3.pel 2 - peranti s.konduktor - diod.ppt

65
1 Chapter 2 DIODE EE201 SEMICONDUCTOR DEVICES

Upload: rasyid-ismail

Post on 28-Nov-2015

71 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

1

Chapter 2

DIODE

EE201 SEMICONDUCTOR DEVICES

Page 2: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Physical

Symbol

AnodKatod Katod Anod

N-type material is called Katod (K) P-type material is called Anod (A)

N P

a. Physical structure and symbol

Page 3: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

i. Anod is connected to positive supplyii. Katod is connected to negative supply

i.Forward bias

+ve

-ve

K A

+ve

-ve

K A

ON

When forward biased, current can flow through the diode

Like a switch is switched on.

Page 4: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

+ve

-ve

K A

Reverse bias:– i. Anod is connected to negative supplyii. Katod is connected to positif supply

+ve

- ve

K A

Suis OFF

Current cannot flow through the diode

Like a switch is switched off

ii.Reverse bias

Page 5: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

iii. I-V characteristic curve for silicon diode

VD

Forward voltage

IS (μA)

Reverse current

VSReverse voltage

ID (mA)

Forward current

Silikon – 0.7v

Brekdown voltage

Knee voltage

Page 6: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

a. Knee voltage(threshold voltage)

Voltage level where the increment of current happens. When the applied forward biased voltage reach the barrier voltage.

Knee voltage for diode Si – 0.7v

Ge – 0.3v

Page 7: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

b. Forward current(Id)(milliampere)

Amount of current that can be handled savely when the forward voltage is supplied

Measured in milliampere (mA)

Page 8: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Very small current or leakage current when the diod is reversed biased.

Measured in micro ampere (µA)

c. Reverse current (microampere)

Page 9: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

d. Breakdown voltage

Definition:-

Voltage level where the increment of reverse current happens (in microampere)

Big current value exceeds the breakdown level can burn the p-n junction and damage it.

Page 10: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

e. Burning Level (when Id, Vd exceeds P mak)

Power(P) that exceeds the max power of the diode during forward biased.

P maks is produced from Id and Vd, Vd is a constant

Normally P is represented by maksimum current (Id)

Page 11: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Difference between silicon and germanium diod

1. Knee voltage for diode Ge is 0.3V

2. Diode Ge need only a smaller forward biased voltage and let the current pass compared to diode Si (0.7V)

Page 12: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Difference between silicon and germanium diode

3. Forward current increment rate after exceeds the knee voltage is slower compared to forward current diode Si

4. Reverse current or leakage current for diode Ge is bigger compared to diode Si

Page 13: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Ideal diode concept

When diode operates, the characteristic inside the diode makes the analysis work of electronics circuits difficult. The characteristics are:-a. Barrier voltage

b. Forward current

c. Reverse current (leakage current)

Page 14: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

2. ZENERDIODE

Page 15: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Schematic symbol for zener diode

Operates in the reverse biased zone Diode zener voltage rate is from

2.4v to 200v with power rate 1/4w to 50w

Used to set a reference point for some of dc output voltage

Katod Anod

Page 16: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Vs Vd

Is

Id

Characteristic curve for zener diode

Breakdown voltage or zener voltage

(Vz)

Page 17: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Unregulated input voltage

R1

DzRegulated output

Usage :-

Stabilizing the output voltage even there is a change in input voltage

Voltage regulator / voltage stabilizer

Page 18: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Advantages of zener diode

1. AT the zener voltage level and beyond it, it able to conduct the high reverse current without damage.

Page 19: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Advantages of zener diode

2. AT the zener voltage level and beyond it, the voltage across the diode – constant and same as the zener voltage. Only change in the current value.

3. Operates in breakdown zone.

Page 20: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

3. Light Emitting Diode(LED)

Page 21: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

iv. Schematic symbol for LED

Katod

Anod

Page 22: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Characteristics of LED

1. Used as indicator

2. Like diode, LED operates when receives forward bias voltage. Electrons from N-type will combine with hole in P-type.

Page 23: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

3. Semiconductor – Silicon @ Germanium, this

combination will produce heat.

semiconductor – Galium Arsenide (GaAs), Galium Phosphate (GaP) or Galium Arsenide Phosphate (GaAsP), this combination will produce light

Characteristics of LED

Page 24: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

The light colours depends on the type of the material.

a.GaAs = infra red

b.GaP = red @ green

c.GaAsP = red @ yellow

Characteristics of LED

Page 25: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

TnSyed Jul06

Characteristics of LED

5. a. Operates at low voltage between 1 to 4V and let current 10 to 40mA flow.

b. Breakdow voltage – low, 3 to 5V

c. higher voltage or current can destroy the LED

d. the LED brightness depends on the current value

Page 26: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•RECTIFIERRECTIFIER

Use one or more diode

Cut ½ –ve cycle or ½ +ve cycle

Convert a.c. to pulses rippling d.c.

Page 27: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

Ripple d.c. output

a.c. component exist in d.c.

•A.c. input with lowered voltage

Page 28: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

3 types of rectifier:-

i. half wave

ii. Full wave

iii. Bridge

Page 29: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

i. Half wave rectifier

•Circuit

•V A.C

240v 50hZ

•D1

•RL

•Transformer •+

ve

•- ve

•+

•i/p •o/p

Page 30: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•+ve

•0

•+•D1

•A

•B

•+ve

•-ve

•+ve

•0

•D1 ON

•RL

•input ½ +ve

•Output ½ +ve

•Circuit operation

i. Half wave rectifier

•During ½ +ve cycle

Page 31: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•i. Terminal A is +ve, terminal B is – ve

•ii. Anod D1 gets +ve voltage

•iii.D1 in forward biased

•Circuit operation

i. Half wave rectifier

•During ½ +ve cycle

Page 32: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•iv. D1 let current pass through it.

•v. Voltage drop exist across RL

•iv. Voltage drop RL is the output voltage

i. Half wave rectifier

•During ½ +ve cycle

•Circuit operation

Page 33: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•+

•D1

•A

•B

•+ve

•-ve

•D1 OFF

•RL

•Input ½ -ve

•0

•+ve

•0

•- ve

•No output

i. Half wave rectifier

•During ½ -ve cycle

•Circuit operation

Page 34: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•i. Terminal A is -ve, terminal B +ve•ii.Anod D1 gets –ve voltage•iii. D1 in reverse biased

i. Half wave rectifier

•During ½ -ve cycle

•Circuit operation

Page 35: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•i. D1 blocks the current flow through it•ii.No voltage drop across RL because no current flow •iii. Output voltage is zero

i. Half wave rectifier

•During ½ -ve cycle

•Circuit operation

Page 36: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

Output voltage

• Occurs during positive half cycle only

• Voltage drop across diode is 0.7V (assume silicon diode) , output voltage is :-

Vo = Vi - 0.7

Page 37: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•+ve

•-ve

•D1 •A

•B

•RL

•Input

•output

•D1 ON

•D1 OFF

i. Half wave rectifier

Output voltage

Page 38: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

Output frequencySame as input:- 50Hz

•ExampleA half wave rectifier gets input voltage A half wave rectifier gets input voltage 20Vp-p, 50Hz. With the assumption that 20Vp-p, 50Hz. With the assumption that is no voltage drop across diode, calculate is no voltage drop across diode, calculate :- :-

i.i. Rectifier output voltageRectifier output voltage

ii.ii. Output frequencyOutput frequency

Page 39: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•D1

•RL

•+ve

•- ve

•+

•Example

•+10V

•-10V

•i/p •o/p

•Vm = 20Vp-p

• = 10Vp-p

•solution

•Output voltage = 10V

•Output frequency = input frequency

• = 50Hz

Page 40: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•12

v

•12

v •D1

•+ve

•- ve

•RL

•D2

•0v

•+

ii. Full wave rectifier

•V A.C 240v 50Hz

•Circuit

Page 41: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•D1

•+ve

•- ve

•RL

•+•0v

•+•0

•0

•D2

•D2

•+

•RL

•0v

•A

•D1

•D1 ON

•D2 OFF

•A

•B

•+•Switched On

•RL

•0v

•B•Switched Off

•Circuit operation •During ½ +ve cycle

Page 42: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

• Terminal A is +ve, terminal B is –ve

• D1 forward biased, D2 reverse biased

• Current can flow through D1 like a switch is switched on

•During ½ +ve cycle

ii. Full wave rectifier

•Circuit operation

Page 43: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

• D2 blocks current flow, switch off

• Current flow through D1, RL and return to terminal 0

• Voltage drop across RL

• Voltage drop across RL is the output voltage

•During ½ +ve cycle

ii. Full wave rectifier

•Circuit operation

Page 44: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•D1

•+ve

•-ve

•RL

•0v

•0

•+•0

•D2

•D2

•RL

•0v

•A

•D1

•D2 ON

•D1 OFF

•+•RL

•0v

•B

•Switch Off

•+

•A

•C

•B

•+

•During ½ -ve cycle

•Switch On

•Circuit operation

Page 45: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

• Terminal A is -ve, terminal C is +ve

• D2 forward biased , D1 reverse biased

• Current can flow through D2 like a switch is switched on

i. Full wave rectifier

•During ½ -ve cycle

•Circuit operation

Page 46: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

• D1 blocks current flow, switch off

• Current flow through D2, RL and return to terminal 0

• Voltage drop across RL

• Voltage drop across RL is the output voltage

i. Full wave rectifier

•During –ve ½ cycle

•Circuit operation

Page 47: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

• Occurs in both cycle

• Voltage drop across diod is 0.7V (assume silicon diode), output voltage is :-

Vo = VAB - 0.7

Output voltage

Page 48: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

Output frequency Double the input frequency :- 100Hz

•Example

A full wave rectifier with input voltage 20Vp-p, A full wave rectifier with input voltage 20Vp-p, 50Hz. Transformer with turns ratio 2 : 1. with 50Hz. Transformer with turns ratio 2 : 1. with assumption no voltage drop across diode, assumption no voltage drop across diode, calculate :-calculate :-

i.i. Rectifier output voltageRectifier output voltage

ii.ii. Output frequency Output frequency

Page 49: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•Vi = 20Vp-p• = 10Vp-p

•Solution

•Output frequency = 2 X input frequency = 100Hz•=

•VAC

•Vi

•Ns

•Np

•VAC •=•Ns

Np

•x Vm

•1•2

•= •x 10Vp

•= •5 Vp

•VAB •= •½ VAC•2.5 Vp•=

•So Vk = VBC

• = 2.5 Vp

Page 50: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•D1

•D3 •D2

•D4

•240VAC 50Hz

•Input voltage •Output

voltage

•Circuit

iii. Bridge rectifier

Page 51: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•D1

•D3 •D2

•D4

iii. Bridge rectifier

•A

•B

•Input voltage

•+

•0

•+

•Output voltage

•+

•0

•D1&D3 ON

•D2&D4 OFF

•+

•Circuit operation •During ½ +ve cycle

Page 52: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•D1

•D3

•A

•B

•Input voltage

•+

•0

•+

•Output voltage

•+

•0

•D1&D3 ON

•D2&D4 OFF

•+

iii. Bridge rectifier •Circuit operation •During ½ +ve

cycle

Page 53: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

iii. Bridge rectifier

Page 54: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

• Bridge rectifier

•During ½ +ve cycle

Circuit operation

Terminal A is +ve, terminal B is –ve

Anod D1 is +ve, Katod D3 is –ve

D1 and D3 forward biased.

Let current pass through

Page 55: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

• rectifier Tetimbang

•Ketika ½ cycle +ve

Kendalian Litar

Terminal A is +ve, terminal B is –ve

Anod D2 is -ve, Katod D4 is +ve

D2 and D4 reverse biased

Block current flow

Page 56: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•D1

•D3 •D2

•D4

•A

•B

•Input voltage •+

•Output voltage

•+

•0

•D2&D4 ON

•D1&D3 OFF•+

•0

iii. Bridge rectifier•Circuit operation •During ½ +ve

cycle

Page 57: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•D1

•D3 •D2

•D4

•A

•B

•Input voltage •+

•Output voltage

•+

•0

•D2&D4 ON

•D1&D3 OFF•+

•0

iii. Bridge rectifier•Circuit operation •During ½ -ve

cycle

Page 58: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

Terminal A is -ve, terminal B is +ve

Anod D2 is +ve, Katod D4 is –ve

D2 and D4 forward biased

Let current pass through

iii. Bridge rectifier•Circuit operation •During ½ -ve

cycle

Page 59: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

Terminal A is -ve, terminal B is +ve

Anod D1 is -ve, Katod D3 is +ve

D1 and D3 reverse biased

Block current flow

iii. Bridge rectifier•Circuit operation •During ½ -ve

cycle

Page 60: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•Vo = VA-B - 1.4V

Occurs in both cycles

At one cycle, voltage drop across 2 diodes

So, the total voltage drop is 1.4V (assume silicon diode),

Output voltage is :-

Output voltage

Page 61: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

Output frequency

•Output frequency = 2 X input frequency

Page 62: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

•A bridge rectifier with input voltage 20 Vp-p 50 Hz. A transformer with turns ratio 2:1. With assumption that no voltage drop across diodes, calculate:-

i. Output voltage rectifier

ii. Output frequency

•Question Question

Page 63: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

i. rectifier output voltage

•VinVin == 20Vp-p20Vp-p

•VA-B

•Vin

•== 10 Vp10 Vp

•=•Ns

•Np

•VA-B •= •Ns

•Np• x Vm

•xx 1010 Vp Vp•1

•2•=

•= •5Vp•Vout = VA-B

• = 5Vp

Page 64: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

ii. Frekuensi isyarat keluaran

•2 x input frequency

•= 100 Hz

Page 65: 3.PEL 2 - PERANTI S.KONDUKTOR - diod.ppt

SEKIAN

SEMOGA

BERJAYA

DAN

DIBERKATI