,*3*7&1 (8* & (truzyjw;nxnts 1&899.2*...

21
/ CSE 559A: Computer Vision Fall 2020: T-R: 11:30-12:50pm @ Zoom Instru‘tor: Ayan Chakrabarti ([email protected]’u). Course Staff: A’ith Boloor, Patri‘k Williams O‘t 27, 2020 http://www.‘se.wustl.e’u/~ayan/‘ourses/‘se559a/ 1 / GENERAL GENERAL Problem Set 2 Due 11:59pm toni”ht. Problem Set 3 out an’ rea’y to ‘lone. Proposal repository rea’y to ‘lone. New offi‘e hours aʿer le‘ture (startin” at 1pm Central time). Separate Zoom link available throu”h Zoom tab in Canvas. 2 / GENERAL GENERAL Notes on Problem Set Submissions Donɉt “or”et to in‘lu’e your solution writeup PDF ! Make sure its ‘alle’ solution.p’“. As you solve questions, ’onɉt just rea’ the minimum require’ to solve the problem. Make sure you un’erstan’ the un’erlyin” math. Go ba‘k an’ rea’ previous sli’es to see how thin”s were ’erive’. Re“resh your memories o“ linear / matrix al”ebra i’entities. Take a‘a’emi‘ inte”rity seriously 3 / LAST TIME: ROBUST FITTING LAST TIME: ROBUST FITTING Iterative Version: 1. Fit the best to all samples in “ull set . 2. Given the ‘urrent estimate o“ , ‘ompute the inlier set 3. Up’ate estimate o“ by minimizin” error over only the inlier set 4. Goto step 2 Conver”es, be‘ause ‘ost never in‘reases at any iteration. But to a lo‘al minimum. It is possible that i“ you ‘hose an entirely ’ifferent inlier set, this woul’ ”ive you a lower ‘ost. Fun’amentally a ‘ombinatorial problem. Only way to solve exa‘tly is to ‘onsi’er all possible sub-sets o“ as outlier sets. 4

Upload: others

Post on 23-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CSE 559A: Computer Vision

Fall 2020: T-R: 11:30-12:50pm @ Zoom

Instru‘tor: Ayan Chakrabarti ([email protected]’u).Course Staff: A’ith Boloor, Patri‘k Williams

O‘t 27, 2020

http://www.‘se.wustl.e’u/~ayan/‘ourses/‘se559a/

1 /

GENERALGENERALProblem Set 2 Due 11:59pm toni”ht.Problem Set 3 out an’ rea’y to ‘lone.Proposal repository rea’y to ‘lone.New offi‘e hours a er le‘ture (startin” at 1pm Central time).

Separate Zoom link available throu”h Zoom tab in Canvas.

2

/

GENERALGENERALNotes on Problem Set Submissions

Don t “or”et to in‘lu’e your solution writeup PDF !Make sure its ‘alle’ solution.p’“.As you solve questions, ’on t just rea’ the minimum require’ to solve the problem.

Make sure you un’erstan’ the un’erlyin” math.Go ba‘k an’ rea’ previous sli’es to see how thin”s were ’erive’.Re“resh your memories o“ linear / matrix al”ebra i’entities.

Take a‘a’emi‘ inte”rity seriously

3 /

LAST TIME: ROBUST FITTINGLAST TIME: ROBUST FITTINGIterative Version:

1. Fit the best to all samples in “ull set .

2. Given the ‘urrent estimate o“ , ‘ompute the inlier set

3. Up’ate estimate o“ by minimizin” error over only the inlier set

4. Goto step 2 Conver”es, be‘ause ‘ost never in‘reases at any iteration.But to a lo‘al minimum. It is possible that i“ you ‘hose an entirely ’ifferent inlier set, this woul’ ”ive you alower ‘ost.

Fun’amentally a ‘ombinatorial problem. Only way to solve exa‘tly is to ‘onsi’er all possible sub-sets o“ asoutlier sets.

h = arg min(ϵ, (h))min

h

i∈C

E

i

h C

h = i : (h) ≤ ϵC

E

i

h C

C

4

Page 2: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

RANSACRANSACRandom Sampling and Consensus

Lots o“ ’ifferent variants.

1. Ran’omly sele‘t points (‘orrespon’en‘es) as my inlier set. Choi‘e o“ ‘an vary: has to be at least 4 “or ‘omputin” homo”raphies.

2. Fit to these points.

3. Store an’ a measure o“ how ”oo’ a “it is to all points. This measure ‘an either be the threshol’e’ robust‘ost, or the number o“ outliers.

Repeat this times to ”et ’ifferent estimates o“ an’ asso‘iate’ ‘osts.

Choose the with the lowest ‘ost, an’ then use this as initialization “or the iterative al”orithm.

k

k

h k

h h

N N h

h

5 /

3D HOMOGENEOUS CO-ORDINATES3D HOMOGENEOUS CO-ORDINATESFour ’imensional ve‘tor ’e“ine’ upto s‘ale:

I“ is a “our-’imensional ve‘tor, what ’oes represent ?

p = [αx, αy, αz, α]

T

l p = 0l

T

6

/

3D HOMOGENEOUS CO-ORDINATES3D HOMOGENEOUS CO-ORDINATESFour ’imensional ve‘tor ’e“ine’ upto s‘ale:

I“ is a “our-’imensional ve‘tor, what ’oes represent ? A plane.

How ’o we represent a line ?

p = [αx, αy, αz, α]

T

l p = 0l

T

7 /

3D HOMOGENEOUS CO-ORDINATES3D HOMOGENEOUS CO-ORDINATESFour ’imensional ve‘tor ’e“ine’ upto s‘ale:

I“ is a “our-’imensional ve‘tor, what ’oes represent ? A plane.

How ’o we represent a line ? where is a matrix.

Interpret line as interse‘tion o“ two planes.

p = [αx, αy, αz, α]

T

l p = 0l

T

p = 0L

T

L 4 × 2

8

Page 3: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

3D TRANSFORMATIONS3D TRANSFORMATIONSRepresente’ by matri‘es.

Translation

4 × 4

= pp

1

0

0

0

0

1

0

0

0

0

1

0

−c

x

−c

y

−c

z

1

9 /

3D TRANSFORMATIONS3D TRANSFORMATIONSRepresente’ by matri‘es.

Rotation

Where is now a matrix with .

Also ‘overs re“le‘tion. For rotation only,

Correspon’s to rotation aroun’ ea‘h axis. Not ‘ommutative.

4 × 4

=

[ ]

pp

R

0

T

0

1

R 3 × 3 R = IR

T

R = ( ) ( ) ( )R

x

θ

1

R

y

θ

2

R

z

θ

3

(θ) = ,    (θ) = ,    (θ) =R

x

1

0

0

0

cos θ

sin θ

0

− sin θ

cos θ

R

y

cos θ

0

sin θ

0

1

0

− sin θ

0

cos θ

R

z

cos θ

sin θ

0

− sin θ

cos θ

0

0

0

1

10

/

3D TRANSFORMATIONS3D TRANSFORMATIONSGeneral Eu‘li’ean Trans“ormation

Now is a rotation matrix, an’ is a translation ve‘tor.

=

[ ]

pp

R

0

T

t

1

R 3 × 3 t 3 × 1

11 /

CAMERA PROJECTIONCAMERA PROJECTION

12

Page 4: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA PROJECTIONCAMERA PROJECTION

13 /

CAMERA PROJECTIONCAMERA PROJECTION

14

/

CAMERA PROJECTIONCAMERA PROJECTION

15 /

CAMERA PROJECTIONCAMERA PROJECTION

16

Page 5: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA PROJECTIONCAMERA PROJECTION

17 /

CAMERA PROJECTIONCAMERA PROJECTION

18

/

CAMERA PROJECTIONCAMERA PROJECTION

19 /

CAMERA PROJECTIONCAMERA PROJECTION

20

Page 6: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA PROJECTIONCAMERA PROJECTION

21 /

CAMERA PROJECTIONCAMERA PROJECTION

22

/

CAMERA PROJECTIONCAMERA PROJECTION

23 /

CAMERA PROJECTIONCAMERA PROJECTIONSensor to Image Locations

This still assumes that an’ share the same ‘o-or’inate system.

What units is in ? What units is in ?

Meters to Pixels

Lo‘ation on sensor plane in meters:

Let s say ea‘h sensor pixel is meters wi’e.

Lo‘ation in pixels is

Or ‘an just assume is “o‘al len”th in pixels.

p =

f

0

0

0

f

0

0

0

1

0

0

0

p

p

p

p f

= fx

m

x

z

q

= /q =x

p

x

m

f

q

x

z

f

24

Page 7: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA PROJECTIONCAMERA PROJECTION

More General:

han’les the ‘ase where pixels aren t square (so you have in meters ’ivi’e’ by sensor wi’th an’sensor hei”ht separately)

implies the pixels are skewe’ (almost never happens).

an’ just pi‘ks the lo‘ation o“ ori”in on the ima”e plane.

O en, ok to assume , , .

p =

f

x

0

0

s

f

y

0

c

x

c

y

1

0

0

0

p

≠f

x

f

y

f

s ≠ 0

c

x

c

y

s = 0, = = ff

x

f

y

= W/2c

x

= H/2c

y

25 /

CAMERA PROJECTIONCAMERA PROJECTION

Still assumes that is with respe‘t to an ali”ne’ ‘o-or’inate system:

Camera ‘enter (pinhole) is at ori”in

an’ axes ali”ne’ with sensor plane

axis is viewin” ’ire‘tion

p =

f

x

0

0

s

f

y

0

c

x

c

y

1

0

0

0

p

p

x y

z

26

/

CAMERA PROJECTIONCAMERA PROJECTION

Still assumes that is with respe‘t to an ali”ne’ ‘o-or’inate system:

Camera ‘enter (pinhole) is at ori”in

an’ axes ali”ne’ with sensor plane

axis is viewin” ’ire‘tion

The matrix is ‘alle’ the intrinsi‘ ‘amera matrix.

p = = [K  0]  

f

x

0

0

s

f

y

0

c

x

c

y

1

0

0

0

p

p

p

x y

z

K =

f

x

0

0

s

f

y

0

c

x

c

y

1

3 × 3 K

27 /

CAMERA PROJECTIONCAMERA PROJECTIONBut what i“ is in some other ‘o-or’inate system ?

Calibration tar”et (tryin” to estimate ‘amera parameters)Multi-view S‘enario

De“ine an’ are 3D homo”eneous ‘o-or’inates:

is in ‘amera ali”ne’ axes, is in worl’ axes

Both are relate’ by a eu‘li’ean / ri”i’ trans“ormation (rotation + translation)

Where is 3-D rotation matrix, an’ is translation ve‘tor.

p

p

p

p

p

=

[ ]

p

R

0

t

1

p

R 3 × 3 t 3 × 1

The proje‘tion matrix ‘an be “a‘torize’ into the upper trian”ular matrix intrinsi‘ matrix , an’ the

extrinsic matrix that represents ‘amera pose .

p = [K  0]  

[ ]

= K  [R|t]  = P

R

0

t

1

p

p

p

P 3 × 3 K

3 × 4 [R|t]

28

Page 8: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA CALIBRATIONCAMERA CALIBRATION

’e“ine’ upto s‘ale.

Get a bun‘h o“ 3D-2D ‘orrespon’en‘es

Solve “or like “or Homo”raphies

Ex‘ept that now is a matrix instea’ o“

Nee’ six linearly in’epen’ent points (three i“ is known).

On‘e you have , ‘an ’e‘ompose into an’ usin” QR “a‘torization

Restri‘te’ versions possible i“ you assume no skew, square pixels, et‘.

p = [K  0]  

[ ]

= K  [R|t]  = P

R

0

t

1

p

p

p

P

( , )p

i

p

i

× (P ) = 0p

i

p

i

P 3 × 4 3 × 3

K

P K [R|t]

29 /

CAMERA CALIBRATIONCAMERA CALIBRATION ’es‘ribes proje‘tion “rom ‘alibration obje‘t s ‘o-or’inate system

Many times we just want to estimate (or estimate it separately be“ore estimatin” pose).

Assume square pixels, no skew, opti‘al ‘enter at ‘enter o“ ima”e.

Is there a simpler way to ”et ?

P = K[R|t]

K

K =

f

0

0

0

f

0

W/2

H/2

1

f

30

/

CAMERA CALIBRATIONCAMERA CALIBRATION

31 /

CAMERA CALIBRATIONCAMERA CALIBRATION

32

Page 9: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA CALIBRATIONCAMERA CALIBRATION

33 /

CAMERA CALIBRATIONCAMERA CALIBRATION

34

/

CAMERA CALIBRATIONCAMERA CALIBRATION

35 /

CAMERA CALIBRATIONCAMERA CALIBRATION

36

Page 10: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA CALIBRATIONCAMERA CALIBRATION

37 /

CAMERA CALIBRATIONCAMERA CALIBRATION

38

/

CAMERA CALIBRATIONCAMERA CALIBRATION

39 /

CAMERA CALIBRATIONCAMERA CALIBRATION

40

Page 11: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA CALIBRATIONCAMERA CALIBRATION

41 /

CAMERA CALIBRATIONCAMERA CALIBRATION

42

/

CAMERA CALIBRATIONCAMERA CALIBRATIONVanishing Point

Alternate equation o“ line in 3D:

In 3-D ‘artesian, all points that satis“y “or some s‘alar : , where

is a 3-ve‘tor representin” the ‘artesian ‘o-or’inate o“ a point,

is a 3-ve‘tor representin” ’ire‘tion o“ line,

Same an’ ’ifferent s‘ale’ versions o“ represent same line.

Two lines with ’ifferent but same (upto s‘ale) are parallel to ea‘h other.

represents parallel line passin” throu”h ori”in.

In homo”eneous ‘o-or’inates,

Proje‘tion o“ (assumin” ‘amera-ali”ne’ ‘o-or’inate system):

r λ   r = + λdr

0

r

0

d

r

0

d

r

0

d

r = λd

p = [( + λd , 1] = [( + d , ]r

0

)

T 1

λ

r

0

)

T 1

λ

p  p

∼ [K  0]p = K + λKd ∼ K + Kdp

 

r

0

1

λ

r

0

43 /

CAMERA CALIBRATIONCAMERA CALIBRATIONVanishing Point

Proje‘tion o“ (assumin” ‘amera-ali”ne’ ‘o-or’inate system):

As ,

is the 2D homo”eneous ‘o-or’inate o“ the proje‘tion o“ the point on the ”iven line at in“inity. It is theproje‘tion o“ all points on the line parallel to the ”iven line an’ passin” throu”h ori”in / ‘amera ‘enter (same

).

represents a ray in . All points in parallel line throu”h ori”in have ‘o-or’inate “or some , an’ allproje‘t to .

Note that vanishin” point will be at in“inity i“ -‘omponent o“ is 0, i.e., i“ line in 3D spa‘e is perpen’i‘ular to‘amera axis.

p  p

∼ [K  0]p = K + λKd ∼ K + Kdp

 

r

0

1

λ

r

0

λ → ∞ ∼ Kdp

 

Kd

d, = 0r

0

d ℝ

3

[ , 1/λ]d

T

λ

Kd

z d

44

Page 12: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA CALIBRATIONCAMERA CALIBRATIONVanishing Point

I“ s ‘artesian ‘o-or’inate is , “or simple :

So I ‘an write an equation relatin” to the ‘o-or’inate o“ it s vanishin” point an’ unknown “o‘al len”th .

But I ’on t know .

But what i“ I knew that an’ were perpen’i‘ular (in the real worl’) ?

p ∼ Kd ⇒ p ∼ dK

−1

p (x, y) K

d ∼ p ∼K

−1

(x −W/2)

(y −H/2)

f

d f

d

d

1

d

2

45 /

CAMERA CALIBRATIONCAMERA CALIBRATION

46

/

CAMERA CALIBRATIONCAMERA CALIBRATION

47 /

CAMERA CALIBRATIONCAMERA CALIBRATION

48

Page 13: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA CALIBRATIONCAMERA CALIBRATION

49 /

CAMERA CALIBRATIONCAMERA CALIBRATION

50

/

CAMERA CALIBRATIONCAMERA CALIBRATION

51 /

CAMERA CALIBRATIONCAMERA CALIBRATION

52

Page 14: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

CAMERA CALIBRATIONCAMERA CALIBRATION

53 /

CAMERA CALIBRATIONCAMERA CALIBRATION

54

/

CAMERA CALIBRATIONCAMERA CALIBRATION

55 /

CAMERA CALIBRATIONCAMERA CALIBRATION

56

Page 15: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

What ‘an we say about the relationship between an’ , an’ what ’oes it say about ?

∼ [ | ]pp 

1

K

1

R

1

t

1

∼ [ | ]pp 

2

K

2

R

2

t

2

1

2

p

57 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

Let s just assume ,

an’ the ‘o-or’inate system is ali”ne’ with the “irst ‘amera: .

∼ [ | ]p,         ∼ [ | ]pp 

1

K

1

R

1

t

1

2

K

2

R

2

t

2

= = KK

1

K

2

= I, = 0R

1

t

1

58

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

What i“ ? Se‘on’ ima”e is “rom just rotatin” the ‘amera, but not movin” it s ‘enter.

Let . We re ”oin” to ’eal with by sayin” equal to some s‘alar “a‘tor

So i“ there s only rotation, points in two ima”es ‘an be relate’ by a Homo”raphy .

∼ K[I|0]p,         ∼ K[R|t]pp 

1

2

t = 0

p = [x, y, z, 1] ∼ , ,…λ

1

λ

2

= K[I|0]p = K[x, y, z ,     for some  p

 

1

λ

1

λ

1

]

T

λ

1

= K[R|0]p = KR[x, y, z ,     for some  p 

2

λ

2

λ

2

]

T

λ

2

= KR ∼ KRp 

2

λ

2

λ

1

K

−1

1

K

−1

1

= KRK

−1

59 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

60

Page 16: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

61 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

62

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

63 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

64

Page 17: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

65 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

66

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

67 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

68

Page 18: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

69 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

70

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

71 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

72

Page 19: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

73 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

74

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

75 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

76

Page 20: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

77 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

78

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

79 /

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

80

Page 21: ,*3*7&1 (8* & (TRUZYJW;NXNTS 1&899.2* 74':89+.99.3,ayan/courses/cse559a/PDFs/lec...2JYJWXY T5 N]JQX 1THFYNTST SX JSXTWU QFSJN SR JYJWX 1JYIXX F^J FHMX JSXTWU N]JQN X R JYJWX\ NIJ 1THFYNTSN

/

TWO-VIEW GEOMETRYTWO-VIEW GEOMETRY

81