3d effects on transport and plasma control in the tj-ii … nacional de fusión outline motivation...

34
Laboratorio Nacional de Fusión 3D effects on transport and plasma control in the TJ-II stellarator Francisco Castejón, the TJ-II Team and Collaborators Laboratorio Nacional de Fusión, CIEMAT. Spain [email protected]

Upload: lynhan

Post on 13-Mar-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

3D effects on transport and plasma control

in the TJ-II stellarator

Francisco Castejón, the TJ-II Team and Collaborators

Laboratorio Nacional de Fusión, CIEMAT. Spain

[email protected]

Page 2: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Contributors & the TJ-II Stellarator

F. Castejón and contributors from:

Laboratorio Nacional de Fusión, CIEMAT, 28040, Madrid, Spain

Institute of Plasma Physics, NSC KIPT, Ukraine; Institute of Nuclear Fusion,

RNC Kurchatov Institute, Moscow, Russia; A.F. Ioffe Physical Technical

Institute, St Petersburg, Russia; General Physics Institute, Moscow, Russia; IPFN,

Lisbon, Portugal; Kyoto University, Japan; Max-Planck-Institut fur

Plasmaphysik, Greifswald, Germany; NIFS, Toki, Japan; Universidad Carlos III, Madrid, Spain; University of California-

San Diego, USA; BIFI, Universidad de Zaragoza, Spain; SWIF, Chengdu, China

TJ-II Heliac B(0)< 1.2 T; R=1.5 m, a<0.22 m 0.9 < i/2p<2.2 ECRH (0.3 + 0.3 MW); NBI ( 0.6 + 0.6 MW) co- and counter injection MEASUREMENTS: rake Langmuir Probe, dual HIBP, Mirnov coils, fast bolometers and Doppler reflectometer

NBI-Co

NBI-Count.

HIBP1

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 2

HIBP2

Pellet Inj.

Page 3: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Outline

Motivation

Impurity transport

Plasma fuelling results

Plasma stability studies

Flows and electromagnetic effects

Controlling fast particle confinement: Role of

ECRH and magnetic configuration

Innovative power exhaust scenarios using liquid

metals (not 3D-specific)

Conclusions

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 3

Page 4: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Motivation

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 4

3D Geometry relevant for Stellarators and Tokamaks (TBM,

RMP, Islands,…). => Physics and simulation methods

NC Transport Enhanced and onset of ambipolar Er. =>

Impact on Fuelling and Transport:

Fuelling -> Pellets

Impurity Transport.

Dispersion Relation of waves and instabilities =>

Changes in AEs, GAMs,…

Page 5: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Outline

Motivation

Impurity transport

Plasma fuelling results

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confnement: Role of ECRH and

magnetic configuration

Innovative power exhaust scenarios using liquid metals

Conclusions

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 5

Page 6: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Avoiding Impurity Accumulation

Impurity accumulation is an issue in stellarators (NC effect in ion root)

Nevertheless, experiments w/o accumulation:

Mode HDH in W7-AS and

Impurity Hole in LHD.

Look for regimes without impurity accumulation:

- Revisit impurity hole

- 3D NC calculations predict that asymmetries in potential modify the

impurity flux.

M Yoshinuma et al. NF 2009

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 6

J. M. García-Regaña et al., PPCF 2013

GI = -nIL11

I n 'I

nI-ZIeEr

TI+dI

T 'I

TI

æ

èç

ö

ø÷

K McCormick et al. PRL 2002

Page 7: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Moderation of impurity accumulation in impurity hole plasmas

Electric field is negative

but small in Impurity

Hole conditions,

despite the large

grad(Ti).

Because of this, the

outward and inward

pinches are almost

balanced. Resulting in a

small inward impurity

flux.

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 7

GI = -nIL11

I n 'I

nI-ZIeEr

TI+dI

T 'I

TI

æ

èç

ö

ø÷

Additional terms could play a relevant role: turbulence, asymmetries,…

Empirical actuators to try to make Er more positive (less negative): ECRH.

J. L. Velasco et al., NF 2016, In press

Ion Root Impurity Hole

Nunami TH/P2-3

Page 8: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Potential Asymmetries influence Impurity Transport

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 8

- Impurities are more sensitive to Er than

bulk ions (charge state).

- An asymmetric first order potential

(usually neglected in NC calculations)

F1 is calculated using the EUTERPE

code.

F1 has effects on impurity transport:

reduce impurity accumulation in LHD.

- Calculated asymmetries pronounced in TJ-II: CAN BE DETECTED

GI = -nIL11

I n 'I

nI-ZIeEr

TI+dI

T 'I

TI

æ

èç

ö

ø÷

C6+ Flux in LHD with and without F1

J. M. García-Regaña et al., Submitted to PPCF 2016

Page 9: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Asymmetries of potential do exist in TJ-II

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 9

Poloidal/ toroidal potential variation in

the order of 10 – 40 V. M. A. Pedrosa et al., NF 2015

Poloidal / toroidal asymmetries decrease

when temperature decreases.

Page 10: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Empirical actuators: ECRH makes Er less

negative • ECRH: Er less

negative.

• The sign of Er

depends on density

and power.

• ECRH+NBI plasmas:

higher turbulence

level than in NBI.

• Dual HIBP: LRC

found (at r=0.6) in

potential but not in

Density or Bpol

fluctuations.

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 10

Influence of ECRH on fluctuation levels.

The influence of ECRH heating on the profile of total current fluctuation levels is illustrated in Fig. 3. In these studies HIBP-1 was in the radial scanning mode covering

the whole TJ-II plasma cross-section (from the low to the high field side region). The level of density plasma fluctuations is significantly increased from the deep core (rho ≈

0) up to edge (rho ≈ 0.8) in the ECRH phase.

The increasing in the level of fluctuations is due to the amplification of broad-band

fluctuations in the range 1 – 300 kHz and is empirically correlated with the peaking in the electron temperature profile while keeping plasma density roughly constant in the

ion root (negative radial electric field) regime. Thus, electron temperature driven instabilities (e.g. TEM) are candidates to explain the observed influence of ECRH on

TJ-II fluctuation levels.

It is interesting to note that previous experiments in the AUG tokamak [5] have shown

that the influence of ECRH power on the turbulence level is only observed close to the ECRH deposition location, whereas in the TJ-II stellarator the influence of ECRH on

the level of fluctuations is observed in the whole plasma cross-section.

Influence of ECRH on LRC

The amplitude of Long-Range-Correlations (LRC) increases for potential fluctuations

but not for density and poloidal magnetic fluctuations as shown in Fig. 4. Furthermore, LRC in plasma potential are dominated by low frequencies (< 20 kHz) with cross-phase

consistent with zero value in agreement with previous LRC studies using edge probes

[9]. These results are consistent with the development of ZF structures that are

!

Fig. 3 Influence of ECRH in fluctuation levels and LRCs in core plasma potential fluctuations (shot

41725) measured with HIBP-I in the scanning mode.

C. Hidalgo et al. EXC / P7-44

Page 11: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Outline

Motivation

Impurity transport

Plasma fuelling experiments and neutral dynamics

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confnement: Role of ECRH and

magnetic configuration

Innovative power exhaust scenarios using liquid metals

Conclusions

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 11

Page 12: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Fuelling plasma core in 3D devices

- Hollow density profiles

appear in 3D devices (also in

tokamaks) when Te high -->

Core Fuelling Difficulties.

- Injecting a pellet in TJ-II NBI

plasmas.

- Follow electron density

profile after injection using the

Thomson Scattering system.

- Set of reproducible

discharges.

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 12

H. Maaßberg et al. PPCF 1999

Page 13: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Fuelling plasma core in 3D devices

- Hollow density profiles

appear in 3D devices (also in

tokamaks) when Te high -->

Core Fuelling Difficulties.

- Injecting a pellet in TJ-II NBI

plasmas.

- Follow electron density

profile after injection using the

Thomson Scattering system.

- Set of reproducible

discharges.

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 13

Page 14: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Fuelling plasma core in 3D devices

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 14

-Core Plasma Fuelling in NBI

plasmas, despite outside

ablation.

- Pellet Injection as a tool for core fuelling

(NC transport afterwards understood in TJ-II) J. L. Velasco et al., PPCF 2016.

A. Dinklage. EX/P5-1 K.J. McCarhy. EX/P7-47

Page 15: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Pellet Injection & Relaxation of Potential Oscillations

• Experiments beyond core fuelling: Direct observation of

the Relaxation of Zonal Potential Oscillations.

• Damped oscillations of plasma potential well simulated by GK calculations of ZF relaxation in 3D systems.

• Oscillations in the freq. of ZFs. A. Alonso et al. Submitted, 2016

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 15

Page 16: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Outline

Motivation

Impurity transport

Plasma fuelling experiments and neutral dynamics

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confinement: Role of ECRH and

magnetic configuration

Innovative power exhaust scenarios using liquid metals

Conclusions

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 16

Page 17: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Stable plasmas in Mercier-unstable configurations

• Mercier Criterion in TJ-II: stable plasmas need positive magnetic well.

8/5

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 17

- Mercier criterion

applied in 3D devices

instability.

- Stable plasmas in

Mercier-unstable

configurations in TJ-II.

- No change in the

plasma size (no effect

of the rational).

- A stabilization

mechanism must exist

(self-organization

process).

A. M. de Aguilera et al. NF 2015 M

aeas

ure

d L

CFS

po

stio

n

Calculated LCFS postion

LHD: S. Sakakibara et al. PPCF 2008

Page 18: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Candidate to GAMs destabilised in TJ-II: driven by fast electrons or fast ions

• GAMs can couple with turbulence.

• Simulations: GAMs strongly damped at different temps. in TJ-II.

• Need an external drive to exist.

Sun Baojun et al. EPL, 2016

Acoustic Mode (Possible GAM)

destabilised by fast electrons.

Close to rational surfaces. Non-

linear interaction with islands.

Toroidal structure (n=1), different

from tokamaks.

E. Sánchez et al., PPCF, 2013

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 18

F. Castejón et al. PPCF, 2016

Also observed: GAM

destabilised by fast ions

Page 19: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Outline

Motivation

Impurity transport

Plasma fuelling experiments and neutral dynamics

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confnement: Role of ECRH and

magnetic configuration

Innovative power exhaust scenarios using liquid metals

Conclusions

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 19

Page 20: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

3/2 rational influences plasma flow and ñe

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 20

f (k

Hz)

300

250

200

150

100

50

0

15

10

5Int. P

ow

. (a

.u.)

Spectrogramofvperp

rms(vperp)

Time (ms)

Freq (kHz)

RMS Spectrum − Shot 29778 CH1

1100 1120 1140 1160 1180 1200 1220 12400

200

400Spectrogramofñe

rms(ñe)

a

b

c

d

e

f

g

OH driven current. Configuration scan:

introduce the 3/2 rational in the plasma core

in a single shot.

Doppler reflectometer measurements: the

flow changes twice direction when crosses

the rational.

Increase in the perpendicular flow fluctuations

(f< 50 kHz).

Synchronous: reduction in the density

fluctuation level.

Relation of Transport Barriers and rationals.

L-H Transition fostered

by rationals.

B. Van Milligen et al, Submitted,

López- Bruna et al. PPCF,2013,

2

FixedmagnePcconfiguraPon+OHcurrent

Theeffectofthe3/2magnePcislandonplasmaflowisexperimentallyinvesPgatedinohmicallyinducedmagnePcconfiguraPonscansusingDopplerreflectometry

Vacuum t≈1135 ms Ip=-4 kA

T. Estrada et al, EXC/P7-45

Page 21: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Outline

Motivation

Impurity transport

Plasma fuelling experiments and neutral dynamics

Innovative power exhaust scenarios using liquid metals

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confinement: Role of ECRH and

magnetic configuration

Innovative power exhaust scenarios using liquid metals

Conclusions

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 21

Page 22: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Alfvén Eigenmodes degrade Fast Ion Confinement. Mitigated by ECRH

J. Fontdecaba et al, In preparation

Mirnov Coil Spectra

CNPA spectral flux

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 22

K. Nagaoka, et al., NF 2013

• CNPA flux proportional to fast ion density.

• AEs degrade fast ion confinement.

• AE Mitigation by ECRH

• Depending on ECRH power Plasma profiles or

Modifying the damping by electron trapping

Page 23: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Controlling AEs by Modifying magnetic

configuration

Configuration dynamic scan (increasing

rotational transform and reverse:

We get chirping modes w/o ECRH at

given values of the rotational transform.

A. Melnikov, et al., Nucl. Fusion 2016

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 23

Chirping w/o ECRH in given

rotational transform windows

• The mode frequency decreases with Magnetic Well (Understood by STELLGAP calculations)

• AE appears at inner radii.

F. Castejón et al.,

PPCF, 2016

AEs and Magnetic Well

Magnetic Islands Change the Spectrum

Gap: MIAEs S. Baojun et al. NF, 2015

Page 24: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Outline

Motivation

Impurity transport

Plasma fuelling experiments and neutral dynamics

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confnement: Role of ECRH and

magnetic configuration

Innovative power exhaust scenarios using liquid metals

Conclusions

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 24

Page 25: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Innovative PFC and power exhaust: Liquid metal alloys (LiSn)

• Strong PWI in TJ-II.

• Experiments on TJ-II using liquid metals with a CPS.

• LiSn alloys tested: liquid limiter.

• Results:

Insertion of a LiSn sample w/o significant perturbation of the plasma

parameters.

Clean plasmas: relevant in 3D devices to avoid impurity accumulation.

Small H retention ( ~ 0.01% H/(Sn+Li) at T< 450º C),

• These results provide good perspectives for the use of liquid

LiSn alloys as a PFC in a Reactor (also stellarator reactor).

1

1.2

1.4

1.6

1.8

2

1080 1100 1120 1140 1160 1180 1200 1220

Zeff

4156241569

41573

41

55

9

time (ms)

F. L. Tabarés et al. PSI, 2016

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 25

Page 26: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Outline

Motivation

Impurity transport

Plasma fuelling experiments and neutral dynamics

Innovative power exhaust scenarios using liquid metals

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confinement: Role of ECRH and

magnetic configuration.

Conclusions.

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 26

Page 27: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Conclusions

• 3D Physics Relevant for tokamaks and Stellarators: NC transport and Er (Bulk Plasma & Impurities); Waves and Instabilities.

• Avoiding Impurity Accumulation: Understanding Impurity Hole.

• Potential Asymmetries have influence on impurity transport: Potential Asymmetries detected in TJ-II.

• Fuelling: Pellet injection as a tool for core fuelling, despite outside ablation (NC-effect in TJ-II).

• Stability:

Stable plasmas found in Mercier unstable configurations.

Candidates to GAMs found in TJ-II despite the expected large damping. Drivers: Fast ions and fast electrons.

• Effect of 3/2 rational on plasma flow and reduction of ñe.

• Fast Particle Physics: Controlling AEs using ECRH and magnetic configuration (rotational transform, magnetic well and magnetic islands).

• Innovative PFC power exhaust: LiSn alloys relevant for a reactor. (Not 3D-specific)

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 27

Page 28: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

CIEMAT Contributions to IAEA-FEC 2016

• F. Castejón et al. OV/5-1. “3D effects on transport and plasma control in the TJ-II stellarator”

• T. Estrada et al. EXC/P7-45. “Plasma Flow, Turbulence and Magnetic Islands in TJ-II”

• C. Hidalgo et al. EXC / P7-44. “On the influence of ECRH on neoclassical and anomalous

mechanisms using a dual Heavy Ion Beam Probe diagnostic in the TJ-II stellarator”

• D. López-Bruna et al. EX/P7-48. “Confinement modes and magnetic-island driven modes in the

TJ-II stellarator”

• K.J. McCarhy et al. EX/P7-47. “Plasma Core Fuelling by Cryogenic Pellet Injection in the TJ-II

Stellarator”

• E. de la Luna et al. EX/P6-11. “Recent results of High-Triangularity H-mode studies in JET-ILW”

• I. Palermo et al. FNS/P5-1. “Optimization process for the design of the DCLL blanket for the

European DEMOnstration fusion reactor according to its nuclear performances”

• H. Cabal et al. SEE/P7-4. “Exploration of of Fusion Power penetration under different Scenarios

using EFDA Times Energy Optimization model”

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 28

Page 29: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Back – up Slides

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 29

Page 30: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Chirping & Fast Ion Confinement

• Fast Ion

confinement is not

degraded in the

presence of

chirping.

• A key point is to

understand chirping.

ECH1 / 240 kW / 0.34

ECH2 / 240 kW / 0.42

NBI / 550 kW

ECH2

J. Fontdecaba et al, In preparation

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 30

Page 31: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

SOL affected by plasma edge conditions

• SOL properties and, hence, fuelling are not local.

• Experiments show that they are affected by edge conditions.

10

Figure 2. The floating potential profiles in ECRH plasma and NBI plasma

showing the shear layer. The error bar means the standard deviation of time

averaged value.

13

Fig. 5 Influence of plasma density on the ion saturation current measured at

r – rshear ≈ 3 cm in ECRH and NBI plasmas

• Potential in the SOL depends on plasma potential.

• SOLdensity depends on

plasma characteristisl. Wu Ting et al. Submitted to Nuclear Fusion.

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 31

Page 32: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Advanced Diagnostics: Dual HIBP

• Duplicated diagnostics: new physics.

• Dual HIBP: Collaboration with KHFTI & Kurchatov.

• Duplicated probes.

• Pellet Injector and Liquid Metal Limiter.

• Future: duplicate Doppler reflectometry in W7-X.

9

Figure 1. Experimental set-up: (a) Schematic view of TJ-II showing the

locations of two Langmuir probe systems, electrode, and limiter. (b)

Configuration of the tips on probe D and probe B. (c) The dual HIBP system.

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 32

9

Figure 1. Experimental set-up: (a) Schematic view of TJ-II showing the

locations of two Langmuir probe systems, electrode, and limiter. (b)

Configuration of the tips on probe D and probe B. (c) The dual HIBP system.

Pellet Injector

Page 33: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

TJ-II Pellet Injector

HFS LFS

- Hydrogen pellets (deuterium also possible). - Four lines-of-flight separated by 54 mm. - 4 pellet sizes available [3x1018 Ho (1), 8x1018 Ho (2), 1.5x1019 Ho (3) & 3 x1019

Ho (4)] with +/- 30% variation in mass. - Lightgate and Microwave Cavity provide timing (-> velocity) and mass signals.

- Injection velocities (800 to 1200 m/s) - propellant gas system.

K.J. McCarthy et al, Proc. Sci. (ECPD2015) 134

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 33

Page 34: 3D effects on transport and plasma control in the TJ-II … Nacional de Fusión Outline Motivation Impurity transport Plasma fuelling results Plasma stability studies Flows and electromagnetic

Laboratorio

Nacional

de Fusión

Effect of turbulence on neutrals: neutrals blobs

F. Castejón | 3D Geometry, transport and stability | 26th IAEA-FEC, Kyoto | 18 October 2016 | Page 34

667#nm#######728#nm#

5"

Two-dimensional imaging of edge ne with the He-ratio technique, t = 15 ms

LCFS

7 c

m

I667 I728

DI728% DneN%DI667%DI667

N%

5"cm"

"4"cm"

8"

DI728% DneN%DI667%DI667

N%

5"cm"

"4"cm"

8"

DI728% DneN%DI667%DI667

N%

5"cm"

"4"cm"

8"

DI728% DneN%DI667%DI667

N%

5"cm"

"4"cm"

8"

DI667N Dne

N Dn0*N

-0.3 -0.4+0.2

5cm

4cm

a)

≈ 0 for 40 < Te < 120 eV

Non-negligible