDF) pp. 403-407 1 last lecture Lundstrom ECE 305 S15 2 1) Emitter injection efficiency 2) Base transport factor 3) Early effect 4) Speed (base transit time) 5) Effects of saturation 6) Gummel plots 7) Transconductance 8) HBTs 9) Emitter crowding

Upload: others

Post on 17-Oct-2021

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 32 Ebers-Moll Model - nanoHUB

Lundstrom ECE 305 S15

ECE-305: Spring 2015

BJTs: Ebers-Moll Model

Professor Mark Lundstrom

Electrical and Computer Engineering Purdue University, West Lafayette, IN USA

[email protected]

4/27/15

Pierret, Semiconductor Device Fundamentals (SDF) pp. 403-407

1

last lecture

Lundstrom ECE 305 S15 2

1)  Emitter injection efficiency 2)  Base transport factor 3)  Early effect 4)  Speed (base transit time) 5)  Effects of saturation 6)  Gummel plots 7)  Transconductance 8)  HBTs 9)  Emitter crowding

Page 2: 32 Ebers-Moll Model - nanoHUB

2D effects

3

n+ emitter

p base

n collector

n+

p base n-collector

n+

n+

double

diffused

BJT

emitter current crowding

4

p base

n-collector

n+

n+

IBIB

Lundstrom ECE 305 S15

Page 3: 32 Ebers-Moll Model - nanoHUB

emitter current crowding

5

p base

n-collector

n+

n+

IBIB

Vbase+

Lundstrom ECE 305 S15

emitter current crowding

6

n-collector

n+

n+

IBIB

Lundstrom ECE 305 S15

Page 4: 32 Ebers-Moll Model - nanoHUB

emitter and collector areas

7

p base n-collector

n+

n+

IBIB

AE

AC

AC >> AE

Lundstrom ECE 305 S15

Q1) Which is the base transport factor?

8

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Page 5: 32 Ebers-Moll Model - nanoHUB

Q2) Which is beta_dc?

9

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Q3) Which is alpha_dc?

10

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Page 6: 32 Ebers-Moll Model - nanoHUB

Q4) Which is the base current?

11

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Q5) Which is the emitter injection efficiency?

12

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Page 7: 32 Ebers-Moll Model - nanoHUB

forward active region

13

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

ICn ≈ IEn

IC ≈ IEn

IB = IEp

emitter current: forward active region

14

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

IEn

IC ≈ IEn

IB = IEp

IEn = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

eqVBE /kBT

IEp = qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

eqVBE /kBT

IE = IEn + IEp

IE = IF0 eqVBE kBT −1( )

IF0 = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

+ qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

Page 8: 32 Ebers-Moll Model - nanoHUB

collector current: forward active region

15

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

αT IEn

IC ≈ IEn

IB = IEp

IEn = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

eqVBE /kBT

IEp = qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

eqVBE /kBT

IC =αT IEn

IC =αF IF0 eqVBE kBT −1( )

IC =αTγ F IE

αF =αTγ F

Lundstrom ECE 305 S15

base current: forward active region

16

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

IEn

IC ≈ IEn

IB = IEp

IB = IE − IC

IC =αF IF0 eqVBE kBT −1( )

αF =αTγ F

IE = IF0 eqVBE kBT −1( )

IB = IE − IC

IB = 1−αF( ) IF0 eqVBE kBT −1( )Lundstrom ECE 305 S15

Page 9: 32 Ebers-Moll Model - nanoHUB

summary: forward active region

17

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

IEn

IC ≈ IEn

IB = IEp

IC =αF IF0 eqVBE kBT −1( )

IE = IF0 eqVBE kBT −1( )

IB = 1−αF( ) IF0 eqVBE kBT −1( )IF0 = qAE

ni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

+ qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

αF =αTγ F

Ebers-Moll model

18 18

Lundstrom ECE 305 S15

Question: How do we describe the BJT in any region of operation?

Page 10: 32 Ebers-Moll Model - nanoHUB

emitter-base junction (the forward diode)

19 19

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp

Lundstrom ECE 305 S15

ICp

IEn = −qA Dn

WB

ni2

NAB

eqVBE kBT −1( )

IEp = −qADp

WE

ni2

NDE

eqVBE kBT −1( )

IE VBE( ) = −IEn VBE( )− IEp VBE( )

IE VBE( ) = IF0 eqVBE kBT −1( )

Base-collector junction (the reverse diode)

20 20

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp

Lundstrom ECE 305 S15

ICp

ICn VBC( ) = qA Dn

WB

ni2

NAB

eqVBC kBT −1( )

ICp VBC( ) = qA Dp

WC

ni2

NDC

eqVBC kBT −1( )

IC VBC( ) = − ICn VBC( ) + ICp VBC( )⎡⎣ ⎤⎦

IC VBC( ) = −IR0 eqVBC kBT −1( )

Page 11: 32 Ebers-Moll Model - nanoHUB

Both junctions….

21 21

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp

Lundstrom ECE 305 S15

ICp

IC VBC( ) = −IR0 eqVBC kBT −1( )

IE VBE( ) = IF0 eqVBE kBT −1( )

But…. The two junctions are coupled!

Ebers-Moll model

22 22

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp

Lundstrom ECE 305 S15

ICp

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

Page 12: 32 Ebers-Moll Model - nanoHUB

Ebers-Moll model

23 23

Lundstrom ECE 305 S15

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

IB VBE ,VBC( ) = IE VBE ,VBC( )− IC VBE ,VBC( )

See Pierret SDF, Chapter 11, sec. 11.1.4

Ebers-Moll model

24 Lundstrom ECE 305 S15

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

αF IF0 =α RIR0

IF0 = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

+ qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

αF =αTγ F

α R =αTγ R IR0 = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

+ qAEni2

NDC

⎛⎝⎜

⎞⎠⎟Dp

WC

Page 13: 32 Ebers-Moll Model - nanoHUB

Ebers-Moll model

25 25

Lundstrom ECE 305 S15

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

IB VBE ,VBC( ) = IE VBE ,VBC( )− IC VBE ,VBC( )

See Pierret SDF, Chapter 11, sec. 11.1.4

αF IF0 =α RIR0

Check active region

Lundstrom ECE 305 S15 26

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )→αF IF0e

qVBE kBT + IR0

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )→ IF0e

qVBE kBT +α RIR0

IB VBE ,VBC( ) = IE VBE ,VBC( )− IC VBE ,VBC( )→ 1−αF( ) IF0eqVBE kBT − 1−α R( ) IR0

IC ≈αF IF0eqVBE kBT

IB ≈ 1−αF( ) IF0eqVBE kBT =1−αF( )αF

IC = 1βdc

IC✔

Page 14: 32 Ebers-Moll Model - nanoHUB

What is ID?

27 IE = ID

IB

VBC

VBE

IE = ID

VCE =VD VD

ID

What is ID?

28 IE = ID

IBIC =αF IF0 e

qVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE = IF0 eqVBE kBT −1( )−α RIR0 e

qVBC kBT −1( )

VBC = 0

VBC

VBE

IE = ID

VCE =VD

IE = IF0 eqVBE kBT −1( )

ID = IF0 eqVD kBT −1( )

IC

Page 15: 32 Ebers-Moll Model - nanoHUB

What is IC?

29 IE

IB = 0

IC =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE = IF0 eqVBE kBT −1( )−α RIR0 e

qVBC kBT −1( )VBC

VBE

IC

VCE

Ebers-Moll model

30 30

Lundstrom 12.5.14

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

IB VBE ,VBC( ) = IE VBE ,VBC( )− IC VBE ,VBC( )

αF IF0 =α RIR0

See Pierret SDF, Chapter 11, sec. 11.1.4

Page 16: 32 Ebers-Moll Model - nanoHUB

Ebers-Moll model (ii)

31 31 Lundstrom 12.5.14

IR0 = qADnB

WB

ni2

NAB

+DpC

WC

ni2

NDC

⎛⎝⎜

⎞⎠⎟

IF0 = qADnB

WB

ni2

NAB

+DpE

WE

ni2

NDE

⎛⎝⎜

⎞⎠⎟

αF = γ FαT

αF IF0 =α RIR0 →α R =αFIF0IR0

α R = γ RαT