3d numerical simulation of the electric arc motion between ...ย ยท thermal plasmas 2 thermal plasmas...

17
3D numerical simulation of the electric arc motion between bus-bar electrodes M. Lisnyak 1 *, M. Chnani 2 , A. Gautier 2 , J-M. Bauchire 1 1 GREMI, UMR 7344, CNRS/Universitรฉ dโ€™Orlรฉans, 14 Rue d'Issoudun, Orlรฉans, 45067, France 2 Zodiac Aerospace, 7 Rue des Longs Quartiers, Montreuil, 93108, France *[email protected]

Upload: others

Post on 25-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

3D numerical simulation of the electric arc motion between bus-bar electrodes

M. Lisnyak1*, M. Chnani2, A. Gautier2, J-M. Bauchire1

1 GREMI, UMR 7344, CNRS/Universitรฉ dโ€™Orlรฉans, 14 Rue d'Issoudun, Orlรฉans, 45067, France 2 Zodiac Aerospace, 7 Rue des Longs Quartiers, Montreuil, 93108, France

*[email protected]

Page 2: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Thermal plasmas

2

Thermal plasmas characteristics:

๐‘‡๐‘’~104๐พ

Local Thermodynamic Equilibrium (LTE)

[1] M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas Fundamentals and Applications. Boston, MA: Springer USโ€ฏ: Imprint: Springer, 1994.

๐‘›๐‘’~1021 โˆ’ 1026๐‘šโˆ’3 and

Plasmas classification [1]: Thermal plasma applications:

Thermal plasma in nature:

Page 3: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

3

Objective

Bus-bars electrodes construction, dimensions: L~100 โ€“ 200 mm and h ~ 10 mm

Supplied with AC or DC currents in range 100 โ€“ 1000 A

Working conditions: 0.1 โ€“ 1 atm S

๐ต

๐‘ฃ

๐ผ

๐ผ

L

In case of fault the electric arc takes place and propagates along the electrodes.

Goal: to investigate arc propagation using numerical simulation

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 4: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

4

Mathematical description

๐œ•๐œŒ

๐œ•๐‘ก+ ๐›ป โˆ™ ๐œŒ๐’– = 0,

The system of MHD equations in the LTE approximation is solved for arc bulk plasma:

๐œ•๐œŒ๐’–

๐œ•๐‘ก+ ๐›ป โˆ™ ๐œŒ๐’–โจ‚๐’– = โˆ’๐›ป๐‘ + ๐›ป โˆ™ ๐œ‚ ๐›ป๐’– + ๐›ป๐’– ๐‘ป โˆ’

2

3๐›ป ๐œ‚๐›ป โˆ™ ๐’– + ๐’‹ ร— ๐‘ฉ,

๐œŒ๐‘๐‘๐œ•๐‘‡

๐œ•๐‘ก+ ๐’– โˆ™ ๐›ป๐‘‡ + ๐›ป โˆ™ ๐’’ = โˆ’๐’‹ โˆ™ ๐›ป๐œ‘ โˆ’ ๐‘„๐‘Ÿ๐‘Ž๐‘‘ , ๐’’ = โˆ’๐œ†๐›ป๐‘‡ โˆ’

5

2

๐‘˜๐‘‡

๐‘’๐’‹,

๐›ป โˆ™ ๐’‹ = 0, ๐’‹ = โˆ’๐œŽ๐›ป๐œ‘,

Arc column description and electrodes:

๐›ป ร—1

๐œ‡0๐‘ฉ = ๐’‹, ๐‘ฉ = ๐›ป ร— ๐‘จ.

๐œŒ๐‘ ๐‘๐‘๐›ป๐œ•๐‘‡๐‘ 

๐œ•๐‘กโˆ™ (๐œ†๐‘ ๐›ป๐‘‡๐‘ ) + ๐œŽ๐‘  ๐›ป๐œ‘

2 = 0,

In the electrodes:

๐›ป โˆ™ (๐œŽ๐’”๐›ป๐œ‘) = 0.

The system is solved with respect to variables: ๐’–, ๐‘, ๐‘‡, ๐œ‘, ๐‘จ in the arc plasma

and ๐œ‘ , ๐‘‡๐‘  , ๐‘จ in the electrodes.

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

๐›ป ร—1

๐œ‡0๐‘ฉ = ๐’‹, ๐‘ฉ = ๐›ป ร— ๐‘จ.

Page 5: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Arc model in COMSOL

Electric currents

Magnetic fields

He

at

tra

nsf

er

in

flu

ids

Laminar flow

๐’‹

๐’‹ ,๐›๐‹

๐’‹

๐‘ฃ

๐‘ฉ

Temperature

Electric conductivity ๐œŽ(๐‘‡)

Thermal conductivity ๐œ†(T)

Specific heat ๐ถ๐‘(T)

Viscosity ๐œ‚(๐‘‡)

Density ๐œŒ(๐‘‡)

5

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 6: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Calculation conditions

I 20

3

Ar [1 atm]

Power:

Direct current

I = 200 A Conditions:

Atmospheric pressure

Gas: argon

Electrodes:

Plane electrodes

made of copper

Initial conditions:

Stationary arc with,

fixed spots positions.

I

6 Initial conditions M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 7: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

7

Impact of the magnetic field

Te

mp

era

ture

(in

K)

dis

trib

uti

on

s

cathode

anode

0,5 ms 1 ms 1,5 ms

With external (from the electrodes) magnetic field(MF)

cathode

anode

0,5 ms 1 ms 1,5 ms

Without external (from the electrodes) magnetic field(MF)

Page 8: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

8

Arc displacement

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Arc temperature (in K) evolution with the time

Page 9: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

9

I = 1.5 kA peak, h = 20 mm, 60 000 fr/s

Experiment

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 10: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

11

[1] M.Lisnyak, M. Chnani, A. Gautier, J-M. Bauchire, โ€Behavior of a short electric arc between plane electrodes:numerical and experimental studyโ€, contributions to ICPIG congress, July 2017. [2] B. Swierczynski, J. J. Gonzalez, P. Teulet, P. Freton, and A. Gleizes, โ€œAdvances in low-voltage circuit breaker modelling,โ€ 2004.

Arc displacement velocity

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

[1]

[2]

Page 11: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Numerical aspects

Stabilization

Discretization:

Solver :

Convergence criteria: Mesh:

Calculation time:

โ€ข Linear or quadratic basic functions.

Streamline diffusion Crosswind diffusion

โ€ข Segregated (ฯ†,๐‘จ, ๐’–, ๐‘, ๐‘‡) Direct (MUMPS) and Iterative (GMERS).

12

โ€ข Laminar flow โ€ข Heat transfer in fluids

โ€ข Relative tolerance is 0.01.

โ€ข Number of DOF 106, refined near the electrodes with ฮ”xmax = 0.6 mm.

โ€ข 7 days with 8 cores, Xeon 3.2 GHz, 32 Gb.

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 12: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Summary

13

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

โ€ข COMSOL Multiphysicsยฎ allows to perform 3D time-dependent model of the electric arc.

โ€ข The good numerical stability for highly nonlinear problems is achieved.

โ€ข The calculation time is reasonable, that makes the model interesting for engineering applications.

โ€ข The physical aspects of the model corresponds to the experimental observations.

Page 13: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

14

Thank you!

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

For more details I would like to invite you to the poster 84.

Page 14: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Thermodynamic properties

Transport coefficients:

Plasma properties

Argon 1 atm

15

[1] K. C. Hsu, K. Etemadi, and E. Pfender, โ€œStudy of the freeโ€burning highโ€intensity argon arc,โ€ J. Appl. Phys., 1983.

Page 15: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Convergence control

Integration over external surface of the model: ๐œŒ๐‘ฃ โˆ™ ๐‘‘๐‘† โ‰… 0

๐œŒ๐‘ฃ โˆ™ ๐‘‘๐‘† = 2๐œ‹๐œŒ ๐‘ฃ๐‘ง

๐‘…

๐‘œ

๐‘Ÿ๐‘‘๐‘Ÿ + ๐œŒ๐‘… ๐‘ฃ๐‘Ÿ

โ„Ž

0

๐‘‘โ„Ž = 0

๐œŒ๐‘ฃ โˆ™ ๐‘‘๐‘† = ๐œŒ ๐‘ฃ๐‘ฅ๐‘›๐‘ฅ + ๐‘ฃ๐‘ฆ๐‘›๐‘ฆ + ๐‘ฃ๐‘ง๐‘›๐‘ง ๐‘‘๐‘† = 0

Where ๐‘›๐‘ฅ, ๐‘›๐‘ฆ , ๐‘›๐‘ง are normal vectors (directed externally to the surface),

R โ€“ model radius, h โ€“ model height

๐‘— โˆ™ ๐‘‘๐‘†๐‘๐‘Ž๐‘กโ„Ž๐‘œ๐‘‘๐‘’

= ๐‘— โˆ™ ๐‘‘๐‘†๐‘Ž๐‘›๐‘œ๐‘‘๐‘’

Mass conservation

Current conservation

16

Results Derived values Surface integration

In COMSOL MF

โ€ข 2 D case

โ€ข 3 D case

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 16: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

17

Fluxes calculations

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 17: 3D numerical simulation of the electric arc motion between ...ย ยท Thermal plasmas 2 Thermal plasmas characteristics: ~104๐พ Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

18

Arc โ€“ electrodes interaction

๐‘ž๐‘Ž = 5

2๐‘˜๐‘‡๐›ฟ๐‘๐‘™ + ๐ด๐‘“

๐‘—

๐‘’

Plasma near the electrodes is not in equilibrium.

Goal: To include plasma-electrodes interaction without implementing non-equilibrium plasma description.

Plasma โ€“ cathode interaction: spot mode on the cathode with the fixed radius [1, 2]: ๐‘…๐‘๐‘  = 1 ๐‘š๐‘š. temperature in the cathode spot is uniformly distributed [1]: ๐‘‡๐‘Ž๐‘ฃ = 3200 ๐พ.

Plasma โ€“ anode interaction: attachment is constricted (spot mode), ๐‘…๐‘Ž๐‘  = 0.8 ๐‘š๐‘š. anode heating is calculated according to:

[1] W. L. Bade and J. M. Yos, Theoretical and Experimental Investigation of Arc Plasma-generation Technology, 1963. [2] M. S. Benilov and A. Marotta, โ€œA model of the cathode region of atmospheric pressure arcs,โ€ J. Phys. Appl. Phys., vol. 28,

no. 9, p. 1869, Sep. 1995.

The current continuity is imposed between plasma and electrodes.

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017