4. thermal radiation-tzxcum

Upload: muhammad-awais

Post on 04-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    1/22

    Technische Universitt Mnchen

    Oxy-Coal Flame Radiation Characteristics

    Pedro Dias, M.Sc.

    RELCOM Open Workshop

    13thJune 2012

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    2/22

    Technische Universitt Mnchen

    Content

    1. Introduction

    2. State of the art

    3. RELCOM project

    4. Summary

    29.06.2012 2

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    3/22

    Technische Universitt Mnchen

    Introduction

    2.5 3 3.5 4 4.5 5 5.50

    5000

    10000

    15000

    Wavelength [m]

    Intensity[W/(m

    mSr)]

    Air combustion

    Oxyfuel 70% reci.

    900C

    1000C 1200C

    600C

    700C

    800C

    1100C

    29.06.2012 3

    Comparison between Oxyfuel and air combustion

    Natural gas

    70% wet recirculation

    Gases participate more in radiation

    Band overlapping behaviour changes

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    4/22

    Technische Universitt Mnchen

    Two different approaches in literature:

    Modified standard Weighted Sum of Grey Gases Model (WSGG)

    3-4 equations for spectral modelling

    Pros/Cons:

    + Standard model for gas radiation in CFD Software

    - Accuracy when compared with other model

    Implement more detailed Exponential Wide Band Model (EWB)

    1 equation for each Wide Band

    Pros/Cons:

    + Calculation of band overlapping more exact

    - more equations than WSGG

    - Implementation in CFD codes problematic

    Modelling oxyfuel gas radiation state of the art

    Introduction

    29.06.2012 4

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    5/22

    Technische Universitt Mnchen

    IntroductionModelling single particle radiation

    29.06.2012 5

    Source: Modest 2003

    Scattering depends on:

    the shape of the particle (usually assumed as spherical),

    the material of the particle (the complex index of refraction, m = n - ik),

    its relative size (size parameterx = 2a/),

    the clearance between particles (c/)

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    6/22

    Technische Universitt Mnchen

    IntroductionModelling particle clouds radiation

    29.06.2012 6

    Source: Modest 2003 and Tien et al 1987

    Two approaches are used for particle clouds: The uniform size particles, is assumed that clouds consist of spheres that have the

    same size

    Nonuniform size particles, the cloud is described as a number of particles as a

    function of radius.

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    7/22

    Technische Universitt Mnchen

    Content

    1. Introduction

    2. State of art

    3. Relcom project

    4. Summary

    29.06.2012 7

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    8/22

    Technische Universitt Mnchen

    Different solutions for WSGG

    We canfind different approaches to change the WSGG for the oxyfuel gas

    properties:

    Khare 2008

    Krishnamoorthy et al 2010

    Johansson et al 2011

    State of the art

    29.06.2012 8

    All of them have compared the results with more detailed models (SNB/EWB) for

    validation.

    The increase in the accuracy comparing with the original WSGG (Smith et al

    1982) for oxyfuel combustion.

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    9/22

    Technische Universitt Mnchen

    29.06.2012 9

    State of the artDifferent solutions for WSGG

    Source: Becher et al 2011

    Deviation range over path length for WSGG model from Smith et

    al. (1982) all combustion cases

    Deviation range over path length for WSGG model from

    Johansson et al. (2011) all combustion cases

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    10/22

    Technische Universitt Mnchen

    29.06.2012 10

    State of the artDifferent solutions for WSGG

    Source: Becher et al 2011

    Deviation of total emissivity for natural gas wet oxyfuel combustion

    atmosphere at various temperatures for the WSGG model from Johansson et

    al. (2011)

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    11/22

    Technische Universitt Mnchen

    Min deviation Max

    deviation

    Recommended limits for improved

    accuracy

    WSGG (smith 1982) 32% 59% H2O/CO2 close to ratios

    WSGG (Khare 2008) 13% 49% H2O/CO2 close to given ratios ( 0.3),

    temperatures up to 800C, lower

    pressure path length limit of 0.01 bar m

    WSGG (Krishnamoorthy 2010) 32% 131% Lower pressure path length limit of 0.1

    bar m, H2O/CO2 close to given ratios (

    0:3)

    WSGG (Johannsson et al 2011) 13% 21% Temperatures up to 800C, missing hot

    lines in its reference model

    29.06.2012 11

    State of the artConclusions

    Source: Becher et al 2011

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    12/22

    Technische Universitt Mnchen

    29.06.2012 12

    State of the art

    Single particle combustion

    Source: Bejarano et al 2008

    The replacement of N2 by CO 2 causes, in average, a decrease by 200 K in

    particle combustion temperature (exemplified for lignite coals)

    To achieve the same combustion temperature as in N2 as bath gas, for the

    bituminous volatiles and chars, the oxygen content has to be around 30%

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    13/22

    Technische Universitt Mnchen

    29.06.2012 13

    State of the art

    Particle clouds combustion

    Source: Wall et al 2009

    Possible to observe that the increase in size rises significantly the gas emissivity

    The increase in the size also rises the particle radiation

    With the increase of size the emissivity approaches one

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    14/22

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    15/22

    Technische Universitt Mnchen

    FTIR emission measurements in the 100 kW test rig to determine the spectral

    radiation characteristics of oxy-pulverised coal flames

    These spectral measurements will provide a detailed analysis of the changed gas

    band radiation due to the changed ratio and higher concentrations of H2O and CO2in oxyfuel flames.

    The influence of particle radiation under oxy-coal conditions will also be analyzed

    These experimental results will be used to develop and validate radiation sub-

    models

    Relcom project

    29.06.2012 15

    Aims in task 1.2

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    16/22

    Technische Universitt Mnchen

    Relcom project

    29.06.2012 16

    Plans for the measurements

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    17/22

    Technische Universitt Mnchen

    29.06.2012 17

    Relcom projectFirst measurements at the TUM combustion chamber

    Oxy-coal flame

    Lignite

    65% dry

    recirculation

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    18/22

    Technische Universitt Mnchen

    29.06.2012 18

    Relcom projectFirst measurements at the TUM combustion chamber

    Oxy-coal flame

    Lignite and

    natural gas as

    fuel Both are 65%

    dry recirculation

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    19/22

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    20/22

    Technische Universitt Mnchen

    Radiative characteristics of particle clouds is important for a full characterization of

    oxy-coal flames

    The data collection is important for the optimization of the CFD models for oxy-firing

    Measurements in different facilities will help to understand influence of particle/gas

    radiation contribution better

    See the scalablity and the portability of the FTIR device

    Summary

    29.06.2012 20

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    21/22

    Technische Universitt Mnchen

    Thank you for your attention

    29.06.2012 21

  • 8/13/2019 4. Thermal Radiation-TzxcUM

    22/22

    Technische Universitt Mnchen

    References

    29.06.2012 22

    S. P. Khare. Heat Transfer in Air-Fired Pulverized Fuel Furnaces Retrotted to Oxy-Fuel Coal. PhD thesis, The

    University of Newcastle, Newcastle, Australia, 2008.

    G. Krishnamoorthy, M. Sami, S. Orsino, A. Perera, M. Shahnam, and E. D. Huckaby. Radiation modelling in oxy-fuel

    combustion scenarios. International Journal of Computational Fluid Dynamics, 24(3):6982, 2010.

    M. F. Modest. Radiative heat transfer. Academic Press, Amsterdam, 2nd edition, 2003. ISBN 0125031637.

    T. Wall, Y. Liu, C. Spero, L. Ell iott, S. Khare, R. Rathnam, F. Zeenathal, B. Moghtaderi, B. Buhre, C. Sheng, R. Gupta,

    T. Yamada, K. Makino, and J. Yu. An overview on oxyfuel coal combustion state of the art research and technology

    development. Chemical Engineering Research and Design, 87(8):1003 1016, 2009.

    C. Yin, L. C. R. Johansen, L. A. Rosendahl, and S. K. Kr. New weighted sum of gray gases model applicable to

    computational uid dynamics (CFD) modeling of oxy-fuel combustion: Derivation, validation, and implementation.

    Energy & Fuels, 24(12):62756282, 2010.

    V. Becher, A. Goanta , H. Spliethoff. Validation of Spectral radiation models under oxyfuel conditions-Part C:

    Validation of simplified models

    V. Becher, H. Spliethoff. Spectral radiation measurements on oxy-fuel natural gas flames and flue-gases: Comparison

    of air and oxy-fuel radiation. Proceedings of 1st Oxy-Fuel Combustion Conference Cottbus, Germany, 2009

    P.A. Bejarano, Y.A. Levendis. Single-coal-particle combustion O2/N2 and O2/CO2 enviroments. Combustion and

    Flame 153 (2008) 270-287

    R. Johansson, B. Leckner, K. Andersson, and F. Johnsson. Account for variations in the H2O to CO2 molar ratio

    when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model. Combustion and Flame,

    158(5):893901, 2011.