35nd acs national meeting april 6-10, 2008 new orleans, louisiana organizers : umit s. ozkan...

61
35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45 am. -12:15 PM. Morial Convention Center, Room: Rm. 208 lea, D.Knapp, E.Kadantsev, M.Shiskin, T.Ziegler rtment of Chemistry University of Calgary,Alberta, da T2N 1N4 New Orleans National Meeting ying SOFC anode activity with DFT: Suggestions for ction and the effects of hydrogen sulfide adsorptio posium on Roles of Catalysis in Fuel Cells vision for Petrochemistry

Upload: jean-fisher

Post on 13-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana

Organizers : Umit S. Ozkan Jingguang G Chen

Presiding: Thursday April 10, 2008, 11:45 am. -12:15 PM. Morial Convention Center, Room: Rm. 208

N.Galea, D.Knapp, E.Kadantsev, M.Shiskin, T.Ziegler Department of Chemistry University of Calgary,Alberta, Canada T2N 1N4

New Orleans National Meeting

Studying SOFC anode activity with DFT: Suggestions for cokereduction and the effects of hydrogen sulfide adsorption

Symposium on Roles of Catalysis in Fuel Cells

Division for Petrochemistry

Page 2: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Solid Oxide Fuel Cell – CH4

2O2-

O2 + 4 e-

O2 -

H2O + 2e-

H2 + O2-

*Most commonSOFC material

*Ni-YSZTemp.800 –

1000 oC

V +-

Anode CathodeElectrolyte

*YSZ

CH4 + 4O2- 2H2O + CO2 + 8e- (Direct Oxidation,coaking) CH4 + H2O CO + 3H2 (Steam Reforming Reaction) H2/CO + O2- H2O/CO2 + 2e- (Oxidation Reaction)

Molecular hydrogen or methane gas is typical anode fuel.CH4 adsorbs on Ni anode surface and decomposes, blocking adsorption sites with graphene, most stable form of carbon.

The problem of cokingThe problem of coking

Page 3: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Activation on Ni

H2 --> 2H*

CH4 --> xH*+CH4-x

Triple Phase Boundary (TPB) Reactions

Anode Electrolyte Cathode

2O2- 2O2-

2O2-

Nickel/YSZ YSZ

Nickel

YSZ

O2(g)

Oxygen rich YSZ

4e-

Pre-activation on Ni

Burning on oxygen rich YSZ

2H+ O2 ----> H2O +2e-

CH4-x + +(8-x)/2 O2- ---> CO2+(4-x)/2H2O+(8-x)e-

+C(Coke)

Page 4: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Surface Calculations – CH4

Two classes of active adsorption sites. Stepped surfaces more reactive than planar surfaces. Supercell; 3 layers, 2x2(planar) or 2x3(stepped) surface.

Planar (111) - *CStepped (211) - *C

Steps and TerracesSteps and Terraces

Page 5: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Calculations – CH4

Vienna Ab Initio Package (VASP). ADF BAND Projector augmented wave (PAW) method. Frozen core (BAND) Generalized gradient approximation (GGA) functional PBE96. Planar (111) Surfaces: 2x2 unit cell, with 3 layers. Stepped (211) Surfaces: 3x3 unit cell, with 3 layers. Theoretical equilibrium bulk lattice constants, aO(Ni) is 3.52Ǻ and aO(Cu) is 3.61Ǻ. 10Ǻ vacuum region between slabs. Cu(111): 5 x 5 x 1 Monkhorst-Pack k-point mesh. Other Surfaces: 4 x 4 x 1 Monkhorst-Pack k-point mesh. Kinetic energy (wave function) cutoff energy is 25Ry = 340eV. Charge density (augmentation) cutoff energy is 50Ry = 680eV. Energies converged to 10-3eV. TS and reaction barriers calculated using the nudged-elastic band (NEB) method.

MatLab mathematical software package.

Computational DetailsComputational Details

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 6: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Ni(111) and Ni(211) Surfaces :Adsorption and Decomposition of CH4

Theoretical literature – Nørskov. Planar surface implies that coking should not occur. Stepped surface energies illustrating final exothermic

dissociation reaction is driving force of coke formation.

-25

-20

-15

-10

-5

0

5

10

Relative Energy (kcal/mol)

Surface

Ni(211)

CH4(g)

(b)

(a)

Ni(111)

*CH3, *H *CH2, 2*H *CH, 3*H *C, 4*H

(a) (b)

Decomposition of CH4 on steps and terraces of NiDecomposition of CH4 on steps and terraces of Ni

Graphene

Page 7: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Ni(111) & Ni(211)

25

1317

24

11

41

24

31

2320

1011

23

4

-5

22

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

Relative Energy (kCalmol

-1)

Ni(111) : Planar SurfaceNi(211) : Stepped Surface

Graphene

CH4(g)+ Surface

*CH3,*H *CH2,2*H

*CH,3*H

*C,4*H

Bengaard et al. J. Catal. 2002, 209 , 365-384.

Ni

NiNi

NiNi

C

NiNi

Ni

Ni

NiNi

NiNi C

Ni

H

H

Ni

Ni

Ni

NiNi

H

Ni

HC

Ni

Ni

H

Ni

Ni

Ni

NiNi

NiNi

C

Ni

H

Ni

Ni

Ni

Ni

Ni

H

Ni

H

Ni

C

H

H

Ni

Ni

Ni

Ni

NiNi

NiNi

Ni

H

Ni

Ni

Ni

Ni

H

C

Ni

H

H

1-fold@edge

2-fold@edge

5 coordinate site

3-fold

Decomposition of CH4 on steps and terraces of NiDecomposition of CH4 on steps and terraces of Ni

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 8: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Graphene

Carbon is adsorbed at step base, resulting in formation of graphene (coke) layer on (111) terrace. Ni and hexagonally structured carbon atoms lie parallel to one another.

Graphene island of finite size

is required for stability.

Blocking all step sites is

NOT needed to prevent formation.

Sparse covering of promoter atoms (e.g. gold, sulfur, alkali) or replacing Ni with Cu can hinder coke formation.

NiNiNi

NiNiNiNi

Ni

Ni

Ni

Ni

Ni

Ni

NiNi

NiNi

Ni

Ni

Ni

Ni

NiNi

NiNiNi

(Pictorialrepresentation

of surface)

Graphen formationGraphen formation

Page 9: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Cu(111) and Cu(211) Surfaces :Adsorption and Decomposition of CH4

Activity of copper in the dissociation of methane will be poor. Carbon cokes will not form on copper surfaces. Consistent with experimental SOFC observations.

0

10

20

30

40

50

60

70

80

90

100

110

Relative Energy (kcal/mol)

Surface

Cu(211)

CH4(g)

Cu(111)

*CH3, *H *CH2, 2*H *CH, 3*H *C, 4*HTS TS TS TS

Galea et al. Journal of Catalysis 247 (2007) 20-33

Decomposition of CH4 on steps and terraces of CuDecomposition of CH4 on steps and terraces of Cu

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 10: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Cu(111) and Cu(211) Surfaces :Adsorption and Decomposition of CH4

Activity of copper in the dissociation of methane will be poor. Carbon cokes will not form on copper surfaces. Consistent with experimental SOFC observations.

0

10

20

30

40

50

60

70

80

90

100

110

Relative Energy (kcal/mol)

Surface

Cu(211)

CH4(g)

Cu(111)

*CH3, *H *CH2, 2*H *CH, 3*H *C, 4*HTS TS TS TS

Galea et al. Journal of Catalysis 247 (2007) 20-33

Decomposition of CH4 on steps and terraces of CuDecomposition of CH4 on steps and terraces of Cu

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 11: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Cu(111) and Cu(211) Surfaces :Adsorption and Decomposition of CH4

Activity of copper in the dissociation of methane will be poor. Carbon cokes will not form on copper surfaces. Consistent with experimental SOFC observations.

0

10

20

30

40

50

60

70

80

90

100

110

Relative Energy (kcal/mol)

Surface

Cu(211)

CH4(g)

Cu(111)

*CH3, *H *CH2, 2*H *CH, 3*H *C, 4*HTS TS TS TS

Galea et al. Journal of Catalysis 247 (2007) 20-33

Decomposition of CH4 on steps and terraces of CuDecomposition of CH4 on steps and terraces of Cu

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 12: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Cu(111) and Cu(211) Surfaces :Adsorption and Decomposition of CH4

Activity of copper in the dissociation of methane will be poor. Carbon cokes will not form on copper surfaces. Consistent with experimental SOFC observations.

Galea et al. Journal of Catalysis 247 (2007) 20-33

0

10

20

30

40

50

60

70

80

90

100

110

Relative Energy (kcal/mol)

Surface

Cu(211)

CH4(g)

Cu(111)

*CH3, *H *CH2, 2*H *CH, 3*H *C, 4*HTS TS TS TS

Decomposition of CH4 on steps and terraces of CuDecomposition of CH4 on steps and terraces of Cu

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 13: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Cu(111) and Cu(211) Surfaces :Adsorption and Decomposition of CH4

Activity of copper in the dissociation of methane will be poor. Carbon cokes will not form on copper surfaces. Consistent with experimental SOFC observations.

Galea et al. Journal of Catalysis 247 (2007) 20-33

0

10

20

30

40

50

60

70

80

90

100

110

Relative Energy (kcal/mol)

Surface

Cu(211)

CH4(g)

Cu(111)

*CH3, *H *CH2, 2*H *CH, 3*H *C, 4*HTS TS TS TS

Decomposition of CH4 on steps and terraces of CuDecomposition of CH4 on steps and terraces of Cu

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 14: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Cu(111) & Cu(211)

86.79

105.35

56.09

70.50

44.70

23.33

70.69

44.54

27.11

40.10

7.75

33.24 30.49

48.19

72.03 72.30

0

10

20

30

40

50

60

70

80

90

100

110

Relative Energy (kCal/mol)

Cu(111)Cu(211)

CH4(g) + Surface *CH3 + *H *CH2 + 2*H *CH + 3*H *C + 4*H

*CH3 = 2-fold@Edge

*CH2 = 3-fold@edge2f

*CH = 5-coordination site

*C = 5-coordination site*H = 3-fold@edge2f

CH4(g) = 2-fold@Edge

Cu(111) & Cu(211)Supercell surface unit cells = (2x2) & (3x3).

Layers = 3 & 9.Lattice Constant, a = 3.615 Angstroms.

Lattice Vectors (Angstroms) :-x = 4.316 & 6.261.y = 4.984 & 7.668.

z = 14.069 & 16.588.GGA = PBE, utilizing PAW Method.

Cutoff Energies (Ry) :-Wavefunction = 37 & 25.

Charge Density = 74 & 50.k-points : Monkhorst-pack = 3x2x1 & 4x4x1.

Adsorption Energy(eV)

*CH3 : 1.30 & 1.78*CH2 : 3.91 & 3.33*CH : 4.69 & 5.47*C : 4.50 & 5.81*H : 2.42 & 2.58

Cu

Cu

Cu

Cu

Cu

HH

H

C

Cu

Cu

Cu

H

Cu

Cu

Cu

Cu

Cu

H

C

H

Cu

Cu

Cu

H

Cu

CuCu

H

Cu

C

Cu

H

Cu

CuCu

Cu

C

Cu H

CuCu

H

Cu

H

Cu

Galea et al. Journal of Catalysis 247 (2007) 20-33

Decomposition of CH4 on steps and terraces of CuDecomposition of CH4 on steps and terraces of Cu

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 15: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Step Edge - Cu-Ni(211) : Adsorption and Decomposition of CH4

Cu surface segregation occurs as Cu has a lower surface energy than Ni.

Likely that Ni steps that nucleate *C formation are blocked by Cu atoms, exposed terrace Ni sites contribute to activity.

Endothermic *C production on alloy, with reasonable activity.

(a)

-30

-20

-10

0

10

20

30

40

50

Relative Energy (kcal/mol)

Surface

Ni(211)

CH4(g)

Cu(211)

*CH3, *H *CH2, 2*H *CH, 3*H *C, 4*H

Cu-Ni(211)

(a)

Copper

Galea et al. Journal of Catalysis 247 (2007) 20-33

Decomposition of CH4 on Cu-steps and Ni-terraces Decomposition of CH4 on Cu-steps and Ni-terraces

Page 16: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

S-Ni(211)

4.05

17.78

38.85

22.52

10.05

28.81

14.35

25.66

0

5

10

15

20

25

30

35

40

Relative Energy (kCal/mol)

CH4(g) + Surface *CH3 + *H *CH2 + 2*H *CH + 3*H *C + 4*H

NiS(211)Supercell surface unit cells = (2x3).

Layers = 9.Lattice Constant, a = 3.615

Angstroms.Lattice Vectors (Angstroms) :-

x = 6.1005, y = 4.9796, z = 16.000.GGA = PBE, utilizing PAW Method.

Cutoff Energies (Ry) :-Wavefunction = 25.

Charge Density = 50.k-points : Monkhorst-pack = 4x4x1.

*CH = 3-fold@edge2f

*C = 3-fold@edge2f

*H = 3-fold@edge2f

*CH3 = 3-fold@edge2f

*CH2 = 3-fold@edge2f

*Ni(111) = 24*Ni(211) = 20

*Ni(111) = 18*Ni(211) = 12

*Ni(111) = 7*Ni(211) = 12

*Ni(111) = 30*Ni(211) = 19

(26)

(19) (8)

(35)

*Bengaard et al. J. Catal. 2002, 209 , 365-384.

Ni

H

NiNi

S

NiNi

H

H

C

Ni

S

Ni

H

Ni

Ni

H

NiNi

S

NiNi

H

C

H

Ni

S

NiNi

Ni

H

NiNi

S

C

Ni

H

Ni

Ni

S

NiNi

Ni

Ni

H

Ni

S

Ni

C

Ni

H

Ni

S

NiNi

Galea et al. Journal of Catalysis 247 (2007) 20-33

Decomposition of CH4 on S-steps and Ni-terraces Decomposition of CH4 on S-steps and Ni-terraces

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 17: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

100% Step – Au/S-Ni(211) : Adsorption and Decomposition of CH4

Small amounts of sulfur / gold can discourage the adsorption of carbon at the step by blocking edge sites, mimicking the nature of the planar nickel surface.

(a)-30

-20

-10

0

10

20

30

Relative Energy (kcal/mol)

Surface

Ni(211)

CH4(g)

*CH3, *H *CH2, 2*H *CH, 3*H *C, 4*H

S100%-Ni(211)

*C", 4*H

(a)Ni(111)

Au100%-Ni(211)Sulfur or Gold

Galea et al. Journal of Catalysis 247 (2007) 20-33

Decomposition of CH4 on (S,Au,S) steps and Ni-terraces Decomposition of CH4 on (S,Au,S) steps and Ni-terraces

N.Galea,D.Knapp,T.Ziegler Journal of Catalysis 247 (2007) 20-33

Page 18: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

A. Conclusions – CH4

Our research theoretically studies methods used experimentally to block step sites and reduce graphitic carbon formation.

Propensity to coking of Ni surface explained by strong adsorption of *C atoms at step edge, followed by graphene growth over terrace sites.

Thermodynamic energies and kinetic barriers of methane ads.n and dis.n on Cu surfaces are high, explaining poor activity and lack of coke.

Cu-Ni alloys, where Cu blocks step sites, the catalyst retains activity due to Ni, while *C formation remains endothermic due to Cu.

S-Ni stepped surface (and Au) demonstrates that step blocking renders step sites inactive to methane dis.n and forces ads.n onto terrace sites.

Galea, N.M.; Knapp, D.; Ziegler, T. J. Catal. 2007, 247, 20.

Page 19: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Activation on Ni

H2 --> 2H*

CH4 --> xH*+CH4-x

Triple Phase Boundary (TPB) Reactions

Anode Electrolyte Cathode

2O2- 2O2-

2O2-

Nickel/YSZ YSZ

Nickel

YSZ

O2(g)

Oxygen rich YSZ

4e-

Pre-activation on Ni

Burning on oxygen rich YSZ

2H+ O2 ----> H2O +2e-

CH4-x + +(8-x)/2 O2- ---> CO2+(4-x)/2H2O+(8-x)e-

M.Shishkin N.Galea,D.Knapp,T.Ziegler, work in progress

Page 20: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Triple Phase Boundary (TPB) Reactions

Anode Electrolyte Cathode

2O2- 2O2-

2O2-

Nickel/YSZ YSZ

Nickel

YSZ

O2(g)

Oxygen rich YSZ

4e-

Activation on YSZ

Activation and burning on oxygen rich YSZ

H2+O2- ----> H2O +2e-

CH4 +4 O2- ---> CO2+2H2O+8e-

M.Shishkin N.Galea,D.Knapp,T.Ziegler, work in progress

Page 21: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Triple Phase Boundary (TPB) Reactions

Anode Electrolyte Cathode

2O2- 2O2-

2O2-

Nickel/YSZ YSZ

Nickel

YSZ

O2(g)

Oxygen rich YSZ

4e-

Activation on YSZ

9%-YSZ

Zr

O

Y

M.Shishkin N.Galea,D.Knapp,T.Ziegler, work in progress

Page 22: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Molecular Hydrogen Adsorption onOxygen Rich YSZ

-140

-120

-100

-80

-60

-40

-20

0

Relative Energy (kcal/mol)

O"-Surface 2*OH *OH2 O'-Surface

H2(g)

H2O(g)

Initial adsorption of H2(g) on 9%-YSZ is energetically more favourable than on nickel.

TS energy barriers all < +5 kcal/mol.

M.Shishkin N.Galea,D.Knapp,T.Ziegler, work in progress

Page 23: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Methane adsorption on Oxygen rich YSZ: initial stage.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

↑CH4

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

*CH4

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

↑CH3OH + V

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

*CH3 + *H-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

E (kcal/mol)

M.Shishkin N.Galea,D.Knapp,T.Ziegler, work in progress

Page 24: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.€

↑CH2O+↑ H2 + V

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

*CH3 + *H

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

*CH + *H+↑ H2

-110

-90

-70

-50

-30

-10

10

E (kcal/mol)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

*CH2+↑ H2

Methane adsorption on Oxygen rich YSZ: Second stage.

Page 25: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Third stage: formaldehyde decomposition on oxygen enriched YSZ surface.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

↑CH2O

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

*CH2O

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.€

*CHO + *H

-140

-120

-100

-80

-60

-40

-20

0

Energy (kcal/mol)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

*CHO+↑ H2

Page 26: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Methane adsorption on oxygen deficient YSZ surface.

0

20

40

60

80

100

120

E (kcal/mol)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

↑CH4

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

*CH4

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.€

↑CH3OH + V

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

*CH3 + *H

Page 27: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

B. Conclusions – CH4

It might be possible to construct anodes of inactive conductors and electrolytes that can oxydize fuels

.

M.Shishkin N.Galea,D.Knapp,T.Ziegler, work in progress

Page 28: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Activation on Ni

H2 --> 2H*

CH4 --> xH*+CH4-x

Solid Oxide Fuel Cell – H2S

Anode Electrolyte Cathode

2O2- 2O2-

2O2-

Nickel/YSZ YSZ

Nickel

YSZ

O2(g)

Oxygen rich YSZ

4e-

Pre-activation on Ni with sulfur deposition

Burning on oxygen rich YSZ

2H+ O2 ----> H2O +2e-

CH4-x + +(8-x)/2 O2- ---> CO2+(4-x)/2H2O+(8-x)e- H2S --> S*+H2(g)

Page 29: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Calculations – H2S

Vienna Ab Initio Package (VASP). Projector augmented wave (PAW) method. Generalized gradient approximation (GGA) functional PBE96. Orthorhombic 2x2 unit cell, with 3 layers. Theoretical equilibrium bulk lattice constant, aO, is 3.52Ǻ. 10Ǻ vacuum region between slabs. 5 x 5 x 1 Monkhorst-Pack k-point mesh. Kinetic energy (wave function) cutoff energy is 400eV. Charge density (augmentation) cutoff energy is 800eV. Energies converged to 10-3eV. TS and reaction barriers calculated using the nudged-elastic band (NEB) method.

MatLab mathematical software package.

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.

Page 30: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Surface Calculations – H2S

Hydrogen (pairs) Surface Coverage, 2H , is ratio between number of adsorbed hydrogen atom pairs and number of Ni surface atoms.

i.e. 2H:Ni = 1:4, 2H = 0.25ML.

Repeated supercell; 3 layers, 2x2 surface.

Sulfur Surface Coverage, S , is ratio between number of adsorbed sulfur atoms and number of Ni surface atoms.

i.e. S:Ni = 1:4, S = 0.25ML.

Steps and TerracesSteps and Terraces

Page 31: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-60

-40

-20

0

20

40

60

Relative Energy (kcal/mol)

"S",

S = 0.25ML

"CleanSurface",

S = 0ML

"S__S",

S = 0.50ML

"S_S_S",

S = 0.75ML

"S_S_S_S",

S =1ML

H2S(g)

H2(g)

H2S(g)

H2(g)

H2S(g)

H2(g)

H2S(g)

H2(g)

Maximum Adsorption of H2S(g)

On the basis of thermodynamic energy, the most stable sulfur surface coverage is S = 0.50ML.

Concurs with experimental coverage of 0.50-0.60 ML. Natural S ads.n cutoff point explains decreased exp. activity.

Surface + 4H2S(g) 4*S-Surface + 4H2(g)

“S”

“S__S” “S_S_S”

“S_S_S_S”

Surface+4H2S(g) <--> 4S*-surface+ 4H2S(g)Surface+4H2S(g) <--> 4S*-surface+ 4H2S(g)

Page 32: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-50

-40

-30

-20

-10

0

10

20

30

Relative Energy (kcal/mol)

n*S-Surfacen*S-*SH2

n*S-*S-*H-*H

S = 0.25 - 0.50 ML, n = 1]

S = 0 - 0.25 ML, n = 0]

n*S-*Sn*S-

*SH-*Hn*S-

*SH-*H'n*S-

*S-*H*Hn*S-

*S-*H*H' *S--*S

TSTSTSTSTSTSTS

H2S(g)H2(g)

(b)

(a)

(c)

(d)

Hydrogen Sulfide Adsorption

S = 0-0.25 ML : H2S adsorption is an exothermic reaction. S = 0.25-0.50 ML : H2S adsorption is endothermic. Overall difference in energy is due to steric interactions on the

surface.

n*S-Surface + H2S(g) (n+1)*S-Surface + H2(g)

(c)

(a)

(d)

(b)

nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.

Page 33: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-50

-40

-30

-20

-10

0

10

20

30

Relative Energy (kcal/mol)

n*S-Surfacen*S-*SH2

n*S-*S-*H-*H

S = 0.25 - 0.50 ML, n = 1]

S = 0 - 0.25 ML, n = 0]

n*S-*Sn*S-

*SH-*Hn*S-

*SH-*H'n*S-

*S-*H*Hn*S-

*S-*H*H' *S--*S

TSTSTSTSTSTSTS

H2S(g)H2(g)

(b)

(a)

(c)

(d)

Hydrogen Sulfide Adsorption

S = 0-0.25 ML : H2S adsorption is an exothermic reaction. S = 0.25-0.50 ML : H2S adsorption is endothermic. Overall difference in energy is due to steric interactions on the

surface.

n*S-Surface + H2S(g) (n+1)*S-Surface + H2(g)

(c)

(a)

(d)

(b)

nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)

Page 34: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-50

-40

-30

-20

-10

0

10

20

30

Relative Energy (kcal/mol)

n*S-Surfacen*S-*SH2

n*S-*S-*H-*H

S = 0.25 - 0.50 ML, n = 1]

S = 0 - 0.25 ML, n = 0]

n*S-*Sn*S-

*SH-*Hn*S-

*SH-*H'n*S-

*S-*H*Hn*S-

*S-*H*H' *S--*S

TSTSTSTSTSTSTS

H2S(g)H2(g)

(b)

(a)

(c)

(d)

Hydrogen Sulfide Adsorption

S = 0-0.25 ML : H2S adsorption is an exothermic reaction. S = 0.25-0.50 ML : H2S adsorption is endothermic. Overall difference in energy is due to steric interactions on the

surface.

n*S-Surface + H2S(g) (n+1)*S-Surface + H2(g)

(c)

(a)

(d)

(b)

nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)

Page 35: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-50

-40

-30

-20

-10

0

10

20

30

Relative Energy (kcal/mol)

n*S-Surfacen*S-*SH2

n*S-*S-*H-*H

S = 0.25 - 0.50 ML, n = 1]

S = 0 - 0.25 ML, n = 0]

n*S-*Sn*S-

*SH-*Hn*S-

*SH-*H'n*S-

*S-*H*Hn*S-

*S-*H*H' *S--*S

TSTSTSTSTSTSTS

H2S(g)H2(g)

(b)

(a)

(c)

(d)

Hydrogen Sulfide Adsorption

S = 0-0.25 ML : H2S adsorption is an exothermic reaction. S = 0.25-0.50 ML : H2S adsorption is endothermic. Overall difference in energy is due to steric interactions on the

surface.

n*S-Surface + H2S(g) (n+1)*S-Surface + H2(g)

(c)

(a)

(d)

(b)

nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)

Page 36: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-50

-40

-30

-20

-10

0

10

20

30

Relative Energy (kcal/mol)

n*S-Surfacen*S-*SH2

n*S-*S-*H-*H

S = 0.25 - 0.50 ML, n = 1]

S = 0 - 0.25 ML, n = 0]

n*S-*Sn*S-

*SH-*Hn*S-

*SH-*H'n*S-

*S-*H*Hn*S-

*S-*H*H' *S--*S

TSTSTSTSTSTSTS

H2S(g)H2(g)

(b)

(a)

(c)

(d)

Hydrogen Sulfide Adsorption

S = 0-0.25 ML : H2S adsorption is an exothermic reaction. S = 0.25-0.50 ML : H2S adsorption is endothermic. Overall difference in energy is due to steric interactions on the

surface.

n*S-Surface + H2S(g) (n+1)*S-Surface + H2(g)

(c)

(a)

(d)

(b)

nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)nS*-Surface+H2S(g) <--> (n+1)S*-surface+ H2(g)

Page 37: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Adsorption Energies

Adsorbed *S-Surface, Adsorption Ni-S Bond

Species Final S. Energy, EAds. Distance (Ǻ)

*SH2 10 2.18

*SH 0.25ML 77 2.18(x2)

*S 116 2.15(x3)

(*H) (64)

*SH2 7 2.30

*SH 0.50ML 53 2.24(x2)

*S 90 2.22, 2.19(x2)

(*H) (61) -

EAds (kcal/mol) = ESurface + EGas - EAdsorbedSpecies

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.

Page 38: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-50

-40

-30

-20

-10

0

10

20

30

Relative Energy (kcal/mol)

n*S-*H*H'

n*S-*H*H

n*S-*H-*H *H --*Hn*S-Surface*S --*S

S = 0.25ML, n = 1]

S = 0.50ML, n = 2]

2H = 0 - 0.25 ML)

TS TS TS TS TS TS

*H -*H

TS*H -*H-*H*H 4*H

2H = 0.25- 0.50 ML)

S = 0ML, n = 0]

H2(g)

H2(g)

Molecular Hydrogen Adsorption

0S : S = 0.00ML, max. 2H = 0.50ML : Ads.n strongly exothermic. 1S : S = 0.25ML, max. 2H = 0.25ML : Adsorption exothermic. 2S : S = 0.50ML, max. 2H = 0.25ML : Adsorption endothermic. Presence of surface sulfur reduces hydrogen adsorption by half.

n*S-Surface + xH2(g) 2x*H-n*S-SurfacenS*-Surface+xH2(g) <--> 2xH*-nS*-SurfacenS*-Surface+xH2(g) <--> 2xH*-nS*-Surface

Page 39: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-50

-40

-30

-20

-10

0

10

20

30

Relative Energy (kcal/mol)

n*S-*H*H'

n*S-*H*H

n*S-*H-*H *H --*Hn*S-Surface*S --*S

S = 0.25ML, n = 1]

S = 0.50ML, n = 2]

2H = 0 - 0.25 ML)

TS TS TS TS TS TS

*H -*H

TS*H -*H-*H*H 4*H

2H = 0.25- 0.50 ML)

S = 0ML, n = 0]

H2(g)

H2(g)

Molecular Hydrogen Adsorption

0S : S = 0.00ML, max. 2H = 0.50ML : Ads.n strongly exothermic. 1S : S = 0.25ML, max. 2H = 0.25ML : Adsorption exothermic. 2S : S = 0.50ML, max. 2H = 0.25ML : Adsorption endothermic. Presence of surface sulfur reduces hydrogen adsorption by half.

n*S-Surface + xH2(g) 2x*H-n*S-SurfacenS*-Surface+xH2(g) <--> 2xH*-nS*-SurfacenS*-Surface+xH2(g) <--> 2xH*-nS*-Surface

Page 40: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-50

-40

-30

-20

-10

0

10

20

30

Relative Energy (kcal/mol)

n*S-*H*H'

n*S-*H*H

n*S-*H-*H *H --*Hn*S-Surface*S --*S

S = 0.25ML, n = 1]

S = 0.50ML, n = 2]

2H = 0 - 0.25 ML)

TS TS TS TS TS TS

*H -*H

TS*H -*H-*H*H 4*H

2H = 0.25- 0.50 ML)

S = 0ML, n = 0]

H2(g)

H2(g)

Molecular Hydrogen Adsorption

0S : S = 0.00ML, max. 2H = 0.50ML : Ads.n strongly exothermic. 1S : S = 0.25ML, max. 2H = 0.25ML : Adsorption exothermic. 2S : S = 0.50ML, max. 2H = 0.25ML : Adsorption endothermic. Presence of surface sulfur reduces hydrogen adsorption by half.

n*S-Surface + xH2(g) 2x*H-n*S-SurfacenS*-Surface+xH2(g) <--> 2xH*-nS*-SurfacenS*-Surface+xH2(g) <--> 2xH*-nS*-Surface

Page 41: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

-70

-50

-30

-10

10

30

50

70

Relative Energy (kcal/mol)

"CleanSurface" "S__S"

"S" "S_S"

S = 0.25ML] S = 0.50ML]H2S(g)

H2S(g)

H2(g)

H2(g)

"S_H_H"

"S_S_H_H"

Multiple H2S(g) Adsorptions at 800oC

Surface + 2H2S(g) 2*S-Surface + 2H2(g)

Point A : Despite large TS barriers, exothermic/exergonic nature of overall reaction produces a S = 0.50ML surface.

Point B : Removal of H2S from the anode fuel feed allows the partial removal of surface sulfur, due to small difference in energy between species “S__S” and “S”.

Surface+2H2S(g) <--> 2S*-Surface+ 2H2(g) Surface+2H2S(g) <--> 2S*-Surface+ 2H2(g)

Page 42: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

CSTR Kinetic Model

Continually Stirred Tank Reactor (CSTR) model. Reactor described by a ‘box’ (mimicking the anode), with a specific

volume and maintained at a particular temperature. The ‘surface’ within the box (mimicking the anode surface) has a specific

reactive surface and vacant adsorption site concentration. Gaseous fuel continually flows into CSTR (anode fuel feed) and gaseous

products or unused fuel continually flow out with a specific flowrate. Gaseous species can adsorb/desorb on the surface, and adsorbed species can

react with each other. Sulfur surface coverage and surface steric interactions are considered by

dissecting the surface into equally sized sections (2x2) and considering each section as a vacant site.

Determining Rate of Reactions : TS = T.S(translational/rotational).

H2S(g)/800oC, TS = 53 kcal/mol,

H2(g)/800oC, TS = 34 kcal/mol.

G = Δ H − TΔ S

k =kBT

hexp −

ΔG

RT

⎝ ⎜

⎠ ⎟

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.

Page 43: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Rate of Formation of Individual Species

Individual rate constants, k, used to determine time-dependant rate of formation of each species in reaction scheme.

Example reaction mechanism :

Integration over time :

A + Bk−1

k1↔ C

k−2

k2↔ D

d

dtC[ ] = k1 A[ ] B[ ] − k−1 C[ ] − k2 C[ ] + k−2 D[ ]

d

dtD[ ] = k2 C[ ] − k−2 D[ ]

d

dtA[ ] = −k1 A[ ] B[ ] + k−1 C[ ]

d

dtB[ ] = −k1 A[ ] B[ ] + k−1 C[ ]

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457.

Page 44: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Point A – Surface Sulfur Formation : Initial Adsorption on S = 0ML Surface

A S=0.25ML surface (a 100% CSTR surface coverage of *S) is initially formed via H2S(g) adsorption and H2(g) desorption.

Anode Fuel at 800oC

pH2 = ~1atm,

pH2S = 1x10-5atm = 10ppm.

Initial Surface, S = 0.00ML.

Surface + H2S(g) *S-*H-*H

*S-*H-*H *S + H2(g)

*S + H2S(g) *S-*S-*H-*H

*S-*S-*H-*H *S--*S + H2(g)

Surface + 2H2(g) 4*H

Further H2S(g)/H2(g) adsorption/desorption results in a 100% CSTR surface coverage of 2*S, a S=0.50ML surface .

Page 45: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Point B - Surface Sulfur Removal :Initial Adsorption on S = 0.50ML Surface

Equilibrium is reached upon the production of a S=0.25ML surface (a 100% CSTR surface coverage of *S).

Anode Fuel at 800oC

pH2 = 1atm,

(No H2S(g) in fuel).

Initial Surface, S = 0.50ML.

*S--*S + H2(g) *S-*S-*H-*H

*S-*S-*H-*H *S + H2S(g)

*S + H2(g) *S-*H-*H

*S-*H-*H Surface + H2S(g)

Surface + 2H2(g) 4*H Model mimics experimental attempts to purge sulfur

from surface by eliminating H2S from anode fuel feed.

Page 46: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

A. Conclusions – H2S

Our research studies the affects of consecutive adsorption and dissociation of H2S and subsequent desorption of H2 on Ni surfaces.

Failure of S-based pollutants in anode fuel to cause completely inoperable conditions within SOFC anode is due to inability of planar Ni to favourably adsorb H2S at a S coverage greater than 50%. The endergonic nature of H2S ads.n at S >0.50ML causes cutoff point.

Complete irreversibility of H2S ads.n caused by large endothermic/ endergonic energy difference between S = 0 and 0.25 (*S) ML.

A 2H = 0.50ML is achieved without the presence of surface sulfur. At S = 0.25 and 0.50 ML, only a 2H = 0.25ML coverage is formed.

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C

2007, 111, 14457.

Page 47: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Remaining Sulfur by O2 Treatment

1S*-Surface+O2(g) --> “Clean surface +SO2(g)1S*-Surface+O2(g) --> “Clean surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 48: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

1S*-Surface+O2(g) --> “Clean surface +SO2(g)1S*-Surface+O2(g) --> “Clean surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 49: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

1S*-Surface+O2(g) --> “Clean surface +SO2(g)1S*-Surface+O2(g) --> “Clean surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 50: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

1S*-Surface+O2(g) --> “Clean surface +SO2(g)1S*-Surface+O2(g) --> “Clean surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 51: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

1S*-Surface+O2(g) --> “Clean surface +SO2(g)1S*-Surface+O2(g) --> “Clean surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 52: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

1S*-Surface+O2(g) --> “Clean surface +SO2(g)1S*-Surface+O2(g) --> “Clean surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 53: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

1S*-Surface+O2(g) --> “Clean surface +SO2(g)1S*-Surface+O2(g) --> “Clean surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 54: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

1S*-Surface+O2(g) --> “Clean surface +SO2(g)1S*-Surface+O2(g) --> “Clean surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 55: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

2S*-Surface+O2(g) --> “1S* surface +SO2(g)2S*-Surface+O2(g) --> “1S* surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 56: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

2S*-Surface+O2(g) --> “1S* surface +SO2(g)2S*-Surface+O2(g) --> “1S* surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 57: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

2S*-Surface+O2(g) --> “1S* surface +SO2(g)2S*-Surface+O2(g) --> “1S* surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 58: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

2S*-Surface+O2(g) --> “1S* surface +SO2(g)2S*-Surface+O2(g) --> “1S* surface +SO2(g)

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 59: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Removal of Sulfur by O2 Treatment

Surface coverage of selected species determined by kineticCSTR model at 8000 C of O2 exposure to S = 0.50ML surface.

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C , accepted.

Page 60: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

B Conclusions – H2S

Sulfur with coverage S = 0.25 ML can be removed by O2

Galea, N.M.; Kadantsev, E.S.; Ziegler, T. J. Phys. Chem. C

accepted.

Page 61: 35nd ACS National Meeting April 6-10, 2008 New Orleans, Louisiana Organizers : Umit S. Ozkan Jingguang G Chen Presiding: Thursday April 10, 2008, 11:45

Acknowledgements Thank You!

Financial support was provided by the Alberta Energy Research Institute and the Western Economic Diversification Department.

Calculations were carried out on WestGrid computing resources, funded in part by the Canadian Foundation for Innovation, Alberta Innovation and Science, BC Advanced Education, and the participating research institutions.