47395606 fundamental of microelectronics bahzad razavi chapter 4 solution manual (1)

Upload: borgestassio

Post on 03-Apr-2018

418 views

Category:

Documents


6 download

TRANSCRIPT

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    1/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    2/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    3/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    4/62

    4.4 According to Equation (4.8), we have

    IC =AEqDnn

    2

    i

    NBWB

    eVBE/VT 1

    1

    WB

    We can see that ifWB increases by a factor of two, then IC decreases by a factor of two .

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    5/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    6/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    7/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    8/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    9/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    10/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    11/62

    4.11

    VBE = 1.5 V IE(1 k)

    1.5 V IC(1 k) (assuming 1)

    = VT ln

    IC

    IS

    IC = 775 A

    VX IC(1 k)

    = 775 mV

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    12/62

    4.12 Since we have only integer multiples of a unit transistor, we need to find the largest number thatdivides both I1 and I2 evenly (i.e., we need to find the largest x such that I1/x and I2/x are integers).This will ensure that we use the fewest transistors possible. In this case, its easy to see that we shouldpick x = 0.5 mA, meaning each transistor should have 0.5 mA flowing through it. Therefore, I1 shouldbe made up of 1 mA/0.5 mA = 2 parallel transistors, and I2 should be made up of 1.5 mA/0.5 mA = 3parallel transistors. This is shown in the following circuit diagram.

    VB

    +

    I1 I2

    Now we have to pick VB so that IC = 0.5 mA for each transistor.

    VB = VT ln

    ICIS

    = (26 mV) ln

    5 104 A

    3 1016 A

    = 732 mV

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    13/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    14/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    15/62

    4.15

    VB VBER1

    = IB

    =IC

    IC = R1

    [VBVT ln(IC/IS)]

    IC = 786 A

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    16/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    17/62

    4.17 First, note that VBE1 = VBE2 = VBE.

    VB = (IB1 + IB2)R1 + VBE

    =R1

    (IX + IY) + VT ln(IX/IS1)

    IS2

    =

    5

    3IS1

    IY =5

    3IX

    VB =8R13

    IX + VT ln(IX/IS1)

    IX = 509 A

    IY = 848 A

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    18/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    19/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    20/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    21/62

    4.21 (a)

    VBE = 0.8 V

    IC = ISeVBE/VT

    = 18.5 mA

    VCE = VCC ICRC

    = 1.58 V

    Q1 is operating in forward active. Its small-signal parameters are

    gm = IC/VT = 710 mS

    r = /gm = 141

    ro =

    The small-signal model is shown below.

    B

    r

    +

    v

    E

    gmv

    C

    (b)

    IB = 10 A

    IC = IB = 1 mA

    VBE = VT ln(IC/IS) = 724 mV

    VCE = VCC ICRC

    = 1.5 V

    Q1 is operating in forward active. Its small-signal parameters are

    gm = IC/VT = 38.5 mS

    r = /gm = 2.6 k

    ro =

    The small-signal model is shown below.

    B

    r

    +

    v

    E

    gmv

    C

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    22/62

    (c)

    IE =VCC VBE

    RC=

    1 +

    IC

    IC =

    1 +

    VCC VT ln(IC/IS)

    RC

    IC = 1.74 mA

    VBE = VT ln(IC/IS) = 739 mV

    VCE = VBE = 739 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = IC/VT = 38.5 mS

    r = /gm = 2.6 k

    ro =

    The small-signal model is shown below.

    B

    r

    +

    v

    E

    gmv

    C

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    23/62

    4.22 (a)

    IB = 10 A

    IC = IB = 1 mA

    VBE = VT ln(IC/IS) = 739 mV

    VCE = VCC IE(1 k)

    = VCC 1 +

    (1 k)

    = 0.99 V

    Q1 is operating in forward active. Its small-signal parameters are

    gm = IC/VT = 38.5 mS

    r = /gm = 2.6 k

    ro =

    The small-signal model is shown below.

    B

    r

    +

    v

    E

    gmv

    C

    (b)

    IE =VCC VBE

    1 k=

    1 +

    IC

    IC =

    1 +

    VCC VT ln(IC/IS)

    1 k

    IC = 1.26 mA

    VBE = VT ln(IC/IS) = 730 mV

    VCE = VBE = 730 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = IC/VT = 48.3 mS

    r = /gm = 2.07 k

    ro =

    The small-signal model is shown below.

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    24/62

    B

    r

    +

    v

    E

    gmv

    C

    (c)

    IE = 1 mA

    IC =

    1 + IE = 0.99 mA

    VBE = VT ln(IC/IS) = 724 mV

    VCE = VBE = 724 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = IC/VT = 38.1 mS

    r = /gm = 2.63 k

    ro =

    The small-signal model is shown below.

    B

    r

    +

    v

    E

    gmv

    C

    (d)

    IE = 1 mA

    IC =

    1 + IE = 0.99 mA

    VBE = VT ln(IC/IS) = 724 mV

    VCE = VBE = 724 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = IC/VT = 38.1 mS

    r = /gm = 2.63 k

    ro =

    The small-signal model is shown below.

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    25/62

    B

    r

    +

    v

    E

    gmv

    C

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    26/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    27/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    28/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    29/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    30/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    31/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    32/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    33/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    34/62

    4.31

    IC = ISeVBE/VT

    1 +

    VCE

    VA

    IC,Total = nIC

    = nISeVBE/VT 1 +

    VCE

    VA

    gm,Total =IC

    VBE

    = nIS

    VTeVBE/VT

    nIC

    VT

    = ngm

    = n 0.4435 S

    IB,Total =1

    IC,Total

    r,Total =IB,TotalVBE

    1

    IC,Total

    VT

    1

    =

    nIC

    VT

    1

    =r

    n

    =225.5

    n(assuming = 100)

    ro,Total =IC,Total

    VCE1

    IC,Total

    VA

    1

    =VA

    nIC

    =ro

    n

    =693.8

    n

    The small-signal model is shown below.

    B

    r,Total

    +

    v

    E

    gm,Totalv

    C

    ro,Total

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    35/62

    4.32 (a)

    VBE = VCE (for Q1 to operate at the edge of saturation)

    VT ln(IC/IS) = VCC ICRC

    IC = 885.7 A

    VB = VBE = 728.5 mV

    (b) Let IC

    , VB

    , VBE

    , and VCE

    correspond to the values where the collector-base junction is forwardbiased by 200 mV.

    VBE = V

    CE + 200 mV

    VT ln(I

    C/IS) = VCC I

    CRC + 200 mV

    IC = 984.4 A

    VB = 731.3 mV

    Thus, VB can increase by V

    B VB = 2.8 mV if we allow soft saturation.

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    36/62

  • 7/28/2019 47395606 Fundamental of MIcroelectronics Bahzad Razavi Chapter 4 Solution Manual (1)

    37/62

    4.34

    VBE = VCC IBRB

    VT ln(IC/IS) = VCC ICRB/

    IC = 1.67 mA

    VBC = VCC IBRB (VCC ICRC)

    < 200 mV

    ICRC IBRB < 200 mV

    RC