4. crystal structure

31
7/28/2019 4. Crystal Structure http://slidepdf.com/reader/full/4-crystal-structure 1/31 Solid State Physics Introduction to Crystal structure Free e Fermi gas Energy bands Magnetic properties e  confinement (quantum, nano devices) Superconductivity

Upload: mudit-singh

Post on 03-Apr-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 1/31

Solid State PhysicsIntroduction to

Crystal structureFree e Fermi gas

Energy bands

Magnetic properties

e confinement (quantum, nano devices)

Superconductivity

Page 2: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 2/31

 Physics?

Page 3: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 3/31

Basics

Crystal Periodic array of atoms

Lattice Periodic array of points in space

Basis Group of atoms attached to each lattice

point or each elementary

parallelepiped

Lattice + Basis Crystal structure

Platinum (STM image)NaClInsulin

Page 4: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 4/31

Bravais Lattice

 An infinite array of discrete points with anarrangement and orientation that appearsexactly the same, from any of the points thearray is viewed from.

 A three dimensional Bravais lattice consists of all points with position vectors R that can bewritten as a linear combination of  primitivevectors. The expansion coefficients must beintegers.

Page 5: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 5/31

 A protein molecule

1 2 3If we can write r r n a n b n c

, , fundamental translation vectorsa b c

Page 6: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 6/31

Primitive Unit Cell

 A primitive cell or primitive unit cell is a volume of 

space that when translated through all the vectors in aBravais lattice just fills all of space without either 

overlapping itself or leaving voids.

 A primitive cell must contain precisely one lattice point.

Primitive lattice cell

Parallelepiped defined by a, b, c 

= unit cell = minimum volume cell 

Page 7: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 7/31

Primitive cell (examples)

Page 8: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 8/31

Wigner-Seitz cell

Page 9: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 9/31

Wigner-Seitz primitive cell: 3D

f

Page 10: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 10/31

Fundamental types of lattices

Crystal lattices can be mapped intothemselves by the lattice translations T and byvarious other symmetry operations.

 A typical symmetry operation is that of rotation

about an axis that passes through a latticepoint. Allowed rotations of : 2 π, 2π/2,2π/3,2π/4, 2π/6

(Note: lattices do not have rotation axes for 1/5, 1/7 …) times 2π 

T Di i l L i

Page 11: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 11/31

Two Dimensional Lattices

Th Di i l L i T

Page 12: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 12/31

Three Dimensional Lattice Types

Page 13: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 13/31

 Dimensions

F t B i L tti

Page 14: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 14/31

Fourteen Bravais Lattices … 

C bi l tti

Page 15: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 15/31

Cubic space lattices

C bi l tti

Page 16: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 16/31

Cubic lattices

BCC t t

Page 17: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 17/31

BCC structure

P i iti t BCC

Page 18: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 18/31

Primitive vectors BCC

El t ith BCC St t

Page 19: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 19/31

Elements with BCC Structure

FCC l tti

Page 20: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 20/31

FCC lattice

P i iti C ll FCC L tti

Page 21: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 21/31

Primitive Cell: FCC Lattice

Page 22: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 22/31

 Structure

Crystal planes probing them

Page 23: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 23/31

Crystal planes – probing them

XY

1

2

a

Coherent incident light Diffracted light

Path difference XYbetween diffracted

beams 1 and 2:

sin = XY/a

XY = a sin  

For 1 and 2 to be in phase and give constructiveinterference, XY = , 2, 3, 4…..n 

so a sin = n where n is the order of diffraction

Constructive Interference

Page 24: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 24/31

Beam 2 lags beam 1 by XYZ = 2d sin  

so 2d sin = n  Bragg’s Law 

X

Y

Z

d

Incident radiation “Reflected” radiation

Transmitted radiation

1

2

Constructive Interference

Miller indices of lattice plane

Page 25: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 25/31

Miller indices of lattice plane The indices of a crystal plane (h,k,l) are defined to be

a set of integers with no common factors, inversely

proportional to the intercepts of the crystal plane alongthe crystal axes:

Indices of Planes: Cubic Crystal

Page 26: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 26/31

Indices of Planes: Cubic Crystal

Page 27: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 27/31

 indices

Some planes

Page 28: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 28/31

Some planes

Use of Miller indices

Page 29: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 29/31

Where does a protein crystallographer see the Miller 

indices?

• Common crystal faces areparallel to lattice planes

• Each diffraction spot can be

regarded as a X-ray beam

reflected from a lattice plane,

and therefore has a unique

Miller index.

Use of Miller indices

Simple Crystal Structures

Page 30: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 30/31

Simple Crystal Structures

There are several crystal structures of common

interest: sodium chloride, cesium chloride, hexagonalclose-packed, diamond and cubic zinc sulfide.

Each of these structures have many different

realizations.

References

Page 31: 4. Crystal Structure

7/28/2019 4. Crystal Structure

http://slidepdf.com/reader/full/4-crystal-structure 31/31

References

 A. Beiser  – “Concepts of Modern Physics”, 6 Ed., Tata

McGraw-Hill (New Delhi, 2003)

Charles Kittel – “Introduction to Solid State Physics”, 7

Ed., John Wiley and Sons (New York, 1996)

www.wikipedia.org