4 circuit characterization

60
4.1 4 Circuit Characterization 1. Linear Circuit Components ; R, L & C 2. Dominant Components in each -region(delay, voltage drop) 3. inverter DC & delay characteristics 4. R & C Model for MOSFET’s & wires MOS(internal) device capacitance Diffusion(external device ; source/drain) capacitance Routing capacitance, resistance 5. Gate delay input slope series-connected(stacked) MOSFET configuration : Penfi eld-Rubinstein model inverter stage ratio Contents

Upload: amaya-nguyen

Post on 03-Jan-2016

43 views

Category:

Documents


1 download

DESCRIPTION

Contents. 4 Circuit Characterization. 1. Linear Circuit Components ; R, L & C 2. Dominant Components in each w -region(delay, voltage drop) 3. inverter DC & delay characteristics 4. R & C Model for MOSFET’s & wires MOS(internal) device capacitance - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 4   Circuit Characterization

4.1

4 Circuit Characterization

1. Linear Circuit Components ; R, L & C

2. Dominant Components in each -region(delay, voltage drop)

3. inverter DC & delay characteristics

4. R & C Model for MOSFET’s & wires MOS(internal) device capacitance

Diffusion(external device ; source/drain) capacitance

Routing capacitance, resistance

5. Gate delay input slope

series-connected(stacked) MOSFET configuration : Penfield-Rubinstein model

inverter stage ratio

Contents

Page 2: 4   Circuit Characterization

4.2

6. CMOS 용 inverter & Power dissipation Static

dynamic

Short-circuit

Ring counter

7. High-Current Effects Power/Ground bounce

EM/ESD/EOS(Electro-migration/Electro-Static Discharge/Electrical Over-Stress)

Page 3: 4   Circuit Characterization

4.3

1. Linear Circuit components : R, L & C

Resistance CR) : ivR

v iR

i

R

vi=qv

V

t

V

t

VelocitySaturation

m

e

Em

eEav

VLav

2

aVav : mean time

between collision

Page 4: 4   Circuit Characterization

4.4

Capacitance(C) :

Inductance(L) :

i cdvdt

C1

V

v1

v2

i Advdt

1

i v

iC

v2

i Cdvdt

V L

ii

+ v -

dt

diLV

Page 5: 4   Circuit Characterization

4.5

2. Dominant components

V=Z • i (z = impedance)

I II III

c L

L

C1

R

Z() 1) region I : C dominates

2) region II : R dominates

3) region III : L dominates

Page 6: 4   Circuit Characterization

4.6

3. Inverter DC & delay characteristics

Role of inverter : 1. Signal buffering/transmission2. Logic function

10

1 0

0

load

seesaw rope seesaw

seesaw

seesaw balance rdendez-vous2 foods

Page 7: 4   Circuit Characterization

4.7

Inverter is composed of driver and load

VGS4(8V)

VGS3(6V)

VGS2(4V)

VGS1(2V)

triodelinear

driver(transistor) characteristics Load characteristics

i1 i2

VDS V12

G

D

S

i1RL

1

2

i2in

out

Page 8: 4   Circuit Characterization

4.8

Putting them together, KCL(Kirchoff’s Current Low) demands i1=i2

VDD

RL

Vo

Vi

i

VDD

i

I = (Vo-VDD)1

RL

Vo

Vi

<Output Characteristics>

<Transfer Characteristics>

RL increase

IdealVo

Vi

Page 9: 4   Circuit Characterization

4.9

Resistor, as a passive load, requires large silicon area.

RL(10K) = 100 R (100 / )

Active load is better for digital purposes.

Large area(100 s)

VDD

Vi

Vo

GND

Page 10: 4   Circuit Characterization

4.10

Problems with Enhancement load

1. Slow charge/discharge due to small load current

especially when Vo VDD

2. Vo cannot be raised higher than VDD-VT’

(VT’ : threshold voltage considering body effect)

A

Vi = 5V

Dynamic load line

B VDD-VT VDD

: Static load lineib

2V V VL DD T O

2 ( )

Vi = 0V

Q1

Q2

Page 11: 4   Circuit Characterization

4.11

i) Static Load Line : iL = iD

ii) Dynamic Load Line(due to load capacitance, CL)

charging(Q1 Q2) ;

iD = iL -

discharging(Q2 Q1) ;

iD = iL +

CdV

dtLo

CdV

dtLo

Magnitude of average charging/discharging current is given

as the area of AQ1Q2B

iL

iD

Vo

CL

VDD

Vi

Page 12: 4   Circuit Characterization

4.12

How to improve Inverter speed is how to increase charge/discharge current.

Sol. 1. Bootstrap method

Vi

VDD

Vo

T3

T1

T2X

CX

Q2

Q1

Q3

Vi=5V

Dynamic load line(due to CX)

Vi=0V

Static load line

i2

V 2V VL DD T o2

( )

VDD-2VT VDD

I

VO

Page 13: 4   Circuit Characterization

4.13

Sol.2 Depletion load method

Question) Why cannot one use depletion MOSFET as a logic element ?

VTD<0 VTD>0

ID

Depletionelement

Enhancementelement

0- +VG

VG=0V

ID

VG=0VVDD

VG=-1V

VG=-2V

VG=1V

VG=2V

Depletion type

Enhance-ment type

VG=2V

Page 14: 4   Circuit Characterization

4.14

Gate and Source terminals of Depletion device is tied together to suppr

ess the Vo-dependence of iL, i.e., iL=(0-VTD)2= VTD 2, acting like a c

onstant current source.

iL

iD

Vi

Vo

VDD Vi=5V

iL=(-VTD)2iD

Vi=0V

VDS(=V0)VDD

body 효과를고려한 부하선

Page 15: 4   Circuit Characterization

4.15

Speed comparison between R, E, D-load

C

it = 0

VDD

R iV V

RRDD:

E ib

2V 0 2V VE DD DD

2: ( . )

D iV

R0 V 0 4VD

DDDD: , .

V V

0.6R0.4V V VDD

DD DD

,VDD

R

i

VDD

R VDD

0.6R

D

D’R

E

VDD0.8VDD

Charging time vs. voltage

Eq.(1)

Eq.(2)

Eq.(3)

Page 16: 4   Circuit Characterization

4.16

E

D’

R

dtdV

VDD+VTD=0.4VD

VDD

VDD-VTE=0.8VD

dtdV

Ci=

eq(2) eq(1) 를 invert & integrate 한 curve

eq(3)

t0

t

Output voltage, V

V'

0 )V(i

dVCt

Page 17: 4   Circuit Characterization

4.17

최대전류값 (Vo=0 일때 ) 이 같도록 한 경우 , R, E, D - 부하 각각의

충전시간의 계산 ;

dt

dVC)V(i

V'

0

)V'(t

0 )V(i

dVCdtt

R-load

VDD

C

R)e1(VV(t) RC

t

DD

eq.(1)

Page 18: 4   Circuit Characterization

4.18

E-load :

C

VDD

iE(v)v

dt

dVC=V)-V-(V

2)V(i 2

TEDDE

2DD )V(0.8V

dV=dt

2C

t1

0.8V V

1

0 8VDD DD

(.

)

V 0 8V 10.8V

t +0.8V

DDDD

DD

. ( )

eq.(2)

D-load : t 0 4V CV

R0 4RC0 DD

DD . /( ) .

-1

0.4VDD<V<VDD 에서는 0.6R 의 저항을 통한 충전 :

V 0 4V 0 6V 1 expt t

0.6RCDD DD0. . [ ( ) eq.(3)

Page 19: 4   Circuit Characterization

4.19

Inverter delay()

정의 ) = 한 inverter 가 같은 size 의 연결된 inverter 의 입력전압을

방전시키는 시정수

Cg

RL

RD Cg

SW1

SW2

k

RD

Cg

RL

Cg

RL : depletion 소자 등가저항

RD : driver 의 등가저항

k (W / L)load

(W / L)driver; inverter ratio =

1

4

inverter ratio k is determined as 4, from the following static consideration

DDDD

DD

LD

TDTEinV V

VV

VVV 5.0

1/4

6.02.0

/

Page 20: 4   Circuit Characterization

4.20

Inverter chain 에서의 충전시정수는 k=4,

방전시정수는 로 주어지며 , fanout 이 n 이거나 부하용량이

CL=mCg 인 경우 , 충방전 시정수는 각각 m 배 !

v1 v2 v3

v1

v2

v3

Page 21: 4   Circuit Characterization

4.21

Effective load capacitance, CL = CS+ Cgs +2 Cgd >> Cg

Cs

Cgs

mCgd Av: inverter 전압이득

m=1-Av

Miller capacitanceCgd BA

VAv V (1-Av) V ; effective voltage change

Effective capacitance =

( )

( )1

1A V C

VA CV gd

V gd

Total charge change

input voltage change

Miller factorFor digital inverter(1-Av) => 2

Page 22: 4   Circuit Characterization

4.22

4. R & C Models for MOSFET’s & wires

)(

exp35.0 frompoutpd

PDfDDDD CCR

tVV

135.0

1ln ),(

35.0

1ln)(

poutpdpoutpdPDf CCRCCRt

Transistor as R

Page 23: 4   Circuit Characterization

4.23

B

S

G

CGS

D

CGD

CDBCSB

CGB

MOSFET Capacitance

CGB

CGS

CGD

CG(total)

off

0

0

0

non-sat.

0

sat.(short-channel)

0depOX CC ||

OXC2

1

OXC2

1

OXC

)9.0(3

2OXOX CC

)1.0(0 OXC

)(3

2OXOX CC

MOSFET: 4-terminal device

i) Gate capacitance

0.5

2/3

off sat. lin. VGS

CGB

CGS

CG=CGS+CGD+CGB

CGDC[COX]

Page 24: 4   Circuit Characterization

4.24

MOSFET parastic capacitance(=junction cap.+overlap cap.)

Page 25: 4   Circuit Characterization

4.25

ii) Junction capacitance

junction) edge channel(

junction) sidewall(

junction) (bottom

BSJGATE

BSSW

BSJBS

C

C

CC

JmBBSJSBSJ VCAC )/1( 56.0 :ex Jm

SJWmBBSJSWSBSSW VCPC )/1( 52.0 :ex JSWm

Sidewall junction is more abrupt

Page 26: 4   Circuit Characterization

4.26

iii) Overlap capacitance(due to lateral diffusion)

DeffGSOeffGBOV

DeffGSOeffGDOVGSOV

LLLCLC

WWWCWCC

2 ,

2 ,

Page 27: 4   Circuit Characterization

4.27

Capacitance, Conductance values(typical) for SPICE

DS

DSds

BS

DSmb

GS

DSm V

Ig

V

Ig

V

Ig

, ,

Page 28: 4   Circuit Characterization

4.28

iv) Routing Capacitance

S W

t

Cp

Cf

CswCp: fringing cap.

Csw: sidewall cap.

Cp: planar cap.

Cf

Csw

Cp

For high-(t/w), multi-bit bus, Csw dominates.

W(=S)

Assume t=const

Page 29: 4   Circuit Characterization

4.29

Distributed RC line

R = r dx (r:resistance per length)

C = c dx(c:capacitance per length)

CdV

dt

V V

R

V V

Rj j j j j

1 1

rcdVdt dx

V V Vd Vdxj j j

122 1 1

2

2( )( ) : Diffusion equation

2);( kxtt

xfV x (tx : time for propagating distance x)

R R R R

C C C

Vj-1 Vj Vj+1

Page 30: 4   Circuit Characterization

4.30

Frequency domain solution of the distributed RC line to unit step input is

SRCS

LsVout

cosh)(

RCtt

RCerfctVout ,

4)(

1 1 2 0 9 .36 exp( .54 / ) .37exp( .46 / ),t RC t RC t RC

as cosh(x) =e ex x

2

ex

x

21,

12 4

12 4

x x

x! !

,

Page 31: 4   Circuit Characterization

4.31

Distributed vs. Lumped

Time elapsedTime elapsed

Distributed LumpedLumped

0 - 90%

0 - 63%

0 - 10%

0 - 90%

0 - 63%

0 - 10%

RC

0.5RC

0.1RC

RC

0.5RC

0.1RC

2.3RC

RC

0.1RC

2.3RC

RC

0.1RC

R

C

R

C(Distributed) (Lumped)

Vout

DL

time

Page 32: 4   Circuit Characterization

4.32

Characteristic of Diffusion : tx kx2

For t=410-15 2[ in m]

I) with buffer

tp = 8ns + buf

ii) without buffer

tp = 16nsbuffer

1mm 1mm

x1 2 3 40

t=1t=4

t=9t=16

Page 33: 4   Circuit Characterization

4.33

5. Gate Delay tT = tD + ti + tslew, tslew = rslew CL

tD : internal delay of the cell

ti = delay due to the intrinsic output capacitance

rslew : output slew rate [ns/pF]

CL : load capacitance for each output

tD = tD,O Kt Kv Kp

processprocess KpKp

Slow

typ.

fast

Slow

typ.

fast

1.34

1.00

0.72

1.34

1.00

0.72

input

output tD ti

tslewEx. tQ=1.39+0.83+1.63CL

KV Kt

VDD3.0 3.3 3.6 -30 RT +90

Page 34: 4   Circuit Characterization

4.34

input slope dependence

t tn

tf f o r in

, ,

1 26

(n = , : input rise time)VV

Tn

DD

tr in,

t tp

tr r o f in

, ,

1 26

(p = , : input fall time)V

VTP

DD

tf in,

Page 35: 4   Circuit Characterization

4.35

Series-connected(stacked) MOSFET Configuration

Penfield-Rubinstein model : t R Cd ii

i

Ri : Summed resistance from i to power/ground

Ci : Capacitance at point i

td = R1C1 + (R1+R2)C2 + (R1+R2+R3)C3 + (R1+R2+R3+R4)C4

= R1(C1+C2+C3+C4) + R2(C2+C3+C4)+R3(C3+C4)+R4C4

Elmore delay model

A

B

C

D C1

C2

C3

N1

N2

N3

N4C4

Page 36: 4   Circuit Characterization

4.36

Elmore delay

TAB = R1(C2+C3+C4 +C5 +C6 +C7 +C8 +C9 +C10)

+R2( +C3+C4 +C5 + C6 +C7 +C8 +C9 +C10 )

+R3( +C4 +C5 + C6 +C7 +C8 +C9 +C10)

C2

2C3

2

TBD = R4( +C7 +C8 +C9)

+R7( +C9)

24C

27C

TBE = R5( +C6 +C10)

+R6( +C10)

C5

2C6

2

Page 37: 4   Circuit Characterization

4.37

Delay Modelling

i) 50%-50% delay : for multiple levels of static logic circuit

Page 38: 4   Circuit Characterization

4.38

ii) 10%-90%(90-10) delay : rise time(fall time)

: for precharged dynamic circuit

Page 39: 4   Circuit Characterization

4.39

Delay model of interconnection driven by Rtr & terminated by CL

T90% = 1.0RintCint + 2.3(RtrCint+

RtrCL+ RintCL)

Rint

Cint

Rtr

CL

Page 40: 4   Circuit Characterization

4.40

Inverter Stage Ration

Driving large C load using graded inverter chain

CLCg

f2 fNf1

Q. Determine the scale-up factor, f

minimizing total delay time for driving CL from Cg

Page 41: 4   Circuit Characterization

4.41

A. mumber of inverters, N is given by

Total delay is Nf, which is to be minimized.

Total delay = =

* In real situation, f could be much larger than 2.7 to reduce the chip area consumption

fCC

N L

g

=Y, i.e., N=

n

n

Yf

fromNff

Yf

ffn

n

( )( )

n

n

f ff

f

1

02( ) nf f e1 2 7.

Ne eCCn

L

g

Page 42: 4   Circuit Characterization

4.42

6. CMOS Inverter & Power Dissipation

Static Transfer Characterictic

I

PMOS

NMOS

Vi Vo

VDD

G

G

D

D

S

S(VSS or GND)

0 VTN

VDD- VTD

VDDVDD

2

VDD

Vo

A B D E

C

Vi

Region A

Region B

Region C

Region D

Region E

NMOS

cutoff

sat

sat

linear

linear

PMOS

linear

linear

sat

sat

cutoff

Static powerdissipation

Page 43: 4   Circuit Characterization

4.43

Adjustment of VTN, VTP

i) VTN + VTP < VDD-VSS : static current flows

ii) VTN + VTP = VDD-VSS : ideal case

iii) VTN + VTP > VDD-VSS : hysteresis

Both are off0 VDD

VTN

VTP

PMOS NMOS

VoVi

VTN

Vi

VDD-VTP

VoVo

Vi

Page 44: 4   Circuit Characterization

4.44

Influence of PN asymmetry on the transfer characteristics

Vi

Vo

VDD

1p

n

infinite transfer gain 0.1 10

ideal zero output conductance

Page 45: 4   Circuit Characterization

4.45

Power Consumption

i) dynamic power dissipation

ni

pi

LC

VoVi

t=0 pt2ptVi

Vo

Ptp

in t V dttp

i t V V dtdyn o p DDtp

tptp

o 1 1

20

2 ( ) ( )( )

i t CdVdtn L

o( ) Substituting, and i t CdVdtp L

o( )

PCtp

V dVCtp

V VdynL

o O

V L

V DD o

DD

DD

0

0( )

C V

tpC V fL DD

L DD2

(f : switching frequency)

eq.(1.11)

Page 46: 4   Circuit Characterization

4.46

Energy stored in CL charged up to VDD is

C VL DD2

Q V dV C vdV C VL

V V

L DD

DD DD

( ) 0 0

212

from eq.(1.11), switching energy consumed per cycle is

where did 12

2C VL DDgo ?

Page 47: 4   Circuit Characterization

4.47

Modelling of resistive dissipation in ideal switch

replace MOSFET by ideal switch in serial with a resistance, R

i) In Vo’s going up ;

Vo

LC

R

R

i

VDD

E i Rdt i RCdV

CdVdt

diss

t

L

V o

Lo

DD

,

( )1

2

0

2

0

1

RC idv RCV V

RdVL o L

DD oVV

o

DDDD

00

12

2C VL DD (indep. of R!) ; energy dissipated

in R as Vo is being raised from 0 to VDD

Page 48: 4   Circuit Characterization

4.48

ii) In Vo’s going down

LCR

i

E i Rdt i RCdV

CdVdt

diss t

t

LV

o

Lo

p

DD,

( )2

2 20

1

RC idV RCVR

dVL o Lo

VV oDDDD

00

C V dVC

VL o o

V LDD

DD

0

2

2

Energy dissipated in R as CL is being discharged

LC

R

R

lose 1/2

lose 1/2store 1/2

VDD

VDD

GND

Page 49: 4   Circuit Characterization

4.49

iii) Short-circuit dissipation

ref. H.J.M. Veendrick, “Short-circuit dissipation of static CMOS…”

IEEE J. Solid-state Circuits, Vol. SC-19, Aug, 1984. Pp 468-473

assumption: CL = 0

VDD

Vi Voi

i

imax

iav

Vi

VDD

VDD-|VTP|

VDD/2

VTN

r f

T

(A) (B)

t1 t2 t3t=0

Page 50: 4   Circuit Characterization

4.50

For simplicity, assume , t = tr = tf and VT = VTN = -VTP

(waveform (A) = waveform(B), (A) is symmetric w.r.t t = t2 )

setting

IT

i t dtav

t

t

1

1

2

( ) i t v t Vi T( ) ( ( ) ) 2

2

2,,)( 21

tV

VtV

ttV

DD

TDDi

IT

i t dtT

Vt V dtav

t

tDD

TVV

T

DD

1 2

1

2

2

2

( )

2 2 1

3 2

12

2

2

0

2

2 3

3

Tu

Vdu

T VV

V

T

V V

V

DD

VV

DD

DDT

DD T

DD

DDT

uV

t VDDT

pn

Page 51: 4   Circuit Characterization

4.51

Short-circuit current waveform with finite CL obtained from SPICE

CL=0CL=200fF=2x10-13F

CL=500fF

CL=1pF

CL=

ISC

200A

VDD - |VTP|

VTN

time(nsec)

time(nsec)

0.8 2 3 4 5

CL

=n=p=170 A/V2

Vt=Vtn=|Vtp|=0.8V

Page 52: 4   Circuit Characterization

4.52

outputvoltage

CL=0CL=500fF

CL=1pF

time(nsec)PT=Pdyn+ PSC

=20ns

=10ns

=5ns

=1ns

total dissipation(PT)ln PT

ln C*

dynamic dissipation limit

ln CL

: input voltage rise time

PdynPSC

(sec)

For a load capacitance C*, = 5ns in near optimal input transient

C P P

P P

L dyn sc

i sc dyn

: ,

: ,

Page 53: 4   Circuit Characterization

4.53

I

i1C

i1d

i2C

i2d

i3C

i3d

i4C

i4d

i5C

i5d

VDD

V1 V2 V3 V4 V5

VO

Cg

C) Ring counter for measuring gate delay

Page 54: 4   Circuit Characterization

4.54

i1C i1d

i2C i2d

i3C i3d

i4C i4d

i5C i5d

g g = T / NT

Total discharge current at I-meter

2g

Power-delay product per gate=energy consumption per switching=QVDD=CgVDD

2=(VDDIDCT/N)*2

)2( gDCDD IV

Page 55: 4   Circuit Characterization

4.55

7. High-current Effects

Electro-migration: directional movement of charge carriers(DC current)

– causes deformation, breakage of conductor, occurs at the constriction point.

– ex) fuse(positive use of EM effect)

depending on current density, temperature, and crystal structure

limiting current: 2mA/m2

– rule of thumb: use 0.4-1.0mA/ m2 for VDD & VSS

Page 56: 4   Circuit Characterization

4.56

Power & Ground Bounce temporary level change in the power and ground voltag

e due to sudden change of charging/discharging current

called simultaneous switching noise, I-noise, dI/dt noise

due to iR and/or L di/dt drop in the power/ground rail

originates from large current drivers such as clocking buffer, I/O buffer

Page 57: 4   Circuit Characterization

4.57

Power-distribution path in IC and the electrical model

Page 58: 4   Circuit Characterization

4.58

Simplified electrical model of a CMOS chip

Page 59: 4   Circuit Characterization

4.59

8. Technology scaling(Constant E-field scaling)

Page 60: 4   Circuit Characterization

4.60

공부를 하고 학위를 받는 것의 가장 큰 의미는 무슨 일을 못하거나 (능력 ) 안하는데 (태도 ) 대한핑계를 제거 해 준다는 것이다 .

공부를 하고 학위를 받는 것의 가장 큰 의미는 무슨 일을 못하거나 (능력 ) 안하는데 (태도 ) 대한핑계를 제거 해 준다는 것이다 .

배수진배수진