4. lisbeth olsson biochemical conversion 2017-03-28 · 2017. 4. 12. · [email protected]...

15
INDUSTRIAL BIOTECHNOLOGY Lisbeth Olsson Industrial biotechnology, Chalmers

Upload: others

Post on 26-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • INDUSTRIAL BIOTECHNOLOGY

    Lisbeth OlssonIndustrial biotechnology, Chalmers

  • INDUSTRIAL BIOTECHNOLOGY

    Industrial Biotechnology Department of Biology and Biological Engineering

    Chalmers University of Technology Göteborg, Sweden

    [email protected]

    Bioethanol and bioproducts for the bio‐based economy – development of robust 

    cell factories and robust processes

    Maurizio Bettiga, Carl Johan Franzén, Johan Larsbrink, Lisbeth Olsson 

  • INDUSTRIAL BIOTECHNOLOGY

    Enzymatichydrolysis

    Product

    Fermentation

    Enzymediscovery and design

    Propagation Cell factory 

    Fermentable sugar stream

    Raw material stream containing mono‐, oligo and polysaccharides, lignin, inhibitors (furans, weak acids and phenolics)

    Process integration and optimization

    Biochemical conversion of biomass

  • INDUSTRIAL BIOTECHNOLOGY

    Robust microorganisms and processes ?• Microbial processes receive more and more industrial importance in line with bio‐based economy solutions

    • Understanding and ability to improve robustness increase the industrial potential for microbial conversion

    • Developing robust process allow for maximum utilization of the potential of the production host 

    4

    Robustness, the ability to maintain performance in the face of perturbations and uncertainty, is a long‐recognized key 

    property of living systemsStelling J et al. (2004) Cell 118:675‐685

  • INDUSTRIAL BIOTECHNOLOGY

    Enzymes

    • Biological catalysts• Act on specific chemical bonds

    • Has a certain size

  • INDUSTRIAL BIOTECHNOLOGY

    6

    Process robustness

    Koppram, R., E. Tomas‐Pejo, Elia, C. Xiros, L. Olsson (2014) Trends in Biotechnology, 32, 46‐53

  • INDUSTRIAL BIOTECHNOLOGY

    Multi‐feed SSCF – Process design

    7

    • Fed‐batch SSCF with feeds of solids, yeast, (and enzymes)

    • Integrated yeast propagation and adaptation 

    Koppram and Olsson, Biotechnol Biofuels 2014, 7:54, Wang et al., Bioresource Technol 2014, 172:303‐311Wang et al Biotechnol Biofuels 2016, 9:88

    SSCF

    Liquidfraction

    Cell Feed

    SolidsFeed

    Continuous yeast cultivation

    Pretreated wheat straw

    Enzymes

    Strategies for more robust processes

  • INDUSTRIAL BIOTECHNOLOGY

    8

    Ethanol yield: 56%Ethanol yield: 13%

    20 % WIS SpruceBatch SSF                                   Multi‐feed SSF

    Koppram and Olsson, Biotechnol Biofuels 2014, 7:54

    Multi‐feed SSF improves mixing and reduces inhibition of hydrolysis and fermentation

    Strategies for more robust processes

  • INDUSTRIAL BIOTECHNOLOGY

    30

    40

    50

    60

    70

    Max

    imal

    EtO

    H ti

    ter

    9

    > 20% WIS

    Model‐based feed of solids

    Flocculating cells

    New material, more hydrolysate in propagation, temperature decrease

    Quicker feed of solids, more hydrolysate in SSF (strain 1 and 2)

    15% WIS A

    B

    C

    D

    E

    F

    Initial enzyme, cell feed

    Enzyme feed, Initial cell 

    Multifeed SSF allowsfor improved highgravityfermentations – highcell viability is a key

    Strategies for more robust processes

  • INDUSTRIAL BIOTECHNOLOGY

    From sugar to polymers using cell factories

    Microbial conversion –development of microbial catalyst

    Sugar rich biorefinerystreams

    Polymeric building Polymeric building blocks; 3‐hydroxy propionic acid, lactic aid, adipicacids 

    Using strain engineering we develop the microorganism to:• Produce the targetted product at high yield and productivity• Being robust to industrially prevailing conditions

  • INDUSTRIAL BIOTECHNOLOGY

    11Inhibitors influence cellular functions in numerous ways

    Cellular robustness

  • INDUSTRIAL BIOTECHNOLOGY

    12

    Reduce uptakeEnhance excretion

    Reduce damage

    Enhance repair

    Enhance conversion (detoxification)

    Strain improvement strategies for increased cellular robustness should enable functions including

    Cellular robustness

  • INDUSTRIAL BIOTECHNOLOGY

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 5 10 15 20 25 30

    8 μmol glutathione/(g DCW)

    Concen

    tration (g/l)

    Time (h)

    ETHANOL‐CONTROL STRAIN

    ETHANOL‐GSH STRAIN

    Ask et al. (2013) Microbial Cell Factories 12:8713

    Fermentation performance of glutathione modulated strains

    12 μmol glutathione/(g DCW)

    Cellular robustnessReduce damage and increase repair

  • INDUSTRIAL BIOTECHNOLOGY

    Robust processes and cellular robustness in a biorefinery perspective

    14

  • INDUSTRIAL BIOTECHNOLOGY

    15

    Thanks to ….Industrial Biotechnology group members

    Our research within cellular robustness process robustness was funded by

    … and collaborators