4604 exam3 solutions fa06

Upload: muhammad-nomaan-

Post on 30-May-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 4604 Exam3 Solutions Fa06

    1/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 1 of 25

    PHY 4604 Final Exam Solutions

    Wednesday December 6, 2006 (Total Points = 100)

    Problem 1 (25 points): Consider the following one-dimensional potential:

    += 0

    0

    )( VxV

    Lx

    Lx

    Lx

    0 enter from the left in

    region 1 and travel to the right and encounter the potential V(x). Let2

    2

    2

    2

    mLE

    h=

    andE

    Vr 01+= .

    (1) (5 points) Calculate the probability that particles entering from the left in region 1 will be

    reflected back (i.e. calculate the ratio of the probability flux in region 1 traveling to the left tothe incident flux in region 1 traveling to the right, 11 / jjPR

    rs= ). Express your answer in terms of

    and r.Answer:PR= 1.

    Solution: We look for solutions of the time-independent Schrdinger equation

    )()()()(

    2 2

    22

    xExxVdx

    xd

    m

    =+

    hor )())((

    2)(22

    2

    xxVEm

    dx

    xd

    =

    h

    withh/)(),( iEtextx = . In the region x < 0 (region 1) for E > 0 and V(x) = 0 we have

    )()(2)( 2

    22

    2

    xkxmE

    dx

    xd

    ==

    h

    withL

    mEk

    ==

    2

    2

    h

    and 2

    2

    222

    22

    mLm

    kE

    hh==

    The most general solution is

    ikxikx BeAex + +=)(1 ,

    In the region 0 < x < L (region 2) we have

    iqxiqx DeCex + +=)(2 ,

    with rkVEm

    q =+

    =2

    0 )(2

    h, where

    E

    V

    k

    qr 01+== . In the region x > L (region 3) we have

    0)(3 =x ,

    The boundary conditions at x = L implies that

    0)(2 =L and hence 0=++ iqLiqL DeCe or

    iqLCeD 2+= .

    Thus,

    )()( 22iqxiqLiqx eeeCx ++ = ,

    At x = 0 the wave function must be continuous with a continuous derivative which yields

    V(x)

    -V0

    V = +in

    L

    Region 1 Region 2 Reg

  • 8/9/2019 4604 Exam3 Solutions Fa06

    2/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 2 of 25

    )0()0( 21 = and )1(2iqLeCBA +=+

    0

    2

    0

    1 )()(

    ==

    =xx dx

    xd

    dx

    xd and )1(

    2iqLeCiqikBikA ++=

    Thus,

    )1( 2iqLeCBA +=+ and )1( 2iqLeCrBA ++=

    And

    ))1()1((2 2iqLerrCA +++= and ))1()1((2 2iqLerrCB +++=

    Thus,

    iqLerr

    AC

    2)1()1(

    2+++

    = and Aerr

    errB

    iqL

    iqL

    2

    2

    )1()1(

    )1()1(+

    +

    ++++

    = .

    The relfection probability is given by

    1)1)(1()1)(1()1()1(

    )1)(1()1)(1()1()1(

    )1()1(

    )1()1(

    )1()1(

    )1()1(

    )1()1(

    )1()1(

    ||

    ||

    2222

    2222

    2

    2

    2

    22

    2

    2

    2

    2

    =++++++++++++

    =

    ++++

    ++++

    =++++

    ==

    +

    +

    +

    +

    +

    +

    iqLiqL

    iqLiqL

    iqL

    iqL

    iqL

    iqL

    iqL

    iqL

    mk

    m

    k

    R

    errerrrr

    errerrrr

    err

    err

    err

    err

    err

    err

    A

    BP h

    h

    (2) (5 points) Calculate the probability that particles traveling to the right in region 2 will be

    reflected back (i.e. calculate the ratio of the probability flux in region 2 traveling to the left to

    flux in region 2 traveling to the right, 22 / jjRrs

    = ). Express your answer in terms of and r.Answer:R = 1.

    Solution: We see that

    1||

    || 222

    2

    === + iqL

    m

    q

    mq

    eC

    DR

    h

    h

    .

    (3) (5 points) Calculate the ratio of the probability flux in region 2 traveling to the right to the

    incident flux in region 1 traveling to the right, 12 / jjPrr

    = ). Express your answer in terms ofand r. What are the maximum and minimum values of P() (express your answer in terms of r)?Evaluate the maximum and minimum values of P() for the case V0 = 3E. Explain what is goingon.

    Answer:

    )2cos()1(1

    222

    rrr

    rP

    ++= ,

    2

    112min

    = =rr

    P , 22

    max ==r

    rP

    Solution: We see that

  • 8/9/2019 4604 Exam3 Solutions Fa06

    3/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 3 of 25

    )2cos()1(1

    2

    )2cos()1(1

    2

    )2cos(2)1)(1()1()1(

    4

    )1)(1()1)(1()1()1(

    4

    )1()1(

    2

    ||

    ||

    22

    2222

    2222

    2

    22

    2

    rrr

    r

    qLrr

    r

    qLrrrr

    r

    errerrrr

    r

    errr

    A

    CP

    iqLiqL

    iqL

    mk

    m

    q

    ++=

    ++=

    ++++=

    ++++++=

    =++

    ==

    +

    +h

    h

    The minimum value of P ocurs when cos(2r) = 1 and hence

    2

    11

    )1(1

    2222min

    =++

    = =rrrr

    rP ,

    where I used

    213

    0

    0

    +== EVE

    Vr .

    The maximum value of P ocurs when cos(2r) = -1 and hence

    2)1(1

    2222max

    =+

    = =rrrr

    rP .

    (B)Now consider the case E < 0 and look for possible bound states. Let 22

    2

    2

    mLE

    h= and

    2

    2

    2

    0

    2

    mL

    Vh

    = .

    (1) (5 points) How many bound states are there if = /4? What is the ground state energy (i.e.what is for the ground state)?Answer:No bound states for < /2.Solution: We look for solutions of the time-independent Schrdinger equation

    )()()()(

    2 2

    22

    xExxVdx

    xd

    m

    =+

    hor )())((

    2)(22

    2

    xxVEm

    dx

    xd

    =

    h

    withh/)(),( iEtextx = . In the region x < 0 (region 1) for E < 0 and V(x) = 0 we have

    )()(2)( 2

    22

    2

    xxmE

    dx

    xd

    ==

    h

    with

    L

    mE =

    =

    2

    2

    h

    and 22

    222

    22

    mLm

    Ehh

    ==

    The most general solution is

    xx BeAex + +=)(1 ,

    However, =

    x

    xe and hence we must set B = 0. In the region 0 < x < L (region 2) we

    have

    iqxiqx DeCex + +=)(2 ,

  • 8/9/2019 4604 Exam3 Solutions Fa06

    4/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 4 of 25

    with2

    0)(2

    h

    VEmq

    += , and

    2

    022 2

    h

    mVq =+ . Also, 2

    2

    0

    222 2)()( ==+

    h

    VmLLqL and

    222)( =+qL . In the region x > L (region 3) we have

    0)(3 =x ,

    The boundary conditions at x = L implies that

    0)(2 =L and hence 0=++ iqLiqL DeCe or

    iqLCeD 2+= .

    Thus,

    )()( 22iqxiqLiqx eeeCx ++ = ,

    At x = 0 the wave function must be continuous with a continuous derivative which yields

    )0()0( 21 = and )1(2iqLeCA +=

    0

    2

    0

    1 )()(

    ==

    =xx dx

    xd

    dx

    xd and )1(

    2iqLeCiqA ++=

    Dividing the two equations yields

    )cot()(

    )(

    )1(

    )1(2

    2

    qLqee

    eeiq

    e

    eiq

    iqLiqL

    iqLiqL

    iqL

    iqL

    =+

    ==+

    =+

    +

    +

    +

    If we let y = qL then we see that

    y

    y

    qL

    L

    qy

    22

    )cot(

    ===

    ,

    where 222 =+y and )(22

    22

    2

    22

    2

    2

    ymLmL

    E == hh

    . The evengy levels are determined by

    letting )cot()( yyf = andy

    yyg

    22

    )(=

    and looking for the places where f(y) = g(y).

    -1

    0

    1

    2

    3

    4

    5

    0.0 1.6 3.1 4.7 6.3 7.9 9.4

    f(y)g(y)

    y

    /2 3/2 2

    = /4

    We see that there are no solution fory > . Thus, there are no bound states if < /2.(2) (5 points) How many bound states are there if = 11/4? What is the ground state energy(i.e. what is for the ground state)?

  • 8/9/2019 4604 Exam3 Solutions Fa06

    5/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 5 of 25

    Solution: There are three bound states.2

    02

    2

    02

    mL

    Eh

    = with 0 8.17.

    Solution: For = 11/4 we have three bound states. The ground state has the smallest y, whichis y 2.81 and hence

    74.662)17.8(2))81.2()4/11((2)(2 2

    22

    2

    222

    2

    22

    min

    2

    2

    2

    0mLmLmLymLE

    hhhh

    ==

    -1

    0

    1

    2

    3

    4

    5

    0.0 1.6 3.1 4.7 6.3 7.9 9.4

    f(y)g(y)

    y

    /2 3/2 2

    = 11/4

    Problem 2 (25 points): The Hamiltonian of a charged particle with intrinsic spin Sr

    at rest in a

    magnetic field is BSBHrrrr

    == , wherem

    q= (q is the electric charge, m is the mass).

    For spin 1 we have zSySxSS zyx ++=r

    with

    =

    010

    101

    010

    2

    hxS

    =

    010

    101

    010

    2

    hiSy

    =

    100

    000

    001

    hzS

    (A) (2 points) Show that

    =++=

    100

    010

    001

    2 22222 hzyx SSSS .

    Solution: We see that

    =

    =

    101

    020

    101

    2010

    101

    010

    010

    101

    010

    2

    222 hh

    xS

    =

    =

    101

    020

    101

    2010

    101

    010

    010

    101

    010

    2

    222 hh

    yS

    =

    =

    100

    000

    001

    100

    000

    001

    100

    000

    001222

    hhzS

    Hence,

  • 8/9/2019 4604 Exam3 Solutions Fa06

    6/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 6 of 25

    =++=

    100

    010

    001

    2 22222 hzyx SSSS .

    (B) (6 points) The W+

    boson is a spin 1 elementary particle with charge q = +e and mass MW.

    Suppose a W+

    is at rest in a uniform magnetic field which points in the z-direction, zBB 0=

    r

    .What are the energy levels and the corresponding eigenkets of the system? What is the ground

    state energy and ground state eigenket? Express your answers in terms of 0B= .

    Answer: The ground state (i.e. lowest) energy is h=0E with eigenket

    >=>=

    0

    0

    1

    11|| 0 .

    The 1st

    excited state has energy 01 =E with eigenket

    >=>=

    0

    1

    0

    10|| 1 .

    The 2nd

    excited state has energy h+=2E with eigenket

    >=>=

    1

    0

    0

    11|| 2 .

    Solution: The eigenvalues of Sz are determined from

    0

    00

    00

    00

    =

    h

    h

    and hence 0)()( =+ hh

    Thus, there are three eigenvalues hh = ,0, . The eigenket of Sz corresponding to = 0 isdetermined from

    =

    =

    0

    0

    0

    0

    100

    000

    001

    c

    a

    c

    b

    a

    hh which implies that a = c = 0 and

    >=

    0

    1

    0

    10|

    The eigenkets of Sz corresponding to h= is determined from

    =

    =

    c

    b

    a

    c

    a

    c

    b

    a

    hhh 0

    100

    000

    001

    which implies that a = a and -c = c and hence

    >=

    0

    0

    1

    11| and

    >=

    1

    0

    0

    11| and where >>= mmmSz 1|1| h .

    The Hamiltonian is given by zz SSBBSH === 0rr

    . Hence there are three energy levels

    h=0E , 01 =E , h+=2E . The ground state (i.e. lowest) energy is h=0E with eigenket

  • 8/9/2019 4604 Exam3 Solutions Fa06

    7/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 7 of 25

    >=>=

    0

    0

    1

    11|| 0 .

    The 1st

    excited state has energy 01 =E with eigenket

    >=>=

    0

    10

    10|| 1 .

    The 2nd

    excited state has energy h+=2E with eigenket

    >=>=

    1

    0

    0

    11|| 2 .

    (C) Suppose that at t = 0 the W+ boson is in the state

    >=1

    1

    1

    31)0(| .

    (1) (2 points) What is >)(| t ? Express your answer in terms of 0B= .

    Answer:

    >=

    +

    ti

    ti

    e

    e

    t

    13

    1)(|

    Solution: We know thathhh /

    22

    /

    11

    /

    00210 |||)(| tiEtiE

    tiEececect

    >+>+>>=

    where

    3

    1

    1

    1

    1

    3

    1)001()0(|00 =

    >==< c

    3

    1

    1

    1

    1

    3

    1)010()0(|11 =

    >==< c

    3

    1

    1

    1

    1

    3

    1)100()0(|22 =

    >==< c

    Hence,

  • 8/9/2019 4604 Exam3 Solutions Fa06

    8/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 8 of 25

    =

    +

    +

    =

    >+>+>>=

    +

    +

    +

    ti

    ti

    titi

    titi

    e

    e

    ee

    eccect

    13

    1

    1

    0

    0

    3

    1

    0

    1

    0

    3

    1

    0

    0

    1

    3

    1

    |||)(| 221100

    where 0B= .

    (2) (2 points) If I measure the energy of the state >)(| t , what values might I get and what isthe probability of getting these values.

    Answer: We will measure h=0E with probability 31

    0 =P and we will measure 01 =E with

    probability31

    1 =P and we will measure h+=2E with probability 31

    2 =P .

    Solution: We will measure E0

    with probability3

    12

    00|| == cP and we will measure E

    1with

    probability312

    11 || == cP and we will measure E2 with probability 312

    22 || == cP .

    (3) (2 points) What is the average energy, , for the state >)(| t ? Express your answer interms of 0B= .Answer: = 0.Solution: We can calculate in two ways. It is given by

    0)()0()( 031

    31

    031

    221100 =+++=++>=< BBEPEPEPE hh .

    ( )

    ( ) 0)11(3

    013

    1100

    000

    001

    13

    )(||)()(||)(

    =

    =

    =

    >=>=)(| t ? Express youranswer in terms of 0B= .

    Answer: h32=E .

    Solution: We can calculate in two ways. It is given by 2322

    0322

    0312

    312

    0312

    22

    2

    11

    2

    00

    2 )()()()0()( hhhh ==+++=++>=< BBBEPEPEPE And it is also given by

  • 8/9/2019 4604 Exam3 Solutions Fa06

    9/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 9 of 25

    ( )

    ( )3

    )(2)11(

    3

    )(01

    3

    )(

    1

    100

    000

    001

    13

    )(

    )(||)()(||)(

    222

    2

    2222

    hhh

    h

    =+=

    =

    >=>=)(| t ? Express your answer interms of 0B= .

    Answer: )cos(23

    4

    )( ttSx

    h

    >=< , )sin(23

    4

    )( ttSy

    h

    >=< , 0)( >=< tSz Solution: We see that

    ( )

    ( ) ( )

    )cos(23

    4

    231

    1

    123

    1

    010

    101

    010

    123

    )(||)()(

    0

    t

    eeeeeeee

    e

    e

    eetSttS

    titititititititi

    ti

    ti

    titi

    xx

    h

    hh

    h

    =

    +++=

    +=

    >=>==>=

  • 8/9/2019 4604 Exam3 Solutions Fa06

    10/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 10 of 25

    ( )

    ( ) ( ) 011301

    3

    1

    100

    000

    001

    13

    )(||)()(

    0

    0

    ==

    =

    >=>=)(| t ? Express your answer interms of 0B= .

    Answer: )(cos233

    )( 2 ttSx =h

    , )(sin233

    )( 2 ttSy =h

    , h3

    2)( = tSz .

    Solution: We see that

    ( )

    ( ) ( )

    ( ) ( )1)(cos23

    1)cos()(3

    )cos(22)cos(26

    216

    1

    101

    020

    101

    16

    )(||)()(

    222

    22

    222

    0

    +=++=

    ++=

    +

    +

    =

    >=>===>=

  • 8/9/2019 4604 Exam3 Solutions Fa06

    11/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 11 of 25

    ( )

    ( ) ( ))(sin239

    )(sin13

    )(sin1)(sin23

    )()())((

    22

    2

    32

    2

    2

    382

    2222

    tt

    tttStStS yyy

    ==

    +=>==>== are the eigenkets of opJ )(2

    1 and opzJ )( 1 and the states |j2m2> are the eigenkets

    of opJ )(2

    2 and opzJ )( 2 as follows:

    >>=

    >+>=

    111111

    111111

    2

    1

    ||)(

    |)1(|)(

    mjmmjJ

    mjjjmjJ

    opz

    op

    >>=

    >+>=

    222222

    222222

    2

    2

    ||)(

    |)1(|)(

    mjmmjJ

    mjjjmjJ

    opz

    op

    Also we know that

    >+>=

    >+>=

    1|)1()1(|)(

    1|)1()1(|)(

    222222222

    111111111

    mjmmjjmjJ

    mjmmjjmjJ

    op

    op

    where opyopxop JiJJ )()()( 111 =

    and opyopxop JiJJ )()()( 222 =

    .Now consider the vector

    sum of the two operators,

    opopop JJJ )()()( 21rrr

    += or opiopiopi JJJ )()()( 21 += for i = 1,2, 3.

  • 8/9/2019 4604 Exam3 Solutions Fa06

    12/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 12 of 25

    (A) (1 point):Show that

    opzopzopopopopopop

    opopopopopopopopop

    JJJJJJJJ

    JJJJJJJJJJJ

    )()(2)()()()()()(

    )()(2)()()()()()()(

    212121

    2

    2

    2

    1

    21

    2

    2

    2

    12121

    2

    ++++=

    ++=++==++

    rrrrrrrr

    Solution: First we note that

    )(

    )(

    1121

    1

    1121

    1

    +

    +

    =+=

    JJJ

    JJJ

    iy

    x

    and)(

    )(

    2221

    2

    2221

    2

    +

    +

    =+=

    JJJ

    JJJ

    iy

    x

    Hence,

    zz

    zz

    zzyyxx

    JJJJJJJJ

    JJJJJJJJJJJJ

    JJJJJJJJJJJJJ

    212121

    2

    2

    2

    1

    21221121

    2211212

    2

    2

    1

    212121

    2

    2

    2

    121

    2

    2

    2

    1

    2

    2

    2))(())((

    2222

    ++++=

    +++++=

    ++++=++=

    ++

    ++++

    rr

    (B)Now consider the case where j1 = 1 and j2 = 1 (i.e. 3 3) and define the states as follows:

    1111

    1110

    1111

    11||

    10||

    11||

    >=>>=>

    >=>

    Y

    Y

    Y

    and

    2211

    2210

    2211

    11||

    10||

    11||

    >=>>=>

    >=>

    Y

    Y

    Y

    Consider the three superposition states

    211111210110211111 ||3

    1||

    3

    1||

    3

    1| >>+>>>>> YYYYYYa

    211111211111 ||2

    1||

    2

    1| >>>>> YYYYb

    211111210110211111 ||

    6

    1||

    3

    2||

    6

    1| >>+>>+>>> YYYYYYc

    Calculate the following:

    (1) (1 point) >=< aa |

    (2) (1 point) >=< bb |

    (3) (1 point) >=< cc |

    (4) (1 point) >=< ba |

    (5) (1 point) >=< ca |

    (6) (1 point) >=< cb |

    Calculate the following and express your answer in terms of|a>,|b>, and |c> :(1) (1 point) >=+ aJJ |)(

    2

    2

    2

    1

    (2) (1 point) >=+ bJJ |)(2

    2

    2

    1

    (3) (1 point) >=+ cJJ |)(2

    2

    2

    1

    (4) (1 point) >=azJ |

  • 8/9/2019 4604 Exam3 Solutions Fa06

    13/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 13 of 25

    (5) (1 point) >=bzJ |

    (6) (1 point) >=czJ |

    (7) (1 point) >=++ ++ azzJJJJJJ |)2( 212121

    (8) (1 point) >=++ ++ bzzJJJJJJ |)2( 212121

    (9) (1 point) >=++ ++ czzJJJJJJ |)2( 212121

    (10) (2 points) >=aJ |2

    (11) (2 points) >=bJ |2

    (12) (2 points) >=cJ |2

    (3 points) Are the states |a>, |b>, and |c> eigenstates of the J2 and Jz and if so what are theireigenvalues?

    Answer:

    (1) >>=+ aaJJ |4|)(2

    2

    2

    1

    (2) >>=+ bbJJ |4|)( 2221

    (3) >>=+ ccJJ |4|)(2

    2

    2

    1

    (4) >>= aazJ |0|

    (5) >>= bbzJ |0|

    (6) >>= cczJ |0|

    (7) >>=++ ++ aazzJJJJJJ |4|)2( 212121

    (8) >>=++ ++ bbzzJJJJJJ |2|)2( 212121

    (9) >+>=++ ++ cczzJJJJJJ |2|)2( 212121

    (10) >>= aaJ |0|2

    (11) >>= bbJ |2|2

    (12) >>= ccJ |6|2

    The state |a> is an eigenstate ofJ2 and Jz withj = 0 and mj = 0 (i.e.|a>=|00>). The state |b>is an eigenstate ofJ

    2and Jz withj = 1 and mj = 0 (i.e.|b>=|10>). The state |c> is an eigenstate

    ofJ2

    and Jz withj = 2 and mj = 0 (i.e.|c>=|20>).Solution: We know that

    11111

    2

    1111

    2

    1

    11011

    2

    1110

    2

    1

    11111

    2

    1111

    2

    1

    |211|)11(111||

    |210|)11(110||

    |211|)11(111||

    >=>+=>=>

    >=>+=>=>

    >=>+=>=>

    YJYJ

    YJYJ

    YJYJ

    11111

    2

    1111

    2

    1

    11011

    2

    1110

    2

    1

    11111

    2

    1111

    2

    1

    |211|)11(111||

    |210|)11(110||

    |211|)11(111||

    >=>+=>=>

    >=>+=>=>

    >=>+=>=>

    YJYJ

    YJYJ

    YJYJ

    1111111111

    1111111

    1111111111

    |111|111||

    010|010||

    |111|111||

    >=>=>=>

    =>=>=>

    >=>=>=>

    YJYJ

    JYJ

    YJYJ

    zz

    zz

    zz

    1111111111

    1111111

    1111111111

    |111|111||

    010|010||

    |111|111||

    >=>=>=>

    =>=>=>

    >=>=>=>

    YJYJ

    JYJ

    YJYJ

    zz

    zz

    zz

  • 8/9/2019 4604 Exam3 Solutions Fa06

    14/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 14 of 25

    1101111111

    1111111101

    111111

    |210|)11(1)11(111||

    |211|)10(0)11(110||

    011||

    >=>+++=>=>

    >=>++=>=>

    =>=>

    +

    +

    ++

    ++

    YJYJ

    YJYJ

    JYJ

    011||

    |211|)10(0)11(110||

    |210|)11(1)11(111||

    111111

    1111111101

    1101111111

    =>=>

    >=>+=>=>

    >=>+=>=>

    JYJ

    YJYJ

    YJYJ

    and hence

    >>=+=

    >>+>>>>+>=+

    aa

    a JJJJ

    |4|)22(

    11|11|3

    100|00|

    3

    111|11|

    3

    1)(|)( 212121

    2

    2

    2

    1

    2

    2

    2

    1

    >>=+=

    >>>>+>=+

    bb

    b JJJJ

    |4|)22(

    11|11|2

    111|11|

    2

    1)(|)( 2121

    2

    2

    2

    1

    2

    2

    2

    1

    >>=+=

    >>+>>+>>+>=+

    cc

    c JJJJ

    |4|)22(

    11|11|6

    100|00|

    3

    211|11|

    6

    1)(|)( 212121

    2

    2

    2

    1

    2

    2

    2

    1

    >=

    >>++>>+>>=

    >>+>>>>+>=

    a

    zzaz JJJ

    |0

    11|11|

    3

    1)11(00|00|

    3

    1)00(11|11|

    3

    1)11(

    11|11|3

    100|00|

    3

    111|11|

    3

    1)(|

    212121

    21212121

    >=

    >>+>>=

    >>>>+>=

    b

    zzbz JJJ

    |0

    11|11|2

    1)11(11|11|

    2

    1)11(

    11|11|2

    111|11|

    2

    1)(|

    2121

    212121

    >=

    >>++>>++>>=

    >>+>>+>>+>=

    c

    zzcz JJJ

    |0

    11|11|3

    1)11(00|00|

    3

    2)00(11|11|

    6

    1)11(

    11|11|6

    100|00|

    3

    211|11|

    6

    1)(|

    212121

    21212121

  • 8/9/2019 4604 Exam3 Solutions Fa06

    15/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 15 of 25

    >=

    >>+>>++>>=

    >>+>>>>+

    >>>>+

    >>+>>=

    >>+>>>>+

    >>+>>>>+

    >>+>>>>=

    >>+>>>>++=

    >++

    +

    +

    ++

    ++

    a

    zz

    zz

    azz

    JJ

    JJ

    JJ

    JJJJJJ

    JJJJJJ

    |4

    11|11|3

    1)22(10|10|

    3

    1)22(11|11|

    3

    1)22(

    11|11|

    3

    1)1)(1)(2(10|10|

    3

    1)0)(0)(2(11|11|

    3

    1)1)(1)(2(

    11|11|3

    12210|10|

    3

    122

    10|10|3

    12211|11|

    3

    122

    11|11|3

    110|10|

    3

    111|11|

    3

    1)2(

    11|11|3

    110|10|

    3

    111|11|

    3

    1)(

    11|11|3

    110|10|

    3

    111|11|

    3

    1)(

    11|11|3

    110|10|

    3

    111|11|

    3

    1)2(

    |)2(

    212121

    212121

    2121

    2121

    21212121

    21212121

    21212121

    212121212121

    212121

    and hence

    >>=>=++++>= ++ aaazza JJJJJJJJJ |0|)44(|)2(| 2121212

    2

    2

    1

    2 .

    Thus, the state |a> is an eigenstate ofJ2

    and Jz withj = 0 and mj = 0 (i.e.|a>=|00>).

    >=

    >>>>++>>=

    >>>>+

    >>+

    >>=

    >>>>+

    >>>>+

    >>>>=

    >>>>++=

    >++

    +

    +

    ++

    ++

    b

    zz

    zz

    bzz

    JJ

    JJ

    JJ

    JJJJJJ

    JJJJJJ

    |2

    11|11|3

    1)2(10|10|

    2

    1)22(11|11|

    2

    1)2(

    11|11|2

    1)1)(1)(2(11|11|

    2

    1)1)(1)(2(

    10|10|2

    122

    10|10|2

    122

    11|11|2

    111|11|

    2

    1)2(

    11|11|2

    111|11|

    2

    1)(

    11|11|2

    111|11|2

    1)(

    11|11|2

    111|11|

    2

    1)2(

    |)2(

    212121

    2121

    21

    21

    212121

    212121

    212121

    2121212121

    212121

    and hence

    >>=>=++++>= ++ bbbzzb JJJJJJJJJ |2|)24(|)2(| 2121212

    2

    2

    1

    2 .

  • 8/9/2019 4604 Exam3 Solutions Fa06

    16/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 16 of 25

    Thus, the state |b> is an eigenstate ofJ2

    and Jz withj = 1 and mj = 0 (i.e.|b>=|10>).

    >=

    >>+>>++>>=

    >>+>>+>>+

    >>+>>+

    >>+>>=

    >>+>>+>>+

    >>+>>+>>+

    >>+>>+>>=

    >>+>>+>>++=

    >++

    +

    +

    ++

    ++

    c

    zz

    zz

    czz

    JJ

    JJ

    JJ

    JJJJJJ

    JJJJJJ

    |2

    11|11|6

    1)24(10|10|

    3

    2)11(11|11|

    6

    1)24(

    11|11|61)1)(1)(2(10|10|

    32)0)(0)(2(11|11|

    61)1)(1)(2(

    11|11|3

    22210|10|

    6

    122

    10|10|6

    12211|11|

    3

    222

    11|11|6

    110|10|

    3

    211|11|

    6

    1)2(

    11|11|6

    110|10|

    3

    211|11|

    6

    1)(

    11|11|6

    110|10|3

    211|11|6

    1)(

    11|11|6

    110|10|

    3

    211|11|

    6

    1)2(

    |)2(

    212121

    212121

    2121

    2121

    21212121

    21212121

    21212121

    212121212121

    212121

    and hence

    >>=+>=++++>= ++ ccczzc JJJJJJJJJ |6|)24(|)2(| 2121212

    2

    2

    1

    2 .

    Thus, the state |c> is an eigenstate ofJ2

    and Jz withj = 2 and mj = 0 (i.e.|c>=|20>).

    Problem 4 (25 points): Consider the case of two non-interactingparticlesboth with mass m in a one-dimensional infinite square well given by

    V(x) = 0 for0 < x < L, and V(x) = . For one particle we know that the

    stationary states of Schrdingers equation are given byh/

    )(),( tiEnnnextx

    = and 02EnEn = , and n is a positive integer and

    2

    22

    02mL

    Eh

    = and where )/sin(2

    )( LxnL

    xn = . For two (non-interacting)

    particles we look for a solution of the formhh /

    21

    /

    2121 )()(),(),,(iEtiEt exxexxtxx == with

    Em

    p

    m

    p xx =+2

    )(

    2

    )( 222

    1 .

    (A) (1 point): Show that )()(),( 2121 xxxx = , is a solution to the two particle non-

    interaction Schrdinger equations, where and are positive integers and (x) and (x) arethe one particle stationary state solutions. Show that the allowed energy levels are given by

    0

    22 )( EE += .

    Solution: We see that

    0 L

    Two Particles in a Box

    (x1)(x2)

  • 8/9/2019 4604 Exam3 Solutions Fa06

    17/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 17 of 25

    hh /

    21

    /

    2121 )()(),(),,(iEtiEt exxexxtxx == with E

    m

    p

    m

    p xx =+2

    )(

    2

    )( 222

    1 .

    Thus,

    ),(),(

    2

    ),(

    2

    212

    2

    21

    22

    2

    1

    21

    22

    xxE

    dx

    xxd

    mdx

    xxd

    m

    =hh

    )()()(

    )(2

    )()(

    2212

    2

    2

    2

    1

    2

    2

    1

    1

    2

    2

    2

    xxEdx

    xdx

    mdx

    xdx

    m

    =

    hh

    Edx

    xd

    xmdx

    xd

    xm=

    2

    2

    2

    2

    2

    2

    2

    1

    1

    2

    1

    2 )(

    )(

    1

    2

    )(

    )(

    1

    2

    hh

    Hence, E = E1 + E2 and

    )()(

    2112

    1

    1

    22

    xEdx

    xd

    m

    =

    h )(

    )(

    2222

    2

    2

    22

    xEdx

    xd

    m

    =

    h

    The total energy is therefore given by

    2

    2222

    212

    )()()(mL

    EEE +=+=h

    2

    222

    12

    )(mL

    E h=

    2

    222

    22

    )(mL

    E h=

    where = 1, 2, 3, ... and = 1, 2, 3, ... and)/sin()/sin(

    2)()(),( 212121 LxLx

    Lxxxx ==

    )/(sin)/(sin4

    )()()()(),( 22

    1

    2

    2212

    *

    1

    *

    21 LxLxL

    xxxxxx ==

    This solution corresponds to the case where the two particles are distinguishable. Define the

    following three probabilities. Let LLP be the probability of finding both particles in the left 1/3

    of the box as follows:

    =3/

    0

    3/

    0

    21

    2

    21 |),(|L L

    LL dxdxxxP .

    Let LRP be the probability of finding one particle in the left 1/3 of the box and one particle in the

    right 1/3 of the box as follows:

    =3/

    0 3/2

    21

    2

    21 |),(|L L

    L

    LR dxdxxxP .

    Let CCP be the probability of finding both particles in the center 1/3 of the box as follows:

    =

    3/2

    3/

    3/2

    3/21

    2

    21 |),(|

    L

    L

    L

    L

    CC

    dxdxxxP .

    Calculate the following observables for the ground state and the first excited state for the

    distinguishable case. (Show your work and fill in the table)

    Points Observable Ground State 1st

    Excited State

    2E

    2 LLP

  • 8/9/2019 4604 Exam3 Solutions Fa06

    18/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 18 of 25

    2 LRP

    2 CCP

    Answer: Distinguishable

    Observable Ground State = 1 = 1 1st Excited State = 1 = 2E 2E0 05E

    LLP ( ) 0.03824

    3

    3

    12

    2

    1

    =

    LP ( )( ) 0.07868

    3

    3

    1

    4

    3

    3

    121

    +

    =

    LL PP

    LRP ( )( ) 0.03824

    3

    3

    12

    11

    =

    RL PP ( )( ) 0.07868

    3

    3

    1

    4

    3

    3

    121

    +

    =

    RL PP

    CCP ( ) 0.37092

    3

    3

    12

    2

    1

    +=

    CP ( )( ) 0.1191

    4

    3

    3

    1

    2

    3

    3

    121

    +=

    CC PP

    Solution: Let me first work on some integrals that I will need

    4

    3

    3

    1

    2

    )3/2sin(

    3

    1

    4

    )3/2sin(

    6

    2

    4

    )2sin(

    2

    2)(sin

    2)/(sin

    2 3/

    0

    3/

    0

    23/

    0

    2

    1

    ==

    =

    =

    ==

    yyL

    Ldxy

    L

    LdxLx

    LP

    LL

    4

    3

    3

    2

    2

    )3/4sin(

    3

    2

    4

    )3/4sin(

    6

    22

    4

    )2sin(

    2

    2)(sin

    2)/(sin

    23/2

    0

    3/2

    0

    2

    3/2

    0

    2

    1

    +==

    =

    =

    ==

    yyL

    Ldxy

    L

    LdxLx

    LP

    L

    T

    2

    3

    3

    1111 +==LTC PPP

    L

    LL

    L

    R PdxLxL

    dxLxL

    P 1

    3/

    0

    2

    3/2

    2

    1 )/(sin2

    )/(sin2

    ===

    Note that 1111 =++RCL PPP .

    8

    3

    3

    1

    4

    )3/4sin(

    3

    1

    4

    )3/4sin(

    3

    1

    4

    )2sin(

    22

    2)(sin

    2

    2)/2(sin

    23/2

    0

    3/2

    0

    2

    3/

    0

    2

    2

    +==

    =

    =

    == yyL

    Ldxy

    L

    LdxLx

    LP

    L

    L

    8

    3

    3

    2

    4

    )3/8sin(

    3

    2

    4

    )3/8sin(

    6

    41

    4

    )2sin(

    22

    2)(sin

    2

    2)/2(sin

    23/4

    0

    3/4

    0

    2

    3/2

    0

    2

    2

    ==

    =

    =

    == yyL

    Ldxy

    L

    LdxLx

    LP

    L

    T

  • 8/9/2019 4604 Exam3 Solutions Fa06

    19/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 19 of 25

    4

    3

    3

    1222 ==LTC PPP

    L

    LL

    L

    R PdxLxL

    dxLxL

    P 2

    3/

    0

    2

    3/2

    2

    2 )/2(sin2

    )/2(sin2

    ===

    Note that 1222 =++ RCL PPP .

    3

    1

    23

    2

    4

    )2sin(

    23

    2)(sin

    3

    2)/3(sin

    2

    00

    2

    3/

    0

    2

    3 =

    =

    =

    ==

    yyL

    Ldxy

    L

    LdxLx

    LP

    L

    L

    ( )3

    2

    3

    2

    4

    )2sin(

    23

    2)(sin

    3

    2)/3(sin

    22

    0

    2

    0

    2

    3/2

    0

    2

    3 =

    =

    =

    ==

    yyL

    Ldxy

    L

    LdxLx

    LP

    L

    T

    3

    1333 ==LTC PPP

    L

    LL

    L

    R PdxLxL

    dxLxL

    P 3

    3/

    0

    2

    3/2

    2

    3 )/3(sin2

    )/3(sin2

    ===

    Note that 1333 =++RCL PPP . These results are summarized in the following table.

    n=1 n=2 n=3

    L

    nP 1955.04

    3

    3

    1

    4022.0

    8

    3

    3

    1+

    3

    1

    C

    nP 6090.02

    3

    3

    1+

    1955.0

    4

    3

    3

    1

    3

    1

    R

    nP 1955.04

    3

    3

    1

    4022.0

    8

    3

    3

    1+

    3

    1

    sum 1 1 1

    We will also need the following integrals.

    ( )

    ( ) ( )

    2

    3)sin(

    1)sin(

    3

    1)/cos(

    1)/3cos(

    1

    )/cos()/3cos(1

    )/2sin()/sin(2

    3/

    00

    3/

    0

    3/

    0

    3/

    0

    3/

    0

    12

    ==

    ===

    yydxLxL

    dxLxL

    dxLxLxL

    dxLxLxL

    I

    LL

    LL

    L

    ( )

    ( ) ( ) 0)sin(1

    )sin(3

    1)/cos(

    1)/3cos(

    1

    )/cos()/3cos(1

    )/2sin()/sin(2

    3/2

    3/

    23/2

    3/

    3/2

    3/

    3/2

    3/

    3/2

    3/

    12

    ==

    ===

    yydxLxL

    dxLxL

    dxLxLxL

    dxLxLxL

    I

    L

    L

    L

    L

    L

    L

    L

    L

    C

    ( )

    ( ) ( )

    2

    3)sin(

    1)sin(

    3

    1)/cos(

    1)/3cos(

    1

    )/cos()/3cos(1

    )/2sin()/sin(2

    3/2

    3

    2

    3/23/2

    3/23/2

    12

    +==

    ===

    yydxLxL

    dxLxL

    dxLxLxL

    dxLxLxL

    I

    L

    L

    L

    L

    L

    L

    L

    L

    R

  • 8/9/2019 4604 Exam3 Solutions Fa06

    20/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 20 of 25

    ( )

    ( ) ( )

    8

    33

    4

    3

    8

    3

    )sin(21)sin(

    41)/2cos(1)/4cos(1

    )/2cos()/4cos(1

    )/3sin()/sin(2

    3/20

    3/40

    3/

    0

    3/

    0

    3/

    0

    3/

    0

    13

    ==

    =

    ===

    yydxLxL

    dxLxL

    dxLxLxL

    dxLxLxL

    I

    LL

    LL

    L

    ( )

    ( ) ( )

    4

    33

    2

    3

    4

    3

    2

    3

    2

    3

    2

    1

    2

    3

    2

    3

    4

    1

    )sin(2

    1)sin(

    4

    1)/2cos(

    1)/4cos(

    1

    )/2cos()/4cos(1

    )/3sin()/sin(2

    3/4

    3/2

    3/8

    3/4

    3/2

    3/

    3/2

    3/

    3/2

    3/

    3/2

    3/

    13

    =+=

    +=

    =

    ===

    yydxLxL

    dxLxL

    dxLxLxL

    dxLxLxL

    I

    L

    L

    L

    L

    L

    L

    L

    L

    C

    ( )

    ( ) ( )

    8

    33

    4

    3

    8

    3

    )sin(2

    1)sin(

    4

    1)/2cos(

    1)/4cos(

    1

    )/2cos()/4cos(1

    )/3sin()/sin(2

    2

    3/4

    4

    3/8

    3/23/2

    3/23/2

    13

    ==

    =

    ===

    yydxLxL

    dxLxL

    dxLxLxL

    dxLxLxL

    I

    L

    L

    L

    L

    L

    L

    L

    L

    R

    The results are summerized in the following table.

    12 13

    L 2757.0

    2

    3

    2067.0

    8

    33

    C 0 4135.0

    4

    33+

    R 2757.0

    2

    3++

    2067.0

    8

    33

    sum 0 0

    Now for distinguishable particles we have)/sin()/sin(

    2)()(),( 212121 LxLx

    Lxxxx ==

    )/(sin)/(sin4

    |),(|),( 22

    1

    2

    2

    2

    2121 LxLxL

    xxxxD ==

    The ground state is the state with = 1 and = 1, Thus, 00 2EED = and

  • 8/9/2019 4604 Exam3 Solutions Fa06

    21/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 21 of 25

    ( )2

    2

    1

    3/

    0

    22

    2

    3/

    0

    11

    2

    3/

    0

    3/

    0

    212

    2

    1

    2

    211

    4

    3

    3

    1)/(sin

    2)/(sin

    2

    )/(sin)/(sin4

    )(

    ==

    =

    L

    LL

    L L

    D

    LL

    PdxLxL

    dxLxL

    dxdxLxLxL

    P

    and

    ( )2

    2

    1

    3/2

    3/

    22

    2

    3/2

    3/

    11

    2

    3/2

    3/

    3/2

    3/

    212

    2

    1

    2

    211

    2

    3

    3

    1)/(sin

    2)/(sin

    2

    )/(sin)/(sin4

    )(

    +==

    =

    C

    L

    L

    L

    L

    L

    L

    L

    L

    D

    CC

    PdxLxL

    dxLxL

    dxdxLxLxL

    P

    and

    ( )2

    2

    111

    3/2

    22

    23/2

    0

    11

    2

    3/2

    0 3/2

    212

    2

    1

    2

    211

    4

    3

    3

    1)/(sin

    2)/(sin

    2

    )/(sin)/(sin4

    )(

    ===

    =

    LRLL

    L

    L

    L L

    L

    D

    LR

    PPPdxLxL

    dxLxL

    dxdxLxLxL

    P

    The 1st

    excited state has = 1 and = 2, Thus, 01 5EED = and

    ( )( )

    +

    ==

    =

    8

    3

    3

    1

    4

    3

    3

    1)/2(sin

    2)/(sin

    2

    )/2(sin)/(sin4

    )(

    21

    3/

    0

    22

    2

    3/

    0

    11

    2

    3/

    0

    3/

    0

    212

    2

    1

    2

    212

    LL

    LL

    L L

    D

    LL

    PPdxLxL

    dxLxL

    dxdxLxLxL

    P

    and

    ( )( )

    +==

    =

    4

    3

    3

    1

    2

    3

    3

    1)/2(sin

    2)/(sin

    2

    )/2(sin)/(sin4

    )(

    21

    3/2

    3/

    22

    2

    3/2

    3/

    11

    2

    3/2

    3/

    3/2

    3/

    212

    2

    1

    2

    212

    CC

    L

    L

    L

    L

    L

    L

    L

    L

    D

    CC

    PPdxLxL

    dxLxL

    dxdxLxLxL

    P

    and

    +

    ==

    =

    83

    31

    43

    31)/2(sin2)/(sin2

    )/2(sin)/(sin4

    )(

    21

    3/2

    222

    3/2

    0

    112

    3/2

    0 3/2

    212

    2

    1

    2

    212

    RL

    L

    L

    L

    L L

    L

    D

    LR

    PPdxLxL

    dxLxL

    dxdxLxLxL

    P

    (B) For two identical bosons (i.e. particles with integral spins in the same spin state) we must use

    the symmetric wavefunction

    ( )),(),(2

    1),( 122121 xxxxxx

    S

    += ( symmetric under 12)

  • 8/9/2019 4604 Exam3 Solutions Fa06

    22/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 22 of 25

    ( )),(),(2

    1),( 122121 xxxxxx

    S

    += ( = symmetric under 12)

    Calculate the following observables for the ground state and the first excited state for theidentical boson case. (Show your work and fill in the table)

    Points Observable Ground State 1st

    Excited State

    2 E

    2 LLP

    2 LRP

    2 CCP

    Answer: Bosons

    Observable Ground State = 1 = 1 1st Excited State = 1 = 2E 2E0 05E

    LLP ( ) 0.038243312

    2

    1

    =

    LP ( )( ) ( )0.15460.07600.0786

    2

    3

    8

    3

    3

    1

    4

    3

    3

    12

    2

    1221

    +

    +

    +

    =+ LLL

    IPP

    LRP ( )( ) 0.03824

    3

    3

    12

    11

    =

    RLPP

    ( )( ) ( )( )

    0.00260.0760-0.0786

    2

    3

    8

    3

    3

    1

    4

    3

    3

    12

    121221

    +

    =+

    RLRLIIPP

    CCP ( ) 0.37092

    3

    3

    12

    2

    1

    +=

    CP ( )( ) ( )

    0.1191

    4

    3

    3

    1

    2

    3

    3

    121221

    +=+

    CCC IPP

    Solution: In this case we have

    [ ])/sin()/sin()/sin()/sin(2

    ),( 212121 LxLxLxLxL

    xxS += ()

    )/sin()/sin(2

    ),( 2121 LxLxL

    xxS =

    and

    ),(),(),( 21int

    2121 xxxxxxclassicalBE

    += ()

    where

    ( )),(),(Re),( 212121int xxxxxx ()

    and),(),( 2121 xxxx

    classicalBE

    = .where

    ( ))/(sin)/(sin)/(sin)/(sin2),( 22122212221 LxLxLxLxLxxclassical +=

    ( ))/sin()/sin()/sin()/sin(4

    ),(2211221

    int LxLxLxLxL

    xx =

  • 8/9/2019 4604 Exam3 Solutions Fa06

    23/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 23 of 25

    and

    )),(),((),( 122121

    21 xxxxxxDDclassical

    += .

    The ground state is the state with = 1 and = 1, Thus, 00 2EEBE = , and

    D

    LL

    BE

    LL PP )()( 1111 = , DCC

    BE

    CC PP )()( 1111 = , DLR

    BE

    LR PP )()( 1111 = .

    The 1st

    excited state has = 1 and = 2, Thus, 01 5EED = and

    ( )( ) ( )2

    2

    1221

    3/

    0

    3/

    0

    2121

    int

    12

    3/

    0

    3/

    0

    212112

    3/

    0

    3/

    0

    21211212

    2

    3

    8

    3

    3

    1

    4

    3

    3

    1

    ),(),(),()(

    +

    +

    =+=

    +==

    LLL

    L LL L

    classical

    L L

    BE

    BE

    LL

    IPP

    dxdxxxdxdxxxdxdxxxP

    where I used

    ( )2123/

    0

    222

    3/

    0

    111

    3/

    0

    3/

    0

    2122112

    3/

    0

    3/

    0

    2121

    int

    12

    )/2sin()/sin(2

    )/2sin()/sin(2

    )/2sin()/sin()/2sin()/sin(4),(

    L

    LL

    L LL L

    IdxLxLxL

    dxLxLxL

    dxdxLxLxLxLxL

    dxdxxx

    ==

    =

    Also,

    ( )( ) ( )( ) ( )( ) ( )( ) ( )( )2

    12122112121221

    2121

    3/

    0 3/2

    2121

    int

    12

    3/

    0 3/2

    212112

    3/

    0 3/2

    21211212

    2

    3

    8

    3

    3

    1

    4

    3

    3

    1

    ),(),(),()(

    +

    =+=++=

    +==

    RLRLRLRLRL

    L L

    L

    L L

    L

    classical

    L L

    L

    BE

    BE

    LR

    IIPPIIPPPP

    dxdxxxdxdxxxdxdxxxP

    where I used

    ( )( )RLL

    L

    L

    L L

    L

    L L

    L

    IIdxLxLxL

    dxLxLxL

    dxdxLxLxLxLxL

    dxdxxx

    1212

    3/2

    222

    3/

    0

    111

    3/

    0 3/2

    2122112

    3/

    0 3/2

    2121

    int

    12

    )/2sin()/sin(2

    )/2sin()/sin(2

    )/2sin()/sin()/2sin()/sin(4

    ),(

    ==

    =

    Also,

    ( )( ) ( )( ) ( ) ( )( ) ( )

    +=+=++=

    +==

    4

    3

    3

    1

    2

    3

    3

    1

    ),(),(),()(

    2

    1221

    2

    121221

    2121

    3/2

    3/

    3/2

    3/

    2121

    int

    12

    3/2

    3/

    3/2

    3/

    212112

    3/2

    3/

    3/2

    3/

    21211212

    CCCCCCCC

    L

    L

    L

    L

    L

    L

    L

    L

    classical

    L

    L

    L

    L

    BE

    BE

    CC

    IPPIPPPP

    dxdxxxdxdxxxdxdxxxP

    where I used

  • 8/9/2019 4604 Exam3 Solutions Fa06

    24/25

    PHY4604 Fall 2006 Final Exam Solutions

    Department of Physics Page 24 of 25

    ( )2123/2

    3/

    222

    3/2

    3/

    111

    3/

    3/

    3/2

    3/

    2122112

    3/2

    3/

    3/2

    3/

    2121

    int

    12

    )/2sin()/sin(2

    )/2sin()/sin(2

    )/2sin()/sin()/2sin()/sin(4

    ),(

    C

    L

    L

    L

    L

    L

    L

    L

    L

    L

    L

    L

    L

    IdxLxLxL

    dxLxLxL

    dxdxLxLxLxLxL

    dxdxxx

    ==

    =

    (C) For two identical fermions (i.e. particles with half-integral spins in the same spin state) wemust use the symmetric wavefunction

    ( )),(),(2

    1),( 122121 xxxxxx

    A

    = (antisymmetric under 12)

    Calculate the following observables for the ground state and the first excited state for the

    identical fermion case. (Show your work and fill in the table)

    Points Observable Ground State 1st

    Excited State

    2E

    2 LLP

    2 LRP

    2 CCP

    Answer: Fermions

    Observable Ground State = 1 = 2 1st Excited State = 1 = 3E 05E 010E

    LLP ( )( ) ( )

    0.00260.0760-0.0786

    2

    3

    8

    3

    3

    1

    4

    3

    3

    12

    2

    1221

    +

    =

    LLL IPP ( )( ) ( )

    0.02240.0427-0.0652

    8

    33

    3

    1

    4

    3

    3

    12

    2

    1331

    =

    LLL IPP

    LRP ( )( ) ( )( )

    0.15460.07600.0786

    2

    3

    8

    3

    3

    1

    4

    3

    3

    12

    121221

    +

    +

    +

    =

    RLRL IIPP ( )( ) ( )( )

    0.02240.0427-0.0652

    8

    33

    3

    1

    4

    3

    3

    12

    131331

    =

    RLRL IIPP

    CCP ( )( ) ( )

    0.1191

    4

    3

    3

    1

    2

    3

    3

    121221

    +=+

    CCC IPP ( )( ) ( )

    0.03200.1710-0.2030

    8

    33

    3

    1

    2

    3

    3

    12

    2

    1331

    +=

    CCC IPP

    Solution: In this case we have

    [ ])/sin()/sin()/sin()/sin(2),( 212121 LxLxLxLxL

    xxA =

    and

    ),(),(),( 21int

    2121 xxxxxxclassicalFD

    =

    where

    ( )),(),(Re),( 212121int xxxxxx ().

  • 8/9/2019 4604 Exam3 Solutions Fa06

    25/25

    PHY4604 Fall 2006 Final Exam Solutions

    The ground has = 1 and = 2, Thus, 00 5EEFD = and

    ( )( ) ( )2

    2

    1221

    3/

    0

    3/

    0

    2121

    int

    12

    3/

    0

    3/

    0

    212112

    3/

    0

    3/

    0

    21211212

    2

    3

    8

    3

    3

    1

    4

    3

    3

    1

    ),(),(),()(

    +

    ==

    ==

    LLL

    L LL L

    classical

    L L

    FD

    FD

    LL

    IPP

    dxdxxxdxdxxxdxdxxxP

    Also,

    ( )( ) ( )( ) ( )( ) ( )( ) ( )( )2

    12122112121221

    2121

    3/

    0 3/2

    2121

    int

    12

    3/

    0 3/2

    212112

    3/

    0 3/2

    21211212

    2

    3

    8

    3

    3

    1

    4

    3

    3

    1

    ),(),(),()(

    +

    +

    ==+=

    ==

    RLRLRLRLRL

    L L

    L

    L L

    L

    classical

    L L

    L

    FD

    FD

    LR

    IIPPIIPPPP

    dxdxxxdxdxxxdxdxxxP

    Also,

    ( )( ) ( )( ) ( ) ( )( ) ( )

    +=+=+=

    ==

    4

    3

    3

    1

    2

    3

    3

    1

    ),(),(),()(

    2

    1221

    2

    121221

    2121

    3/2

    3/

    3/2

    3/

    2121int12

    3/2

    3/

    3/2

    3/

    212112

    3/2

    3/

    3/2

    3/

    21211212

    CCCCCCCC

    L

    L

    L

    L

    L

    L

    L

    L

    classical

    L

    L

    L

    L

    FDFD

    CC

    IPPIPPPP

    dxdxxxdxdxxxdxdxxxP

    The 1st

    excited state has = 1 and = 3, Thus, 00 10EEFD = and

    ( )( ) ( )

    2

    21331

    3/

    0

    3/

    0

    2121

    int

    13

    3/

    0

    3/

    0

    212113

    3/

    0

    3/

    0

    21211313

    833

    31

    43

    31

    ),(),(),()(

    ==

    ==

    LLL

    L LL L

    classical

    L L

    FD

    FD

    LL

    IPP

    dxdxxxdxdxxxdxdxxxP

    Also,

    ( )( ) ( )( ) ( )( ) ( )( ) ( )( )2

    13133113131321

    3121

    3/

    0 3/2

    2121

    int

    13

    3/

    0 3/2

    212113

    3/

    0 3/2

    21211313

    8

    33

    3

    1

    4

    3

    3

    1

    ),(),(),()(

    ==+=

    ==

    RLRLRLRLRL

    L L

    L

    L L

    L

    classical

    L L

    L

    FD

    FD

    LR

    IIPPIIPPPP

    dxdxxxdxdxxxdxdxxxP

    Also,

    ( )( ) ( )( ) ( ) ( )( ) ( )2

    2

    1331

    2

    131321

    3121

    3/2

    3/

    3/2

    3/

    2121

    int

    13

    3/2

    3/

    3/2

    3/

    212113

    3/2

    3/

    3/2

    3/

    21211313

    8

    33

    3

    1

    2

    3

    3

    1

    ),(),(),()(

    +==+=

    ==

    CCCCCCCC

    L

    L

    L

    L

    L

    L

    L

    L

    classical

    L

    L

    L

    L

    FD

    FD

    CC

    IPPIPPPP

    dxdxxxdxdxxxdxdxxxP