42 pile foundation

31
PILE FOUNDATION TANK SUPPORT 80' Driven Length, 24" Piling ENGINEERING with the SPREADSHEET Copyright 2006 American Society of Civil Engineers A B C D E F G H I J K L M 42 SUMMARY for TANK and FOUNDATION tare 741 k tank test 6254 k water weight 5012 k liquid weight full test 6995 k tank + weight at test Normal 5753 k normal max operating weight 4200 k contents that move w/ tank during an event diameter 53 ft approximate loaded diameter 60' area 2206 (53 /2)^2 * PI() q operate 2.61 Normal /area 3.5' Elevated Deck h 3.5 ft 3.5' deck DL 1839 k from AutoCAD massprop calculations 15' area 3503 1,839 /(42 /12 * 0.15) 4' cap Piling Top 1.59 k 24"Ф x 1/2" wall steel casing 0.5 * 24 * PI() /144 * 485 * 12.5 /1000 5.89 k concrete top 12.5' 12^2 * PI() /144 * 0.15 * 12.5 7.48 k per arbitrary 12.5' trib length of composite pile Figure 42-1 Tank and structure el columns 21 each above the pile cap 157 k sum of piling weight above pile cap wt steel 485 4.0' Pile Cap wt conc. 150 h 4 ft DL 2102 k 1 k 1000 lbs gross opr 5753 k tank + contents operating weight Liquid 1839 k top deck 157 k columns 2102 k pile cap sum 9851 k operating load to bottom of pile cap sum 11093 k A flat bottom 60 foot diameter, 60 foot tall, liquid nitrogen storage tank is supported on a pile foundation at 15' above grade. Pile foundation and pedestal structure to support: Tank and contents normal operating weight of 5,753,000 lbs. Test weight of 6,995,000 Lbs. Life of the structure is 30 years. Planar tilt is limited to 1/2" in 60' during the life of the structure. Out-of-plane, differential settlement is limited to 1/8" in 30' and 1/4" in 60' during the life of the structure.' LN2 W contents ft 2 k/ft 2 ft 2 lb/ft 3 lb/ft 3 test load H2O

Upload: mario-sajulga-dela-cuadra

Post on 14-Sep-2015

46 views

Category:

Documents


3 download

DESCRIPTION

s

TRANSCRIPT

Work_SheetPILE FOUNDATIONTANK SUPPORTChristy38706.7679700231464238706.76797002314680' Driven Length, 24" PilingENGINEERING with the SPREADSHEETCopyright 2006 American Society of Civil EngineersABCDEFGHIJKLMNSUMMARY for TANK and FOUNDATIONtare741ktanktest6254kwater weightLN25012kliquid weight fulltest6995ktank + weight at testNormal5753knormal max operating weightW contents4200kcontents that move w/ tank during an eventdiameter53ftapproximate loaded diameter60'row 20area2206ft2(53 /2)^2 * PI()q operate2.61k/ft2Normal /area3.5' Elevated Deckh3.5ft3.5' deckDL1839kfrom AutoCAD massprop calculations15'area3503ft21,839 /(42 /12 * 0.15)4' capPilingrow 30Top1.59k24" x 1/2" wall steel casing0.5 * 24 * PI() /144 * 485 * 12.5 /10005.89kconcrete top 12.5'12^2 * PI() /144 * 0.15 * 12.57.48kper arbitrary 12.5' trib length of composite pileFigure 42-1 Tank and structure elevation.columns21eachabove the pile caprow 40157ksum of piling weight above pile capwt steel485lb/ft34.0' Pile Capwt conc.150lb/ft3h4ftDL2102k1 k1000lbsgross opr5753ktank + contents operating weight Liquid1839ktop deck157kcolumnsrow 502102kpile capsum9851koperating load to bottom of pile capsum11093ktest load H2OA flat bottom 60 foot diameter, 60 foot tall, liquid nitrogen storage tankis supported on a pile foundation at 15' above grade.Pile foundation and pedestal structure to support:Tank and contents normal operating weight of 5,753,000 lbs.row 60Test weight of 6,995,000 Lbs.Life of the structure is 30 years.Planar tilt is limited to 1/2" in 60' during the life of the structure. Out-of-plane, differentialsettlement is limited to 1/8" in 30' and 1/4" in 60' during the life of the structure.'Settlements will govern this design as much or more than seismic and wind forces.row 70DESIGN LOADS for FRAME ANALYSIS PROGRAMThis frame is an elastic ordinary moment resiting frame. The design is for elasticresponse only and does not use yielding of any member for energy absorbtion.The value of R for ordinary moment resisting frames is the same asthe R for elevated tanks on unbraced legs.Estimate story shear (V story) to the top of the pile capCa0.36factor for vertical accelerationsI1.25importance factorV0.304*Wfrom seismic worksheetrow 80 estimate1estimated redundancy factorC factor1.1'97 UBC 1612.2.2.1 Exception 2for concrete columnsseismicDLshear ultStructure Movementweighttank74174132.1ft CG of effectiveW contents501233.85contents mass5012and tank1183k ASDAPI calculationsE tank and contents6921656k ult49.101839deck183976911.515.2515.0157col/piles157662102row 100springsV story77491527k ultto top of deckinflectionpile cap2102879restraintD98512405k ultapproximate DL +Liquid to top of pilingFigure 42-2 Tank and structure with seismic forces.Check Redundancyrow 110Overly simplify the model: apply loads to the nodes of the mid-line frame.Area3503ft2surface area of the deck and/or the pile capRedundancy factor for an ordinary moment frame ASCE 7-02 9.5.2.4.2Item 3 any two adjacent column shears / story shearcolumn 4110k ultfrom preliminary frame analysiscolumn 7112k ultsum cols222112 + 110row 120V story1527k ultr0.145222 / 1,527 ratio of any two adjacent column shears to the sum of all column shears-0.3242 - 20 / (rmax x Ax ) 1.0 1.5 max2 - 20 /[0.145 3,503^0.5 ]1unitlessminimum required redundancy factorrow 130EXTEND PILING THROUGH PILE CAP to DECKPile Lateral Resistance45 piling totalPile lateral90k at 8 diameters through 1" deflectionpile @ 14'17eachStructue82k/each1387kEarth Movementpile @ 7'28each52k/each1457kpile sum2843k servicepile soil lateralsoil lat250pcfFigure 42-3 This is the piling plan view.face78ftdepth4ftrow 150soil p156kpile cap resistance90k52k22.5pile cap2999k ASDsum soil and pile lateral resist82k16kV pile cap2405k ultfrom calculations above14ft7ft6kcompare0logicFigure 42-4 Piling lateral resistance -- spacingV pile cap1718k ASD2,405 /1.4 = 1,718 < 2,999versus capacity.OKrow 160structure seismic movementPiling below the pile cap is considered to be buoyant.gradetop moment at pile capTop of piling fixed within pile cap.spring / soil200k-ftSpring restraint to resemble soil lateral resistance applied atsoil/pile cap interface.Concrete and rebar cage top 25' of pile.row 170The deck is designed as a two-way slab supported by 21 columns.For this analysis, S-Frame 3D finite analysis program was0.25 * top momentused to calculate moments, axial loads, and deflections along50k-ftthe midline of the structure.Figure 42-5 Piling applied moments under seismicforces.row 180row 190LOADS to DECK MID-LINEDesign for the '97 UBC ultimate strength of columns. Spring values at grade are given an arbitrary factor of 1.0.E = Eh + Ev = V D + 0.5 Ca I Dmultiply this by 1.1 for concrete '97 UBC 1612.2.2.1 Exception 2horizontal componentvertical componentE1.0 * 1,527 * 1.1+0.5 * 0.360 * 1.25 * 9,851 * 1.11679+2438row 200Basic Load Combinations '97 UBC 1612ratio0.238= 5 mid-line columns /21 columns totalDhorizontal componentvertical component2345400581Create load cases for D, Eh, and Ev where:note that D = D + stored liquidhence:Eh0.170* DEh / Drow 210400 /2,345andEv0.248* DEv / D581 /2,345Per '97 UBC(12-1)1.4 D(12-5)1.2 D+1.0 Eh+1.0 Evrow 220(12-6)0.9 D1.0 Eh1.0 EvThe load cases are:1(12-1)1.4 D2(12-5)1.2 D+0.170 D horizontal+1.0 E per API calc+0.248 D vertical3(12-6) a0.9 D+0.170 D horizontal+1.0 E per API calc+0.248 D verticalrow 2304(12-6) b0.9 D+0.170 D horizontal+1.0 E per API calc-0.248 D verticalrow 240row 250SUMMARY of LOADS to DECK MID-LINE for FINITE ELEMENT ANALYSISInput D + stored liquid for these nodes:1,656 * 0.238 ultimate load394 API Calculationsnodes22node15at CG of tank and contents23ratio0.238tank + LN257531370for tank + LN2 as DL onlydeck1839for vertical loads including tank, LN2, deck, columnsrow 260columns79sum19184571,918 * 0.238 for horizontal loadssum7671457 + 1,37018267,671 * 0.238 for vertical loads including tank, LN2, deck, and columnshorizontal5711411411457k457vertical 2284574574572281826nodes36121821noderow 270columns79pile cap21022181519sum 43878787878743k519nodes25811141720spring resistance82525252525282k/inchrow 280nodes1479131619row 290row 300row 310LOADS to DECK MID-LINE by CASE and LOAD COMBINATIONS per '97 UBCLoad combinations are:1(12-1)1.4 D1.4 x Case 1 D only228457457457228node3612182143878787878743node25811141720row 3202(12-5)1.2 D+0.170 D horizontal+0.248 D vertical1.448 x Case 1 D228457457457228where: 1.2 + 0.2480.148 x Case 2 E57114114114571.0 x Case 3 E API394node36151218211.448 x Case 1 D43878787878743where: 1.2 + 0.2480.148 x Case 2 E43878787878743node258111417203(12-6) a0.9 D+0.170 D horizontal+0.248 D vertical1.148 x Case 1 D228457457457228where: 0.90 + 0.2480.148 x Case 2 E57114114114571.0 x Case 3 E API394node36151218211.448 x Case 1 D43878787878743where: 0.90 + 0.2480.148 x Case 2 E43878787878743node258111417204(12-6) b0.9 D+0.170 D horizontal0.248 D vertical0.652 x Case 1 D228457457457228where: 0.90 0.2480.148 x Case 2 E57114114114571.0 x Case 3 E API394node36151218210.652 x Case 1 D43878787878743where: 0.90 0.2480.148 x Case 2 E43878787878743node25811141720row 350Axial and moment forces were generated from a subsequent computer run.These loads are:axial460k ultmoment1174k ultrow 360row 370LOADS to DECK MID-LINE USING ASCE 7-02 STRENGTH DESIGNThis frame is an elastic ordinary moment resisting frame..1.0unitlessfrom aboveSDS0.719g ultshort period spectral response 9.4.1.2.5-1Cs0.299g ultseismic response coefficient 9.5.5D9851kfrom aboverow 380Vert story1417k ult0.2 * 0.719 * 9,851V story2945k ult0.299 * 9,851Basic Load Combinations ASCE 7-02ratio0.238= 5 mid-line columns /21 columns totalDhorizontal componentvertical component2345701337ratioed loads0.238 * 9,8510.238 * 2,9450.238 * 1,417row 390E1QE + 0.2 SDS D Eq. 9.5.2.7 - 1Case 5 2.3.21.2 D E10.2 SDS D2815vertical701horizontal337vertical1.2 * 2,3451.0 * 701337E2QE - 0.2 SDS D Eq. 9.5.2.7 - 2Case 8 2.3.20.9 D E20.2 SDS Drow 4002111vertical701horizontal337vertical0.9 * 2,3451.0 * 701337Create load cases for D, QE, and 0.2 SDS Dwhere: QE /D =701 /2,345 =0.299* Dand0.2 SDS D /D =337 /2,345 =0.144* DThese factors are to be used in the computer finite element analysis "Load Combinations."row 410The load cases are:1D only1.4 D25 2.3.21.2 D+0.299 D horizontal+1.0 E per API calc+0.299 D verticalrow 42038 2.3.2 a0.9 D+0.299 D horizontal+1.0 E per API calc+0.144 D vertical48 2.3.2 b0.9 D+0.299 D horizontal+1.0 E per API calc0.144 D verticalThese results are slightly less conservative than the '97 UBC results aboverow 430LOADS to DECK MID-LINE USING ASCE 7-05 STRENGTH DESIGN for ComparisonThis frame is an elastic ordinary moment resisting frame..1.00unitlessfrom aboveSDS0.719g ultshort period spectral response 9.4.1.2.5-1Cs0.299g ultseismic response coefficient 9.5.5D9851kfrom aboverow 440Vert story1417k ult0.2 * 0.719 * 9,851 7-05 0.2 SDS D 12.4-4 and 12.14-6V story2945k ult0.299 * 9,851 7-05 V = Cs W 12.8-1Basic Load Combinations ASCE 7-05 Where 12.4.2.3 is used in lieu of 2.3.2ratio0.238= 5 mid-line columns /21 columns totalDhorizontal componentvertical component2345701337ratioed loads0.238 * 9,8510.238 * 2,9450.238 * 1,417row 450Case 5(1.2 + 0.2 SDS) D + QE + L + 0.2 S1.2 D E50.2 SDS D2815vertical701horizontal337vertical1.2 * 2,3451.0 * 701337Case 6(0.9 - 0.2 SDS) D + QE + 1.6 H0.9 D E6- 0.2 SDS Drow 4602111vertical701horizontal337vertical0.9 * 2,3451.0 * 701337Create load cases for D, QE, and 0.2 SDS Dwhere: QE /D =701 /2,345 =0.299* Dand0.2 SDS D /D =337 /2,345 =0.144* DThese factors are to be used in the computer finite element analysis "Load Combinations."row 470The load cases are:1D only1.4 D2Case 51.2 D+0.299 D horizontal+1.0 E per API calc+0.299 D verticalrow 4803Case 60.9 D+0.299 D horizontal+1.0 E per API calc+0.144 D verticalrow 490GENERATE ASD ASCE 7-02 LOADS for DEFLECTION CALCULATIONS1.0unitlessfrom aboveSDS0.719g ultshort period spectral responseCs0.299g ultseismic response coefficientD9851kfrom aboveVert story1417k ult0.2 * 9,851 * 0.719V story2945k ult9,851 * 0.299row 500Basic Load Combinations ASCE 7-02ratio0.238= 5 mid-line columns /21 columns totalDhorizontal componentvertical component2345701337E1QE + 0.2 SDS D Eq. 9.5.2.7 - 1row 510Case 5 2.4.11.0 D0.7 E1+0.2 SDS D2345vertical491horizontal337verticalE2QE - 0.2 SDS D Eq. 9.5.2.7 - 2Case 8 2.4.10.6 D0.7 E2-0.2 SDS D1407vertical491horizontal-337verticalrow 520Create load cases for D, QE, and 0.2 SDS DNote that the reciprocal of 0.7 isapproximately 1.4. This is the standardwhere: QE /D =491 /2,345 =0.209* Dway to reduce LRFD seismic toand0.2 SDS D /D =337 /2,345 =0.144* DASD levels.The load cases are:row 53015 2.4.11.0 D+0.209 D horizontal+0.144 D vertical28 2.4.1 a0.6 D+0.209 D horizontal+0.144 D vertical38 2.4.1 b0.6 D+0.209 D horizontal0.144 D verticalUse these applied strength design (ASD) loads to compute deflections in the computer finite element analysis"Load Combinations."row 540GENERATE ASD ASCE 7-05 LOADS for DEFLECTION CALCULATIONS for Comparison1.0unitlessfrom aboveSDS0.719g ultshort period spectral responseCs0.299g ultseismic response coefficientD9851kfrom aboveVert story1417k ult0.2 * 9,851 * 0.719QE2945k ult9,851 * 0.299where QE = Vrow 550Basic Load Combinations ASCE 7-05 Where 12.4.2.3 is used in lieu of 2.4.1ratio0.238= 5 mid-line columns /21 columns totalDhorizontal component2345701Case 5(1.0 + 0.14 SDS) D + H + F + 0.7 QE1.0 D+0.7 QE+0.2 SDS Drow 5602345vertical491horizontal337verticalCase 6(1.0 + 0.105 SDS) D + H + F + 0.525 QE + 0.75 L + 0.75 (Lr or S or R)1.0 D+0.525 QE+0.105 SDS D2345368177Case 8(1.0 - 0.14 SDS) D + 0.7 QE + H0.6 D+0.7 QE0.14 SDS Drow 5701407vertical+491horizontal236verticalNote that the reciprocal of 0.7 isapproximately 1.4. This is the standardway to reduce LRFD seismic toASD levels.The load cases are:1Case 51.0 D+0.209 D horizontal+0.144 D verticalrow 5802Case 60.6 D+0.157 D horizontal+0.075 D vertical3Case 80.6 D+0.209 D horizontal0.101 D verticalUse these applied strength design (ASD) loads to compute deflections in the computer finite element analysis"Load Combinations."row 590row 600

&RPage 42 - &P

&F428282828282828282828282828282828282