47414580 synthetic fibers

946
Franz Fourne Synthetic Fibers Machines and Equipment, Manufacture, Properties Handbook for Plant Engineering, Machine Design, and Operation Hanser Publishers, Munich Hanser/Gardner Publications, Inc., Cincinnati

Upload: arturojimenez72

Post on 24-Nov-2015

148 views

Category:

Documents


5 download

TRANSCRIPT

  • Franz Fourne

    Synthetic FibersMachines and Equipment, Manufacture,PropertiesHandbook for Plant Engineering, Machine Design,and Operation

    Hanser Publishers, MunichHanser/Gardner Publications, Inc., Cincinnati

  • The Author:Franz Fourne, Auf dem Heidgen 28, 53127 Bonn, Germany

    Translated and edited byDr. Helmut H.A. Hergeth, Raleigh, NC, USA, and Ron Mears, Obernburg, Germany

    Distributed in the USA and in Canada byHanser/Gardner Publications, Inc.6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USAFax: (513) 527-8950Phone: (513) 527-8977 or 1-800-950-8977Internet: http://www.hansergardner.com

    Distributed in all other countries byCarl Hanser VerlagPostfach 86 04 20, 81631 Munchen, GermanyFax: +49 (89) 98 12 64Internet: http://www.hanser.de

    The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especiallyidentified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act,may accordingly be used freely by anyone.

    While the advice and information in this book are believed to be true and accurate at the date of going to press, neitherthe authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may bemade. The publisher makes no warranty, express or implied, with respect to the material contained herein.

    Library of Congress Cataloging-in-Publication DataFourne, Franz.[Synthetische Fasern. English]Synthetic fibers/Franz Fourne.

    p. cm.Translation of : Synthetische FasernIncludes bibliographical references and index.ISBN 1-56990-250-X1. Textile fibers, Synthetic. I. Title.TS1548.5.F613 1998677.4dc21 98-36339

    Die Deutsche Bibliothek - CIP-EinheitsaufhahmeFourne, Franz.Synthetic fibers/Franz Fourne. [Transl. and ed. by Helmut H.A.Hergeth]. Munich : Hanser; Cincinnati : Hanser/Gardner, 1998

    Dt. Ausg. u.d.T.: Fourne, Franz: Synthetische FasernISBN 3-446-16072-8

    All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic ormechanical, including photocopying or by any information storage and retrieval system, without permission in writingfrom the publisher.

    Carl Hanser Verlag, Munich 1999Typeset in Great Britain by Techset Composition Ltd., SalisburyPrinted and bound in Germany by Kosel, Kempten

  • With many thanks to my wife, Ursula Fourne,for her support and love

  • Preface

    One hundred years of chemical fibers, and of these more than fifty years of synthetic fibers, do demand aninventory of the required technologies. While there is literature for the chemistry of the chemical andsynthetic fibers, as well as for the processes and the textile testing technology, it is hardly possible to findcomprehensive descriptions from installation, equipment and machinery manufacture through productionof synthetic fibers and filaments and the manipulation of their properties.

    The first book "Synthetic Fibers" was published in 1954 with about 160 pages and a worldproduction of about 200,000 t/year at that time. The revised second edition from 1964 with 950 pagescovered the total area of production through processing. The annual production of synthetic fibers hadincreased to 1.7 million t/year by then. Today, approximately 20 million t/year are produced accountingfor about 45% of the world fiber production. The technical progress connected to this also requires a newedition which addresses only the first third of the topics covered in the 1964 book on 900 pages.

    Further reasons for the new edition are: At the European universities only Chemnitz and Zurichmaintain a department for the design of machines and equipment for the production of synthetic fibers.Textiles taught within the framework of mechanical engineering departments of other universities focusesprimarily on textile engineering, while the training of the engineers is left to the specific industries. Thusthis becomes an issue for about 1200 fiber production companies and over 1000 machinery makers,without having a comprehensive overview available. Many of the design elements are also unknown inthe general mechanical engineering. Drive problems, auxiliaries preparation and conditions for auxiliaryplants, as well as mathematical-physical and process technological items are explained in manyexamples.

    The corresponding electro and micro-processing technology, automation and computer-integratedmanufacturing are not covered in this book, as this would exceed the given frame.

    This book is separated into a part on material specific processes, the corresponding installations,machines, and process data. In a further part the designs and calculations are introduced, also for differentmaterials and varying function parameters.

    The second to last chapter on fiber properties and their manipulation by Mr. Peter M. Latzke reflects achange in thought over the last 20 years: While the fiber user back then used to receive data sheets on thespecific properties of a shipment, today's fiber producers have to keep all agreed upon properties constantfor all future shipments and influence their production accordingly to stay within given tolerances.Production control thus has been replaced by process control that simply supervises the productionparameters. Accordingly, quality systems have been specified in DESf, ISO, etc. Finally, the numerousconversion factors are shown and the fiber property ranges demonstrated according to a fiber table byKleinhansl. Following the wish of practitioners to show most connections in measurable sizes, the authoruses numerous drawings, diagrams, tables, and formulas and only a limited number of photos. He doeswant to point out though, that the installations, machines, and parts in the drawings have been built andinstalled in praxis.

    This book provides a large number of diagrams, data, and companies names, but it does not expect tobe complete or exclusive. There are certainly more companies producing similar or equal products; theyshould not feel neglected. Very often production is done according to individual ideas and guidelines,which can also result in optimum products.

  • The author does not want to forget to thank all those friends and companies that personally or throughinformation, documents, figures, etc. contributed to the success of this work. Representing this group,also mentioned in the references, he would like to thank H. J. Koslowski (Chemiefasern/Textilindustrie),Dr. D. Ahrendt (Neumag), H. Enneking (Fleissner), W. Erdmann, Dr. B. Von Falkai, Dr. L. Gehrking(Fischer Industrieanlagen) J. Hartig and E. Endrun (John Brown Deutsche Engineering), Dr. E. Lenk, Dr.M. Mayer (Barmag), H. Michel (Heberlein), I. Ruzek (Corovin), Dr. K. Schafer (Veba), Dr. H. Liickert(Ems AG), H. Wunderlich and Dr. H. D, Schumann (Zimmer AG), B. Matovinovic and A. Schweitzer(Automatik), F. A. Graf (Rieter AG), Prof. Dr. Wulfhorst (Textilinstitut of the RWTH Aachen). Withdrafts J. Keilert (Automatik, Granulation) and R. Wagener (Berges, frequency drives) contributed. Theauthor also would like to thank the Central European raw material and fiber producers for numerousdocuments and references.

    His particular thanks go to his wife Ursula for her support and love, to Dr. Wolfgang Glenz, MsMartha Kiirzl, andlast but not leastto Carl Hanser Publishers and all employees who worked on thisbook.

    Franz Fourne

  • ix This page has been reformatted by Knovel to provide easier navigation.

    Contents

    Preface ................................................................................................. vii

    1. Introduction .................................................................................. 1 1.1 General Remarks ................................................................................ 1 1.2 Conditions for the Production of Textile Fibers .................................. 1 1.3 The Most Important Fiber Raw Materials ........................................... 5 1.4 Economic Development ...................................................................... 14 1.5 Price Developments ............................................................................ 21 1.6 Raw Materials ..................................................................................... 25 References ................................................................................................... 30

    2. Polymer Specific Processes ....................................................... 33 2.1 Polymerization, Polycondensation, and Polyaddition ......................... 33

    2.1.1 Polymerization ................................................................. 33 2.1.2 Polycondensation ............................................................ 34 2.1.3 Polyaddition .................................................................... 34

    2.2 Polyamides (PA) ................................................................................. 34 2.2.1 Introduction ..................................................................... 34 2.2.2 Polyamide 4 (PA4) .......................................................... 36 2.2.3 Polyamide 6 (PA6) .......................................................... 36

    2.2.3.1 Production Process for Caprolactam ................... 36 2.2.3.2 Polymerization of Caprolactam to

    Polyamide 6 ......................................................... 37 2.2.3.3 Extrusion, Pelletizing, and Drying ........................ 44 2.2.3.4 Remarks on Polycondensation and

    Important Process Characteristics of PA6 .................................................................. 44

  • x Contents

    This page has been reformatted by Knovel to provide easier navigation.

    2.2.3.5 Polymerization of Caprolactam in an Autoclave ............................................................. 46

    2.2.3.6 Continuous VK-Tube Polymerization ................... 47 2.2.3.7 Vacuum Demonomerization ................................ 51 2.2.3.8 Extraction of PA6 Chips ....................................... 52 2.2.3.9 Large PA6 Polymerization and Chip

    Production Installations ........................................ 54 2.2.3.10 Spinning and Drawing of PA6 Filaments ............. 55

    2.2.4 Polyamide 66 (PA66) ...................................................... 57 2.2.4.1 Production of the Monomers ................................ 57 2.2.4.2 Polycondensation of AH-Salt to PA66 in

    Autoclaves ........................................................... 58 2.2.4.3 Continuous Polycondensation of PA66 ............... 60 2.2.4.4 Spinning and Drawing of PA66 Filaments ........... 60

    2.2.5 Other Polyamides ............................................................ 64 2.2.5.1 Polyamide 46 (PA46) ........................................... 64 2.2.5.2 Polyamide 610 (PA610) ....................................... 65 2.2.5.3 Polyamide 7 (PA7) ............................................... 65 2.2.5.4 Polyamide 11 (PAH, Rilsan) ................................ 66 2.2.5.5 Polyamide 12 (PA 12) .......................................... 66

    2.3 Polyester (PES) ................................................................................... 67 2.3.1 Introduction ..................................................................... 67 2.3.2 Production of Dimethyl Terephthalate (DMT),

    Terephthalic Acid (TPA) and Ethylene Glycol (EG) ..................................................................... 68

    2.3.3 Process for the Production of Polyethylene Terephthalate (PET) ........................................................ 69 2.3.3.1 Transesterification of Diethylene

    Glycolterephthalate and Ethylene Glycol to Diglycole Terephthalate ................................... 69

    2.3.3.2 Direct Esterification of Terephthalic Acid and Ethylene Glycol to Diethylene Glycolterephthalate .............................................. 70

  • Contents xi

    This page has been reformatted by Knovel to provide easier navigation.

    2.3.3.3 Poly condensation of Diethylene Glycolterephthalate to Polyethylene Terephthalate ....................................................... 71

    2.3.3.4 Properties of PET Melts and Chips ...................... 74 2.3.4 Autoclave Polycondensation to PET ................................ 76 2.3.5 Continuous Polycondensation to PET ............................. 79

    2.3.5.1 Processes and Apparatus for Trans- and Direct Esterification .............................................. 79

    2.3.5.2 Finisher ................................................................ 80 2.3.6 Spinning and Drawing of PET ......................................... 86

    2.3.6.1 Route of PET to Spinning .................................... 86 2.3.6.2 Spinning and Take-Up of PET Filaments ............ 87 2.3.6.3 Spinning and Drawing of PET Filaments

    and Tow ............................................................... 89 2.3.6.4 Production of HM-HT Cotton Type

    Polyester Staple Fibers ........................................ 91 2.3.7 Polybutylene Terephthalate (PBT) ................................... 94

    2.4 Polyolefines ......................................................................................... 95 2.4.1 Polypropylene (PP) ......................................................... 95

    2.4.1.1 Production of Polypropylene ................................ 96 2.4.1.2 Phenomena during Polypropylene

    Spinning ............................................................... 98 2.4.1.3 Spinning and Aftertreatment of

    Polypropylene ...................................................... 104 2.4.1.4 Optimizing the Polypropylene POY

    Spinning Take-Up Speed for Draw Texturing .............................................................. 106

    2.4.1.5 High Tenacity Polypropylene Yarns ..................... 107 2.4.1.6 Polypropylene Foil Yarns ..................................... 107 2.4.1.7 Comparison of Properties .................................... 110

    2.4.2 Polyethylene (PE) ........................................................... 110 2.5 Polyacrylonitrile (PAN) ........................................................................ 111

    2.5.1 Production of Acrylonitrile ( = Vinylcyanide) .................... 113

  • xii Contents

    This page has been reformatted by Knovel to provide easier navigation.

    2.5.2 Polymerization to Polyacrylonitrile (PAN) ........................ 113 2.5.2.1 Theoretical and Experimental Basis .................... 115 2.5.2.2 Apparati and Installations for

    Polymerization ..................................................... 116 2.5.2.3 Installations to Dissolve PAN ............................... 119

    2.5.3 Spinning and Aftertreatment of Polyacrylonitrile .............. 121 2.6 Polyvinyl Chloride (PVC) ..................................................................... 122

    2.6.1 Production of PVC ........................................................... 122 2.6.2 Solving and Spinning of PVC and

    VC-Copolymers ............................................................... 123 2.6.3 Syndiotactic PVC ............................................................ 123

    2.7 Polyvinyl Alcohol (PVAL) .................................................................... 125 2.7.1 Production Process Up to the Spinnable Solution ........... 125 2.7.2 Solution Wet Spinning ..................................................... 127 2.7.3 Dry Spinning .................................................................... 128

    2.8 Spandex or Elastane Yarns (EL, also PUR) ....................................... 128 2.8.1 Production of the Polyurethanes ..................................... 129 2.8.2 Installations and Apparati ................................................ 131 2.8.3 Wet Spinning System and Equipment ............................. 131 2.8.4 Dry Spinning Processes and Installations ........................ 132 2.8.5 Reaction Spinning Process ............................................. 133 2.8.6 Properties ........................................................................ 134 2.8.7 Polyurethane Hard Fibers ................................................ 136

    2.9 Polytetrafluorethylene Fibers (PTFE) ................................................. 136 2.9.1 Spinning and Drawing of the Filaments ........................... 136 2.9.2 Properties ........................................................................ 138

    2.10 High Tenacity-High Modulus Filaments According to the Gel Spinning Process ................................................................................ 138 2.10.1 Principle .......................................................................... 138 2.10.2 Process, Machines, and Plants ....................................... 140 2.10.3 Properties of PE Gel Filaments and Their Uses .............. 142

  • Contents xiii

    This page has been reformatted by Knovel to provide easier navigation.

    2.11 High Temperature and High Modulus Fibers ..................................... 142 2.11.1 General Remarks ............................................................ 142 2.11.2 Polyaramides .................................................................. 145 2.11.3 Polyetherketone (PEK, PEEK, etc.) ................................. 146 2.11.4 Polysulfones and Polyether Sulfones .............................. 146 2.11.5 Liquid Crystals ................................................................. 147 2.11.6 Polyimides ....................................................................... 149

    2.12 Other Polymer Fibers and Further Processes .................................... 150 2.12.1 Silicone Dioxide Fibers .................................................... 150 2.12.2 Polycarbosilane and Silicon Carbide Fibers .................... 150 2.12.3 Yarn Production via Carrier Filament ............................... 151 2.12.4 Phenol Resin Fibers ........................................................ 153 2.12.5 Super-Absorbing Products (SAP) as Fibers ..................... 153 2.12.6 Thermo Bonders ............................................................. 154 2.12.7 Organic Optical Fibers (POF) .......................................... 155 2.12.8 Electrically Conducting Filaments .................................... 155 2.12.9 Interfacial Polycondensation Spinning ............................. 157 2.12.10 Reaction Spinning ........................................................... 157 2.12.11 Emulsion and Suspension Spinning ................................ 157 2.12.12 Electrostatic Spinning ...................................................... 157

    2.13 Fibers from Natural Products .............................................................. 158 2.13.1 Protein Fibers .................................................................. 158 2.13.2 Alginate Fibers ................................................................ 158 2.13.3 Filaments on Cellulose Basis .......................................... 159 2.13.4 Basalt Fibers ................................................................... 159

    References ................................................................................................... 161

    3. Theoretical and Experimental Principles ................................... 173 3.1 Reactors for Production and/or Dissolving ......................................... 173

    3.1.1 Selection Criteria ............................................................. 173 3.1.2 Preferred Reactor Cascades ........................................... 176 3.1.3 Reactor Design ............................................................... 176

  • xiv Contents

    This page has been reformatted by Knovel to provide easier navigation.

    3.2 The Spinning Mechanism ................................................................... 177 3.2.1 General View over Melt Spinning .................................... 177 3.2.2 Solution Spinning ............................................................ 181

    3.3 Filament Take-Up and Filament Cooling ............................................ 182 3.3.1 Filament Cooling ............................................................. 182 3.3.2 Take-Up Forces .............................................................. 190 3.3.3 Filament Temperatures ................................................... 191

    3.4 Drawing Mechanism ........................................................................... 193 3.4.1 Drawing Process ............................................................. 194 3.4.2 Consequences for Drawing ............................................. 198

    3.5 Twisting ............................................................................................... 199 3.6 False Twist Texturing .......................................................................... 201

    3.6.1 Principle .......................................................................... 201 3.6.2 Influence of the Filament Way Profile .............................. 204

    3.7 Bobbin Construction ............................................................................ 207 3.8 Cops Built-Up in Draw-Twisting and Cops Take-Off .......................... 210 3.9 Draw and Holding Forces for Filament and Tow ................................ 212 3.10 Contact Heating and Drying of Filaments ........................................... 214 3.11 Stuffer Box Crimping ........................................................................... 216 3.12 Heat Setting ......................................................................................... 217

    3.12.1 Basics ............................................................................. 218 3.12.2 Heat Setting Processes for Synthetic Yarn and

    Fiber Production .............................................................. 220 3.13 Crystallinity .......................................................................................... 222 References ................................................................................................... 223

    4. Plants, Equipment, and Machines for the Production of Synthetic Yarns and Fibers ........................................................ 227 4.1 General ................................................................................................ 227 4.2 Chemical Equipment ........................................................................... 230

    4.2.1 Autoclaves ...................................................................... 230 4.2.2 Dissolving and Mixing ...................................................... 235

  • Contents xv

    This page has been reformatted by Knovel to provide easier navigation.

    4.2.3 Pipes and Insulation ........................................................ 237 4.2.4 Pipe Transport Systems for Granules, Powder,

    and Fibers ....................................................................... 238 4.3 Strand Casting and Cooling, Granulating ........................................... 242

    4.3.1 Strand and Ribbon Casting ............................................. 242 4.3.2 Ribbon and Strand Cooling ............................................. 243 4.3.3 Granulating ..................................................................... 244 4.3.4 Cutting Forces, Drive Powers .......................................... 247 4.3.5 Mechanical Chip Dehydration .......................................... 248 4.3.6 Granulators ..................................................................... 248 4.3.7 Chip Production from Powder .......................................... 250

    4.4 Initial and Intermediate Products, Final Products: Delivery Conditions and Storage ...................................................................... 253 4.4.1 Shipping Forms, Packaging ............................................. 254 4.4.2 Chip Storage and Transport ............................................ 255

    4.5 Drying, Crystallization, and Solid Phase Polycondensation ............... 258 4.5.1 Vacuum Drying and Similar Processes ............................ 258 4.5.2 Continuous Chip Drying .................................................. 261

    4.6 Melt Spinning Plants ........................................................................... 270 4.6.1 Calculation of the Plant and Equipment Sizes ................. 271 4.6.2 Survey of Melt Spinning Installations for

    Filaments ........................................................................ 275 4.6.3 Chip Gate Valves ............................................................ 282 4.6.4 Spin Extruders ................................................................. 282

    4.6.4.1 Single-Screw Spin Extruder ................................. 283 4.6.4.2 Double-Screw Extruders ...................................... 293

    4.6.5 Spinning Heads and Spinning Beams ............................. 294 4.6.5.1 Spinning Heads ................................................... 295 4.6.5.2 Spinning Beams ................................................... 296 4.6.5.3 Electrically Heated Spinning Heads ..................... 305

    4.6.6 Polymer or Melt Valves ................................................... 308 4.6.7 Static Mixers ................................................................... 309

  • xvi Contents

    This page has been reformatted by Knovel to provide easier navigation.

    4.6.8 Spinning Pumps and Other Gear Pumps ......................... 312 4.6.8.1 Spinning Pumps ................................................... 312 4.6.8.2 Spin Finish Pumps ............................................... 314 4.6.8.3 Discharge Pumps and In-Line Pumps ............... 315

    4.6.9 Melt and Solution Filters .................................................. 316 4.6.9.1 Filter Media and Construction .............................. 320 4.6.9.2 Use of High Load Filtration to Protect Spin

    Pumps .................................................................. 324 4.6.9.3 Large Area Filters ................................................ 325

    4.6.10 Spinnerets ....................................................................... 327 4.6.10.1 Spinnerets for Melt Spinning ................................ 327 4.6.10.2 Spinnerets for Solution Spinning ......................... 332 4.6.10.3 Special Spinnerets ............................................... 333

    4.6.11 Spin Packs (Housings) and Bolting ................................. 335 4.6.11.1 General ................................................................ 335 4.6.11.2 Spin Packs for Circular Spinnerets ...................... 335 4.6.11.3 Spin Packs for Rectangular Spinnerets ............... 339 4.6.11.4 Auxiliary Devices for Pack Insertion .................... 341 4.6.11.5 Spinneret Bolting ................................................. 342

    4.6.12 Spinning Pump Drives ..................................................... 343 4.7 Quench Cabinets ................................................................................ 346

    4.7.1 General ........................................................................... 346 4.7.2 Preferred Quenches ........................................................ 350 4.7.3 New Quench Chamber Developments for Very

    High Spinning Speeds ..................................................... 354 4.7.4 Construction Elements for Quench Chambers ................. 355

    4.7.4.1 Quench Air Rectifiers ........................................... 355 4.7.4.2 Quick-Change Air Filters ...................................... 357 4.7.4.3 Air Flow Regulation .............................................. 359

    4.7.5 Quench Chamber Accessories ........................................ 359 4.7.5.1 Monomer (Fume) Aspirations .............................. 359 4.7.5.2 Spinneret Blanketing ............................................ 359 4.7.5.3 Hot Shrouds (Collars) .......................................... 361

  • Contents xvii

    This page has been reformatted by Knovel to provide easier navigation.

    4.7.5.4 Waste Disposal .................................................... 362 4.7.5.5 Interfloor Tubes .................................................... 362 4.7.5.6 Quench Air Supply Ducts ..................................... 364 4.7.5.7 Air Flow Restriction in the Quench

    Chamber .............................................................. 365 4.8 Spin Finish Application Systems ......................................................... 367

    4.8.1 Roll Application ............................................................... 368 4.8.2 Rod (Bar) Application ...................................................... 368 4.8.3 Spray Application ............................................................ 368 4.8.4 Dipping Bath Application ................................................. 369 4.8.5 Pin Application (Metered Spin Finish) .............................. 369

    4.9 Spinning Take-Up Machines ............................................................... 372 4.9.1 The Various Types of Take-Up Machines ........................ 373 4.9.2 Yarn Inlet Zone ................................................................ 378 4.9.3 Rolls, Godets, Draw Rolls ................................................ 380

    4.9.3.1 Godets (Small Draw Rolls) .................................. 380 4.9.3.2 Duos (Godet Pairs) .............................................. 387 4.9.3.3 Accessories for Godets ........................................ 388 4.9.3.4 Operating Data for Godets and Duos .................. 389

    4.9.4 Separator Rolls ............................................................... 391 4.9.5 Winders ........................................................................... 392

    4.9.5.1 Package Drives .................................................... 394 4.9.5.2 Yarn Traverse Systems ....................................... 397 4.9.5.3 Package Spindles (Chucks) and Holders ............ 401 4.9.5.4 Relative Movement between Package and

    Roll, Including Turret Motion ................................ 402 4.9.5.5 Number of Packages and Package Size ............. 405 4.9.5.6 Special and Optional Equipment ......................... 406 4.9.5.7 Winders for Spinning and Further

    Processing ........................................................... 408 4.9.5.8 Winders with Spindle Drive and Dancer

    Arm Tension Control ............................................ 415

  • xviii Contents

    This page has been reformatted by Knovel to provide easier navigation.

    4.10 Drawtwisting and Draw-Winding Machines ........................................ 416 4.10.1 Drawtwisting Machines (Drawtwisters) ............................ 417 4.10.2 Construction Elements for Drawtwisters .......................... 419

    4.11 Warp Drawing, Warp Sizing and Slashing ......................................... 429 4.12 Texturizing and Drawtexturizing ......................................................... 431

    4.12.1 Comparison of Texturizing Processes ............................. 432 4.12.2 False Twist Texturizing Machines ................................... 439

    4.12.2.1 Construction and Components ............................ 439 4.12.2.2 Texturizing Aggregates ........................................ 443 4.12.2.3 Drives for (Draw-) Texturizing Machines ............. 448

    4.12.3 Stuffer Box Crimping Machines for Filament Yarns ............................................................................... 448

    4.12.4 Air Jet Texturizing for Loop-and Entangled Yarn ............. 449 4.12.5 Air Consumption and Yarn Tensions of Texturizing

    and Aspirating Jets .......................................................... 452 4.12.6 BCF (Bulked Continuous Filament) Texturizing ............... 456

    4.13 Staple Fiber Plants .............................................................................. 460 4.13.1 Overview ......................................................................... 460 4.13.2 Melt Spinning Lines for Staple Fibers .............................. 462 4.13.3 Spinning Take-Up Walls and Can Take-Up ..................... 463 4.13.4 Creels .............................................................................. 465 4.13.5 Tension Compensation and Dipping Bath ....................... 470 4.13.6 Drawing Frames .............................................................. 470 4.13.7 Hot Drawing Ovens ......................................................... 473 4.13.8 Tow Spreading and Plying ............................................... 474 4.13.9 Stuffer Box Crimpers ....................................................... 476 4.13.10 Dryers and Heat-Setting Machines .................................. 478 4.13.11 Tow Packaging ................................................................ 481 4.13.12 Staple Cutters ................................................................. 482 4.13.13 Staple Fiber Transport ..................................................... 485 4.13.14 Balers .............................................................................. 486

  • Contents xix

    This page has been reformatted by Knovel to provide easier navigation.

    4.14 Dry-Spinning Plants ............................................................................ 489 4.14.1 Principle of Dry-Spinning ................................................. 489 4.14.2 The Dry-Spinning Tube (Shaft, Duct) .............................. 492 4.14.3 Staple Fiber Dry-Spinning Lines ...................................... 496

    4.15 Solution Wet-Spinning Plants ............................................................. 498 4.15.1 Wet-Spinning Process ..................................................... 498 4.15.2 Constructional Details of Wet Spinning Lines .................. 500

    4.15.2.1 Spinning Baths ..................................................... 500 4.15.2.2 Spinning Pumps, Spinning Pipes and

    Spinnerets ............................................................ 503 4.15.2.3 Drawing and Extraction Baths ............................. 504 4.15.2.4 High Throughput Wet-Spinning

    Machines ............................................................. 506 4.15.3 Aftertreatment Lines for Dry-Spun Tow ........................... 508 4.15.4 Solution Wet-Spinning of Multi-and

    Monofilaments ................................................................. 509 4.16 Piston (Rod) Spinning Units ................................................................ 514

    4.16.1 Spinning of Very Small Quantities ................................... 514 4.16.2 Ram Extrusion ................................................................. 516

    References ................................................................................................... 516

    5. Special Processes and Plants .................................................... 525 5.1 Short-Spinning Process ...................................................................... 525

    5.1.1 Automatik Compact Staple Spinning System for PP, PE, PA and PET, Combined with a Fleissner Drawing and Crimping Line ............................................. 527

    5.1.2 Barmag Compact Staple Spinning System for PP, PE and PET .............................................................. 528

    5.1.3 Other Compact Spinning Plants ...................................... 528 5.1.4 Compact Staple Spinning Plants for Take-Up

    Speeds Up to 2000 m/min ............................................... 532 5.1.5 Compact Spinning Machines for Coarse Filaments

    and Fibers ....................................................................... 534

  • xx Contents

    This page has been reformatted by Knovel to provide easier navigation.

    5.1.6 Compact Spinning Machines for Filaments ..................... 535 5.1.7 Film Tapes and Monofilaments ........................................ 536

    5.2 Bi- and Multicomponent Yarns and Fibers ......................................... 539 5.2.1 Bicomponent Spinning Processes, -Spinnerets

    and -Filament Cross-Sections ......................................... 539 5.2.2 Melt Manifolds for Bicomponent Yarns, etc ..................... 546

    5.3 Hollow Filaments ................................................................................. 549 5.4 Fine Filament Man-Made Fibers ......................................................... 550

    5.4.1 Microfilaments ................................................................. 550 5.4.2 Superdrawing .................................................................. 551 5.4.3 Melt Blowing Process ...................................................... 551 5.4.4 Flash Spinning .............................................................. 552

    5.5 Spunbond ............................................................................................ 554 5.5.1 Spinning Equipment ........................................................ 555 5.5.2 Filament Take-Up Devices .............................................. 560 5.5.3 Spunbond Lines .............................................................. 562 5.5.4 Web Bonding ................................................................... 564 5.5.5 Properties ........................................................................ 565 5.5.6 Claw Mats ..................................................................... 566

    5.6 High Temperature Spinning ................................................................ 568 5.6.1 Melt Spinning at Temperatures Up to ca. 550C .............. 568 5.6.2 Melt Spinning Plants for Temperatures

    above 700C ................................................................... 569 5.7 Carbon Fibers ...................................................................................... 571

    5.7.1 Processes ....................................................................... 571 5.7.2 Process Stages for PAN Precursor Fibers ....................... 572 5.7.3 Composites and Prepregs ............................................... 578

    5.8 Converters (Tow to Top or Tow to Spun Yarn Process) .................... 579 5.8.1 PET Tow for Stretch-Break Conversion ........................... 580 5.8.2 The Sydel Stretch-Break Converter; The

    Schlumberger Converter ................................................. 581

  • Contents xxi

    This page has been reformatted by Knovel to provide easier navigation.

    5.9 Tirecord and Other Technical Yarns ................................................... 583 5.9.1 Yarn Production .............................................................. 584 5.9.2 Cord Construction ........................................................... 585 5.9.3 Cord Physical Properties ................................................. 586

    5.10 Fiberfill ................................................................................................. 588 5.11 Biodegradable Fibers .......................................................................... 589 References ................................................................................................... 590

    6. Auxiliary Plants and Equipment ................................................. 595 6.1 Package Handling ............................................................................... 595

    6.1.1 Simple Yarn Package Transport Equipment .................... 595 6.1.2 Doffer Systems ................................................................ 596 6.1.3 Package Transport, Storage, and Packing ...................... 600

    6.2 Air Conditioning: Conditions and Plants ............................................. 601 6.2.1 Quench Air Conditioning Plants ....................................... 601 6.2.2 Air Conditioning of the Winding Room ............................. 603 6.2.3 Air Conditioning of Staple Fiber Plants ............................ 604 6.2.4 Climatization of Other Rooms .......................................... 604 6.2.5 Dust Content of Conditioned Air ...................................... 604 6.2.6 Air Conditioning State Plotted on ix-Diagram ................... 605 6.2.7 Air Conditioning Plants .................................................... 606

    6.3 Heating Systems and Heat Transfer Media ....................................... 608 6.3.1 Heating Plants ................................................................. 609

    6.4 Protective Gas ..................................................................................... 612 6.5 Compressed Air .................................................................................. 613 6.6 Cleaning of Polymer-Soiled Parts ....................................................... 614

    6.6.1 Burning-Out Ovens .......................................................... 615 6.6.2 Molten Salt Bath Ovens ................................................... 615 6.6.3 Aluminum Oxide Fluidized Bed Process .......................... 616 6.6.4 Hydrolytic (Pre-) Cleaning ............................................... 616 6.6.5 Solvent Cleaning ............................................................. 617 6.6.6 Vacuum Pyrolysis ............................................................ 619

  • xxii Contents

    This page has been reformatted by Knovel to provide easier navigation.

    6.6.7 Final Cleaning and Comments ........................................ 620 6.6.8 Cleaning Plants ............................................................... 620

    6.7 Spin Finishes and Spin Finish Systems ............................................. 621 6.7.1 Spin Finish ...................................................................... 622 6.7.2 Frictional Behavior .......................................................... 622 6.7.3 Filament Cohesion .......................................................... 623 6.7.4 Antistatic ......................................................................... 624 6.7.5 Emulsifiers ...................................................................... 624 6.7.6 Spin Finish Application in Practice .................................. 624 6.7.7 Spin Finish Preparation ................................................... 625 6.7.8 Uniformity of Spin Finish Application ............................... 625

    6.8 Delustering and Spin Dyeing .............................................................. 627 6.8.1 Delustering ...................................................................... 627 6.8.2 Dyestuffs for Spin Dyeing ................................................ 629 6.8.3 Addition of Pigments/Dyestuffs ........................................ 629 6.8.4 Additives ......................................................................... 631

    6.9 Testing of Spinning Pumps ................................................................. 631 6.10 Testing of Spinnerets .......................................................................... 633 6.11 Yarn Containers (Spinning Tubes, etc.) ............................................. 634 6.12 Maintenance ........................................................................................ 637 References ................................................................................................... 639

    7. Auxiliary Devices, Calculations, and Construction .................. 643 7.1 Control Drives ...................................................................................... 643

    7.1.1 Mechanically Adjustable-and Control Drives ................... 643 7.1.2 Control Motors ................................................................. 643 7.1.3 Current Converters and Inverters .................................... 647

    7.2 Yarn Guides, Spin Finish Applicators, and Yarn Sensors .................. 651 7.3 Yarn and Tow Cutters ......................................................................... 657 7.4 Air Jets ................................................................................................. 659

    7.4.1 Yarn Aspirator Jets .......................................................... 659 7.4.2 Intermingling Jets (Tangling Jets) .................................... 661

  • Contents xxiii

    This page has been reformatted by Knovel to provide easier navigation.

    7.5 Rotating Cylinders (Godets, Yarn Bobbins, etc.) ................................ 663 7.6 Inclined Rolls ....................................................................................... 664 7.7 Melt and Solution Viscosity ................................................................. 665

    7.7.1 Melt Viscosity .................................................................. 665 7.7.2 Solution Viscosity ............................................................ 666 7.7.3 Molecular Weight, Polymerization Degree, etc ................ 667

    7.8 Uster Uniformity Testing ..................................................................... 670 7.9 Temperature Measurements, Melt Pressure Measurements ............ 677

    7.9.1 Temperature Measurement ............................................. 677 7.9.2 Melt and Solution Pressure Measurement ....................... 680 7.9.3 Moisture Measurement .................................................... 681

    7.10 Fluid Mechanics .................................................................................. 682 7.10.1 Air Flows for Re = 0.1...500 ............................................. 683 7.10.2 Laminar and Turbulent Flow ............................................ 684 7.10.3 Heat Transfer from Yarn to Air ........................................ 687

    7.11 Construction Materials ........................................................................ 688 7.12 High Temperature Threads ................................................................. 690 References ................................................................................................... 691

    8. Waste Processing and Recovery (Recycling) ........................... 694 8.1 Overview ............................................................................................. 694 8.2 Chemical Processing of PA 6 Waste .................................................. 695

    8.2.1 Recovery of Caprolactam from PA 6 by Thermal Decomposition ................................................................ 695

    8.2.2 PA 6 Recovery through Depolymerization-Filtration-Re-Polymerization ............................................ 696

    8.2.3 Recovery through Reprecipitation of PA 6 ....................... 696 8.2.4 Lactam Recovery across the Entire Production

    Process ........................................................................... 696 8.3 Chemical Processing of PA66 Waste ................................................. 698 8.4 Depolymerization of Polyester ............................................................ 699

    8.4.1 Conversion of Polyester to TPA or DMT .......................... 699

  • xxiv Contents

    This page has been reformatted by Knovel to provide easier navigation.

    8.4.2 DMT Recovery via Glycolysis of PET .............................. 700 8.4.3 Recovery of DMT via Polyester Methanolysis .................. 700 8.4.4 Gaseous Byproducts in PET Production .......................... 700

    8.5 Mechanical Waste Processing ............................................................ 700 8.5.1 Polyester Bottle Granulate .............................................. 701 8.5.2 Polymer Blocks (Solid Waste and PET Bottles) ............... 701 8.5.3 Compaction of Filament Waste ........................................ 701 8.5.4 Yarn to Staple Processing ............................................... 702

    8.6 Direct Extruder Processing of Yarn and Film Waste .......................... 704 8.7 Recovery and Cleaning of Gases and Fluids ..................................... 706 References ................................................................................................... 710

    9. Testing and Influencing the Properties of Man-Made Fibers ............................................................................................ 713 9.1 Introduction to Testing ......................................................................... 713

    9.1.1 Aims and Tasks ............................................................... 713 9.1.2 Fundamental Principles of Textile Testing ....................... 714 9.1.3 Quality Systems .............................................................. 717

    9.2 Terminology and Morphology ............................................................. 717 9.2.1 Man-Made Fiber Terminology .......................................... 717 9.2.2 Morphology of Man-Made Fibers ..................................... 719 9.2.3 Application and Fiber Properties ..................................... 719

    9.3 Physical and Textile Properties .......................................................... 722 9.3.1 Fiber Structure and Fiber Properties ............................... 722 9.3.2 External Form and Constitution of Fibers ........................ 733

    9.3.2.1 Cross-Section and Surface .................................. 733 9.3.2.2 Fineness of Staples and Yarns ............................ 737 9.3.2.3 Spun Fiber (Staple) Length .................................. 739 9.3.2.4 Crimping (Bulking) Properties .............................. 741 9.3.2.5 Twist and Intermingling (Tangling) ....................... 744

    9.3.3 Mechanical Properties ..................................................... 748 9.3.3.1 Tensile Testing and Properties Derived

    Therefrom ............................................................ 750

  • Contents xxv

    This page has been reformatted by Knovel to provide easier navigation.

    9.3.3.2 Tenacity in the Non-Axial Direction ...................... 753 9.3.3.3 Elastic Properties ................................................. 754

    9.3.4 Shrinkage and Shrinkage Force ...................................... 756 9.3.4.1 Shrinkage of Fibers and Yarns ............................ 756 9.3.4.2 Shrinkage Force .................................................. 760

    9.3.5 Uniformity of Yarns and Fibers ........................................ 763 9.3.5.1 Test Methods for External Uniformity .................. 766 9.3.5.2 Test Methods for Internal Uniformity .................... 769 9.3.5.3 Results from Investigations into

    Uniformity, and Causes of Non-Uniformity ..................................................... 771

    9.4 Fiber and End-Use Properties ............................................................ 777 9.4.1 Cause and Effect Chain between Fiber and

    Endproduct ...................................................................... 777 9.4.1.1 Fiber Shape: Tactile and Optical

    Properties ............................................................ 777 9.4.1.2 Influence of the Fiber Properties on

    Various Endproduct Properties ............................ 780 9.4.1.3 Fiber Properties and Physiological Behavior ....... 785 9.4.1.4 Fiber Mixtures ...................................................... 788

    9.5 Methods of Fiber Identification ............................................................ 790 9.5.1 Diagnostic Dyeing Tests .................................................. 796 9.5.2 Microphotographs of Fibers ............................................. 796 9.5.3 Solubility .......................................................................... 796 9.5.4 Type Reactions ............................................................... 796 9.5.5 Embedding the Fiber in Specific Reagents ...................... 796 9.5.6 Thermal Tests ................................................................. 801 9.5.7 Infrared Spectral Analysis ............................................... 801

    Literature and Further Reading .................................................................... 809

    10. Conversion Factors and Other Tables ....................................... 813 10.1 Decimal Definitions and SI Units ........................................................ 814 10.2 Dimensional Conversion Factors ........................................................ 815

  • xxvi Contents

    This page has been reformatted by Knovel to provide easier navigation.

    10.3 Molecular Weights of Raw Materials .................................................. 818 10.4 Definition of Yarn Types According to Spinning and Drawing

    Speed .................................................................................................. 819 10.5 Abbreviations for Fibers, Polymers, Pre- and Intermediate

    Products .............................................................................................. 820 10.6 Formulas for Spinning, etc .................................................................. 821 10.7 Statistics .............................................................................................. 822 10.8 Pre-Products, Solids: Properties ......................................................... 823 References ................................................................................................... 831

    11. Fiber Tables ................................................................................. 833

    Index .................................................................................................... 867

  • 1 Introduction

    1.1 General Remarks [1-3]Natural fibers, especially wool and natural silk, have existed for several thousand years, soon to befollowed by cotton, flax and the like. Their processing and usage have continuously been developed.Within one hundred years the chemical fibers and within only fifty years the synthetic fibers haveimproved their standard from originally being "substitute products" to recently providing about 50% ofthe total fibers consumed. It was a long way from the first ideas by Hook (1664) and Reaumur (1734) tothe first chemical fibers [4] that were produced by Nicolaus de Chardonnet (1884). In 1898 in Oberbruchnear Aachen, Paul Fremery, Bromert and Urban produced the first cooper silk filaments that aftercarbonization were used as incandescent filaments in light bulbs. The first fully synthetic fiber would beproduced based on an idea by Klatte (1913) from polyvinyl chloride. Staudinger [6] succeeded first in1927 under laboratory conditions to spin a fully synthetic fiber from polyoxymethylene and later frompolyethylenoxide from the melt [7]. 1938 Carothers developed the first polycondensation fiber that wasproduced as Nylon by the company DuPont de Nemours & Co. Just one year later Schlack [10] provedthat lactam can be polymerized, what resulted 1939 in Berlin-Lichtenberg in the first Perlon fiberproduction. Soon IG-Farben-Industrie obtained a license for the melt spinning process for Nylon andtransferred it to Perlon. After 1934 research was conducted in Germany that allowed the first semi-technical production of poly aery lonitrile fibers (PAN) during 1940 to 1943 [12, 13]. Almost simulta-neously and independently of the German developments similar work was done at DuPont, so that thepatent registrations almost have the same dates. Already 1950 DuPont started in the Candem plant fullscale production of polyacrylonitrile fibers, what was not possible in Germany until much later. Thecommercial production of polyester follows around 1950 after an invention by Whinefield [52], and sodoes polypropylene around 1958 as developed by NaUa [15]. These are the fibers that today are producedworldwide in tremendous quantities.

    The development of specialty fibers began 1937 with polyurethane by O. Bayer et al. [14], followedby a wide range of fibers. Only Nomex [16] and Kevlar [17], both by DuPont, will be mentioned here.The development of high-grade carbon fibers did not begin until 1966 with the oxidation andcarbonization of PAN filaments. More on this topic can be found with Klare [18] and Elias andVohwinkel [19].

    Many of the developed fibers could not be commercialized, e.g., fibers from polyaminotriazoles,where the pilot production was discontinued around 1965. The production of PA 7 in the USSR wasdiscontinued due to the insufficient supply of oenanthe acid. PA 4 was too difficult to spin. Quiana wascommercialized in 1968, but in view of investments in the range of DM 600 million and the significantfunds of DuPont it was discontinued in 1977, because the fiber was too expensive [20].

    1.2 Conditions for the Production of Textile Fibers

    Textile yarns or technical yarns and fibers have to fulfill certain characteristics that are primarilydetermined by the end use, and in the case of textile products also by climatic conditions. They need to be

  • inexpensive, and it must be possible to produce them in sufficient quantities and consistent quality. In thefiber state it must be possible to blend them with other fibers.

    The properties of textile fibers are primarily determined by their chemical structure, their degree ofpolymerization, the orientation of the chain molecules, their crystallinity, the packing density, and thecross links between individual chain molecules. In general they consist of threadlike long chains of mixedcells or stretched macromolecules etc. that are arranged more or less parallel to the fiber axis and passthrough crystalline and amorphous areas. Figure 1.1 shows three models:

    Figure 1.1Schematic diagram of a super molecular fiberstructure (according to Hess and Kiessig [21, 22]A) Five fibrils with neighboring amorphous and

    crystalline regions of period PB) Developed from A) to a para-crystalline macro

    grid (according to R. Hosemann)C) Change to a para-crystalline layer grid with

    A B C chain refolds

    (A) amorphous and crystalline areas are arranged along the length of the fiber with the period P; (B)shows the same model in a further development towards the para-crystalline macro grid and (C) thetransformation to the para-crystalline layer grid with chain refolds [21, 22]. These stages can be shown byX-ray or by differential thermo-analysis (DTA) or similar methods [23]. Cotton for example has about60% crystallinity, viscose rayon only about 40%. The degree of crystallinity is also dependent on thetemperature. PA 66 has about 75% crystallinity at 20 0C, about 52% at 85 0C, about 40% at 100 0C, andabout 0% at 120 0C.

    In the melt, the chain molecules have almost no orientation. When they cool during the spinningprocess they become a little pre-oriented. For solution spun fibers, e.g., hydrate cellulose, this pre-orientation can already be increased during the coagulation in the spin bath. Melt spun fibers, however,require a specific draw processeither in a continuous process after cooling under the glass transitiontemperature, or in a second separate process at a suited temperature. This drawing and orienting changethe tenacity and elongation of the fibers considerably: For viscose rayon for example the tenacityincreases from 1.5 to about 6.3 g/dtex (Super-Tyrex) with a reduction in breaking elongation fromabout 30% to about 10%. The tenacity of PA can be arranged by drawing between values of 3 and10 g/dtex with an elongation between 40% and 10%. Likewise this can be done with other syntheticfibers. Only filaments from liquid crystals are wound during melt spinning in a fully oriented state. Thusthe fiber producer can vary orientation, tenacity and elongation depending on the material and process.

    Fiber tenacity also depends on the degree of polymerization of the chain molecules. Staudinger [24]found that for native cellulose there is no change in tenacity with P > 500; between 500 and 200 thetenacity drops significantly with the degree of polymerization, and for P ^ 200 disappears. Marsh [25]found that high polymer fibers need a degree of polymerization of P > 80 to have any tenacity at all; itthen increases significantly until P ^ 250, and increases insignificantly to P < 600 and not at all beyondthat point. For this the distribution of chain length is important [26] as well as for many other properties.The distribution of density is also relevant for the properties: Viscose rayon has a significantly denserpacked zone near the shell; the packing density of PA 6 increases with increasing draw ratios [27].

    The average degree of polymerization ( = average molecular weight/molecular weight of the basemolecule) for cotton is around 3000, for normal cellulose 600-800, high quality cellulose and cottonlinters 800-1300, viscose fibers 250-700, cupro fibers 500-600, acetate 220-300, polyamide 100-180,polyester 130-220, acrylic fibers 1000-2000, PVC fibers 1300-1800 [51], and can reach for highmolecular PE for gel spinning about 160,000.

    The formula schematics in Fig. 1.2 for PA 66 and in Fig. 1.3 for natural silk are an example for howmuch specific synthetic fibers look like natural fibers. For more examples see [30]. The main valencesrespond to the links along the length of the fiber. They contribute the majority of the fiber tenacity; thiswas already expressed by the dependence on the degree of polymerization. But the side valence links

  • across the fiber direction provide the stability of the network. When these links are missing or loosenedby heat and/or swelling a shifting of the chains can happen [27]. These cross links influence the hand anddrape of textile materials. When comparing the schematics of PA 66 and natural silk it can be noticed thatthe cross links always appear between the oxygen atoms of the carboxyl groups and the NH-groups of theneighboring chain. For PA 66 every 100 chain atoms only have 14 amid groups and thus 14 hydrogenbridges = side valence links, whereas for natural silk each 100 chain atoms have 50 hydrogen bridges.PAN also has for each 100 chain atoms 50 hydrogen bridges. For PET the cross links are of a differentnature due to the rings included in the chains: The ester group is linked through side valences to theneighboring CH2-groups [28]. Due to the spherolites formed during the spinning of polymers the relationis more complex than shown here in the most simplistic idealization. Details can be found in [23].

    Consequently and according to the studies of Ulrich [29] the following conditions make a fiber usefulfor production and industrial use as a textile material:1. Raw materials must be available or produceable in sufficient quantities and for reasonable prices.2. Existing methods must allow processing of these raw materials to polymers and then to filaments or

    fibers without high cost or damage to the environment.3. The intermediate and final products must have sufficient continuity in terms of quality and quantity.4. The final price of the yarn made from the fibers or filaments must be bearable for the market.5. The fiber has to be either endless and possibly capable of being textured or must be capable of being

    processed in a mechanical spinning process, and must fulfill the following requirements:a) The resulting yarn has to show sufficient tenacity and elasticity, and the inital elastic modulus

    may not be too low.b) For textile applications the staple length should not be too low and somewhat uniform or within a

    desired distribution. For paper like products, reinforcements, and flock fibers, uniform staplelengths are required.

    c) The fibers have to provide a certain degree of friction among each other.d) Flexibility and elasticity are relevant for the mechanical spinning and subsequent processes.e) The fiber (dpf) determines the lowest titer of the yarn as well as the hand, breathability, comfort

    etc.

    Figure 1.2 Schematic diagram of the structureof polyamide 66 (according to Brill)

    Figure 1.3 Schematic diagram of natural fiber structure:Silk (according to Brill) with polypeptide chains in thecrystalline regions

  • One hundred years of chemical fibers, and of these more than fifty years of synthetic fibers, do demand aninventory of the required technologies. While there is literature for the chemistry of the chemical andsynthetic fibers, as well as for the processes and the textile testing technology, it is hardly possible to findcomprehensive descriptions from installation, equipment and machinery manufacture through productionof synthetic fibers and filaments and the manipulation of their properties.

    The first book "Synthetic Fibers" was published in 1954 with about 160 pages and a worldproduction of about 200,000 t/year at that time. The revised second edition from 1964 with 950 pagescovered the total area of production through processing. The annual production of synthetic fibers hadincreased to 1.7 million t/year by then. Today, approximately 20 million t/year are produced accountingfor about 45% of the world fiber production. The technical progress connected to this also requires a newedition which addresses only the first third of the topics covered in the 1964 book on 900 pages.

    Further reasons for the new edition are: At the European universities only Chemnitz and Zurichmaintain a department for the design of machines and equipment for the production of synthetic fibers.Textiles taught within the framework of mechanical engineering departments of other universities focusesprimarily on textile engineering, while the training of the engineers is left to the specific industries. Thusthis becomes an issue for about 1200 fiber production companies and over 1000 machinery makers,without having a comprehensive overview available. Many of the design elements are also unknown inthe general mechanical engineering. Drive problems, auxiliaries preparation and conditions for auxiliaryplants, as well as mathematical-physical and process technological items are explained in manyexamples.

    The corresponding electro and micro-processing technology, automation and computer-integratedmanufacturing are not covered in this book, as this would exceed the given frame.

    This book is separated into a part on material specific processes, the corresponding installations,machines, and process data. In a further part the designs and calculations are introduced, also for differentmaterials and varying function parameters.

    The second to last chapter on fiber properties and their manipulation by Mr. Peter M. Latzke reflects achange in thought over the last 20 years: While the fiber user back then used to receive data sheets on thespecific properties of a shipment, today's fiber producers have to keep all agreed upon properties constantfor all future shipments and influence their production accordingly to stay within given tolerances.Production control thus has been replaced by process control that simply supervises the productionparameters. Accordingly, quality systems have been specified in DESf, ISO, etc. Finally, the numerousconversion factors are shown and the fiber property ranges demonstrated according to a fiber table byKleinhansl. Following the wish of practitioners to show most connections in measurable sizes, the authoruses numerous drawings, diagrams, tables, and formulas and only a limited number of photos. He doeswant to point out though, that the installations, machines, and parts in the drawings have been built andinstalled in praxis.

    This book provides a large number of diagrams, data, and companies names, but it does not expect tobe complete or exclusive. There are certainly more companies producing similar or equal products; theyshould not feel neglected. Very often production is done according to individual ideas and guidelines,which can also result in optimum products.

    Preface

  • 1.3 The Most Important Fiber Raw Materials

    Table 1.1 shows most of the presently used fiber materials that can be categorized by: Synthetic Fibers:

    - Polymerization Fibers- Polycondensation Fibers- Polyaddition Fibers

    Chemical Fibers (from natural polymers) Inorganic Fibers Natural Fibers

    - Animal Fibers- Vegetable FibersThe selection and terminology reflect mostly to the Textile Identification Act and the respective

    regulations in the European Community.

    Table 1.1 The Most Important Synthetic, Chemical, and Natural Fibers, Their Raw Materials and ProductionMethods

    1. Fibers from syntheticpolymersa) polymerization fibersb) polycondensation fibersc) polyaddition fibers

    2. Chemical fibers (fromnatural polymers)

    3. Inorganic fibers4. Natural fibers

    a) animal fibersb) vegetable fibersc) mineral fibers

    P = productionM = modificationS = specific characteristicsT = end-uses, trade names

    Ia) Polymerization fibersPolyethylene (PE)

    H HI I

    - C - C -I I

    H HK = 2M = 42; DP > 62,500rM=107...138CTG^ - 1000C(-20%-300C)Polypropylene (PP)

    HI

    H H - C - HI I

    - C C I I

    H HK = 2M = 42; DP > 45,000rM=160. . .165CTG ^ 5C

    - LLDPE and HDPE are well spinnable and drawable (figure5.6) due to short and few side chains (figure 2.89)

    - P: only well spinnable and hot drawable with > 97%isotactic parts (Chapter 2.4.1.3)

    Chapter 2.4,see fiber tableChapter 11

    CH 2.4.1;see fiber tableChapter 11

  • Table 1.1 The Most Important Synthetic, Chemical, and Natural Fibers (Continued)Polyacrylonitrile (PAN)

    NIII

    H CI I

    - C - C -I I

    H HK = IM = 53; DP > 1070...2500TM > T (decomposition)rG = 0CO95C, dry)Modacrylic (PAM)

    Polyvinylchloride (PVC)- (CH 2 -CCI 2 ) -K = IM = 97; DP 800.. . 1000rG = 75CTM = 160 -r- 2000CandPolyvinylidene chloride(PVDC)

    Polyfluoride (FL)F FI I

    c * . - C - C -F F

    M = 100; DP: 103 . . .105r G = 127-^ 140TM = 327 -r 342(decomposed: 399C)

    K = Ialiphatic fluorocarbon fibers

    Vinylal

    - P: polymerization of >85% ACN + comonomers,precipitation, drying, solving dry or wet spinning andaftertreatment, especially for staple fibers. Alsocontinuous polymerization in solution for direct wetspinning possible (e.g., in ZnCl2/water)

    - P: ACN-portion 50 . . . 84% (According to ISO), restcomonomers, e.g.:

    HI

    H - NN N IIII III C = O

    H C H C H II I I I I I

    -c-c-c-c-c-c-I I I I I I

    H H H H H H

    - P: Acetone + Chlorhydroxide vinylchloride >polymerization to polyvinylchloride: possible postchlorinating with tetrachlorcarbon

    - P: Ethylene or vinylchloride -> vinylidene chloride etc.- M: e.g., "Saran"

    Polytetrafluoroethylene (PTFE)H F

    I IQ _ r*I j Polytrifluoroethylene (PTFE, e.g., "Hostaflon")

    F F C I F

    I I- C - C -

    M = 82 ' ' Polyvinylfluoriden n

    M = 80.5- P: e.g., polymerization of tetrafluoroethylene;

    special spinning processes

    Paraffin polymers with OH-groups on every second C-atom ofthe main chain, partially acetyled; e.g., polymerization of vinylalcohol and solving in water - wet spinning.

    Chapter 2.5,see fiber tableChapter 11

    Chapter 2.7;see fiber tablechapter 11

    Chapter 2.6;see fiber tablechapter 11

    Chapter 2.9,see fiber tablechapter 11

  • Table 1.1 The Most Important Synthetic, Chemical, and Natural Fibers (Continued)Trivinyl

    Elastodien

    Ib) Polycondensation fibersPolyamide 3 (PAS)

    -CH2=CH(OC-NH--CH2-CH2Jn-NH2K = AM = IXTM=l65C

    Polyamide 4 (PA4)- NH - (CH 2 J 3 -C: 0 -^ = 5M = 85rM = 2 0 0 - 2 6 5 erG = 76C

    Polyamide 5 (PA5)-N-H-(CH2J4-C-O-K = 6M = 99TM, theoretical = 3 00 C^M, in praxis 259C

    for n 3U C = 0.25m cresol

    Polyamide 6 (PA6)H OI III

    - N - ( C H 2 J 5 - C -K = IM = 113; DP> 100-2007M=215CTG=40...42C

    Polyamide 7 (PA7)N - H - ( C H 2 J 6 - C : O -M= 113; DP> 100TM = 233C

    Paraffin polymers with nitril groups or one or two Cl-atoms atevery second C-atom; e.g., mixed polymerization ofacrylonitrile and two other vinyl components, e.g.,vinylchloride and vinylidenchloride with 50%; solving inacetone and wet spinning.

    Paraffin polymers with methyl branches and sulfur bridges toneighboring chains; e.g., polymerization of isoprene and dieneswith or without vinyl monomers; or starting with natural latex;cutting vulcanized thin rubber plates into narrow stripes orextrusion of latex emulsion (Latex) respectively benzene-rubber solution through spinnerets; wet spinning;vulcanization of the coagulated and dried filaments.

    - P: Head-tail polymerization from acryloamide with alkalinecatalysts or from chlorcyan and N-carbosulfamide acidchloride + olefins -> sulphochloride groups > /Mactam(III) for polymerization.

    - T: thus far no technical production and application

    - P: Polycondensation at 2650C vacuum drying -> meltspinning drawing; very difficult, becausetspin = = tdecomposition ^ ^

    - S: good textile properties, but to date not commercial dueto P; y = 1.25 g/cm3

    - P: only successful in laboratory scale.- T: none- S: y=1.2

    - P: Crude oil -> benzene - cyclohexanon -+e-aminocaprolactam > pressure free polycondensation at275C... 2600C during about 18 h with anapproximate yield of 88%; past condensation possible;possible to melt spinning; up to about 40 dtex finaldenier with air quench, for >65 dtex spinning titer(>0.08 mm diameter) with water quench; can be drawn

    - P: Ethylene (at 100 bar with radicalformers) ->- tetrachloralkane -> co-chloroethaneacid co-amino oenathe acid -> pressure freepolycondensation > PA7; can be melt spun and drawn;almost no monomers or oligomers

    - S: good properties for textile and technical applications,7 = 1.10 g/cm3

    T: very short production around 1960 discontinued due tohigh raw material cost

    Chapter 2.2.2

    Chapter 2.2.3,see fiber tablechapter 11

  • Table 1.1 The Most Important Synthetic, Chemical, and Natural Fibers (Continued)Polyamide 8 (PA8) Tu = 2090C; y = 1.08 g/cm3Polyamide 9 (PA9) TM = 2000C; y = 1.06 g/cm3 No applicationsPolyamide 10 (PAlO) TM = 188C; 7 = 1.04 g/cm3

    Polyamide 11 (PAIl)N-H-(CH 2J 1 0-C-O-M = 169, Z)P 100rM = 1900C

    Polyamide 12 (PA12)N-H-(CH2J1 1-CiO-M = 183; DP > 100TM = 179C

    Polyamide 46 (PA46)

    Polyamide 66 (PA66)NH-(CH2J6-NH-CO-

    -(CH2J4- CO-K= 14M = 226; DP > 80... 200rM = 250...2520C7G = 42C

    Polyamide 610 (PA610)NH-(CH2J6-NH-K = 18M = 254; DP > 100rM = 215C

    7M = 260...275CrG=135C

    Polyester (PES)

    Polyethylene terephthalate(PET)

    O O

    (CH2J2-O-C-O-C-O-A; = 10M = 192; DP > 100...200TM = 257...264CrG = 70...75C

    - P: Castor oil (over 5 steps) -> aminoundecanacid -> polycondensation from aqueous suspension over3 steps in a tube, then evaporation, polycondensation,

    then reaching the condensation equilibrium:>/265C~6OO...IOOP; y-i.M kg/cm3; can be spun and drawnlike PA6

    - S: Similar to PA6 and PA66, but only minimum moistureabsorption, dimensionally stable

    - T: Zippers, ropes; too expensive for textiles

    - P: Butadiene-trimerization > 11-aminoundecanacid ->> Laurinlactam -> almost 100% polymerization;direct spinning possible

    - T: especially for coarse deniers and wires; no textileapplications yet; y = 1.01 g/cm3

    - P: from 1,4 diaminobutane (DAB from ACN andwatercyanid) and adipic acid

    - P: hexamethylendiamin adipate in aqueous solution ispolycondensated at approx. 285 C and spuncontinuously or via chips and then drawn

    - S: well dyeable similar to PA6; partially better propertiesthan PA6 y = 1.14 g/cm3

    - P: with Sebacic acid (from castor oil), rest similar to PA66;polycondensation at 245 . . . 2600C

    - S: best wet tenacity PA

    - P: polycondensation from Bis-(4-amino-cyclohexyl-)-methane (from Anilin and formaldehyde) and dicarbonicacid with 9 . . . 14 C-atoms

    - S: excellent textile material: best crease recovery- T: Production (DuPont) discontinued due to high cost

    7 = 1.03... 1.04 g/cm3

    - Common name for polymers from dicarbonic acid ordicarbonic esters and glycoles

    - P: from DMT + EG via transesterfication or fromTPA + EG via direct esterification to diethylene glycol(DEG) and polycondensation at >285C to PET;spinning via continuous melt processing or via chipsdried to < 0.004% H2O; hot drawable

    S: excellent for technical use and textile yarn, staple fiber

    Chapter2.2.5.5

    Chapter2.2.5.1

    Chapter 2.24;see fiber tablechapter 11

    Chapter2.2.5.2

  • Table 1.1 The Most Important Synthetic, Chemical, and Natural Fibers (Continued)Polybutylene terephthalate(PBT)

    O O

    (CH2J4-O-C-O-C-O-K=UM = 284; DP > 100...200rM = 225CrG = 440C

    Polyurea

    Aromatic polyamides(Polyaramides) with metastructure (molecules in ringarrangement)^(Decomposition) = -3/1 Cr G = 2 8 0 . . . 29O0CM = 1 9 2 ; DP = 2 2 0 . . . 2 6 0

    Aromatic PA with parastructure

    M = 278; DP = 550

    Super absorbent products (SAP)

    Polyaryletherketones M = 288(PEEK)

    Ic) Polyaddition fibersPolyurethane (PUR)

    Elastan (EL) (also "Spandex")

    > 85% segmented PUR

    - P: similar to PET but from butylene glycol + DMT or-TPA; polycondensation temperature about 25O0C

    - S: good textile properties; can be dyed carrier free- T: higher cost than PET

    - linear macromolecule with repeating functional groups( -NH-CO-NH-)

    - P: polycondensation of urea with aliphatic diamines; meltspinning

    - P: m-phenylene diamine and isophthalic acid chloride issolution polymerized in DMAC, neutralized and directlydry spun.

    - S: 7 = 1.38- T: Nomex (DuPont), Conex (Teijin)

    - P: phenylene diamine and terephthalic acid chloride arepolycondensated and disolved in concentrated sulfuric acidand wet spun

    - S: p = 1.44- T: Kevlar (DuPont), Twaron (Akzo)- P: from hydrogen-aryl and -alkal and/or hydrolyzed

    polyacrylo amides- S: moister absorbency of up to 230g/g fiber, salt water

    absorbency of up to 50g/g fiber- T: disposable diapers

    - P: condensation of acid chlorides under Friedel-Kraftconditions produces low molecular -(R)-O-(R)-COCl;with HF as a solvent and BF3 as a catalyst high molecularcompounds are formed for extrusion processing

    - S: see figure 2.124- T: Victrex (ICI)

    - linear macromolecule from paraffin chains that are connectedby the urethane group - N H - C O - N H -

    - P: polyaddition of diisocyanates and dioles, e.g.hexamethylene diisocyanate and 1,4 butandiol;melt spinning

    - P: polyaddition of a linear dihydroxy polyester (e.g.polyethylene glycol adipate) or a dihydroxy poly ether (e.g.polytetramethylene etherdiol) with excessive diisosyanateand chain lengthening or cross linking with diaminocompounds (e.g. diamines) in solvents (e.g. DMAC orDMF) for direct dry or wet spinning; also reactive spinningpossible with a reaction of the prepolymer in thecoagulating bath with diamin. Melt spinning indevelopment, possible with similar yarn properties.

    Chapter 2.3.7

    Chapter 2.8.7

    Chapter2.11.2, Fibertable chapter11

    see chapter2.12.5

  • Table 1.1 The Most Important Synthetic, Chemical, and Natural Fibers (Continued)1.2 Chemical fibers (from natural polymers)Viscose rayon (CV)

    Hydrate cellulose

    DP = 300-500(High tenacity: 400-500)

    Cupro (CUP)

    Hydrate celluloseDP = 300-400

    Modal (CMD)Hydrate celluloseDP => 300

    Acetate2\ cellulose acetatePm = 250-400

    Triacetate (CTA)Cellulose-3-acetateP1n = 300-400

    Protein fibers (casein)

    Zein or other vegetable proteins

    PROT(Protein)

    Alginate fibers metal alginates(ALG)

    1.3 Inorganic fibers

    Glass fibers (GF)primarily low alkaliBor silicate glass, e.g.,about 52% SiO2about 11% B2O3about 14% AI3O3 and about17% CaO

    Basalt fibers

    P: Cellulose with a high o-portion is changed with soda lye toalkali cellulose and then with carbon disulfide to cellulosexanthogenate;Dissolving in diluted soda lye, maturing, and spinning intoa sulfuric acid/water bath for coagulation; washedrepeatedly and de-sulfured(if possible), dried.Continuous process and winding process produce Rayonfilament, cut wet into staple and drying produces staplefiber.

    - P: Dissolving cellulose in cupperoxide ammoniac -> wetspinning (funnel spinning process), washing, drying andwinding or cutting

    - T: Only produced in four location around the world becausemore expensive than CV

    - P: Modified viscose process with wet spinning

    - P: Acetylizing of cellulose with acetic acid, partialsaponification; dissolving in acetone; primarily dryspinning; endless winding or cutting to staple fiber

    - P: Acetylizing of cellulose with acetic acid -> dissolving indichloromethane -> dry or wet spinning, drying andwinding

    - P: Casein precipitated with acid or lab ferment from milk anddissolved in soda lye -> wetspinning - stabilizing -* drying

    - P: Extraction of Zein (e.g., from corn flour) >> precipitationand dissolving in soda lye or extraction of peanut press cakewith diluted lye -> dissolving and wet spinning etc.

    - T: For some time was wool substitute and blending fiber; notstabilized used as release yarn in knitting

    - P: Extracts from (sea) alga >> alginic acid >> dissolving indiluted soda lye > wet spinning and stabilizing in metal saltbaths, e.g., NaCl

    - P: Melting of ground mixture of quartz sand and additivesat 1400... 16000C; spinning by jet draw or jet blow orcentrifugal process (all gravimetric or by rod drawprocess

    - T: Endless glass filament or staple (glass wool)

    - P: Clean whinstone by melting twice and pouring into coldwater -> cast into crucible from PtRh, melt and drawgravimetric to filaments at over 3000 m/min and wind;"rock wool" spun directly from first melt by jet blow orcentrifugal process

    See fiber tablechapter 11

    See fiber tablechapter 11

    See fiber tablechapter 11

    See fiber tablechapter 11

    Chapter 2.13.4

  • Table 1.1 The Most Important Synthetic, Chemical, and Natural Fibers (Continued)Metal fibers(MTF or MT)

    Carbon fibersCF> 90% pure C

    1.4 Natural fibers1.4a) Animal fibersWool (WO)keratin

    Alpaca (keratin)Hair (wool) of the alpaca(type of camel)

    Lama (keratin)Hair (wool) of the lama (type ofcamel)

    Camel (keratin)Base hairs of camels anddromedaries more than10 cm in length, lightly curled,light red to yellow brown, or thebeard hair dark brown to black

    Cashmere (keratin)Hair of the cashmere goat,off white, low crimp, silkyshine, very fine, beard haircoarser

    Mohair (keratin)Up to 150 mm in length, strong,simple hair of the true angoragoat

    Angora (rabbit)(keratin)Primarily pure white, fine andsoft hairs; beard hairs coarser

    Vicuna (keratin)Hair (wool) of the LatinAmerican mountain lama(type of camel)

    Yak (keratin)Hair of the Tibetan ox

    Guanaco (keratin)Hair of the Latin Americanguanaco (mountain lama, typeof camel)

    - P: Coarse rolled wire from metals or alloys are drawn inseveral steps through draw plates or draw stones withthermal treatment between steps until the desired finenesshas been reached; e.g., for 1.4571 drawing up to a diameterof 1 um is possible.

    - P: Primarily from post drawn PAN fibers, but also CVor PVALfibers 3-step process: Stabilizing(= oxidation) ->- carbonization ->- graphitization

    - fineness: 2-50 dtexsee figure 1.4

    - P: ShearingEarlier also re-used wool from rags, that containedvegetable fibers, which were removed by carbonization

    - P: shearing

    - P: Hairs fall out in bundles in spring- T: Best qualities for yarns for underwear, lower grades for

    "press cloth"; weather proof coat fabrics

    - P: Combing out or pulling in spring- S: Very soft hand, appreciated as wool, also in blends with

    wool- T: Fine yarn ladies' dress cloth 3-ply filling yarn (Nm 50 to 60

    worsted yarn, 40 . . . 80 ppcm), knitting yarn

    - P: Shearing (once or twice per year)

    - P: Several shears per year, or combing and pulling in springand fall

    - T: Felts, very shiny mohair yarns, etc.

    - P: Shearing after corralling

    - P: Shearing

    - P: Shearing after corralling

    See fiber tablechapter 11

    Chapter 5.7;see fiber tablechapter 11

    See fiber tablechapter 11

  • Table 1.1 The Most Important Synthetic, Chemical, and Natural Fibers (Continued)Hair (keratin)Other animals(especially horse hair)

    Silk (SE)(Natural or Mulberry silk)P 1 n ^ 2500

    1.4b) Vegetable fibersCotton(CO, also Bw)Native celluloseM= 162.14Pm (raw) 7000P 1 n ^ 6500

    Flax, linen (LI)Bast layer of the up to1 m long flax plantfiber length 600. . . 700 mmyield 45 . . . 55%cellulosePm^8000

    Hemp (cellulose)Bast fiber of the hemp plant(cannabis sativa) of up to 3 mheight Color: off white, silver orpearl gray, greenish oryellowish, lighter is usuallybetter

    Abaca (cellulose)Leaf stalk fiber(from the leaf stem)of the fiber banana, musatextilis, also Manila) fibers areyellow-white or brown, shiny,stiff, and weatherproof

    A If a (cellulose)Leafs (stalks of the espartograss(stipa tenacissima)Coco (cellulose)Fruit fiber between the shell andthe core of the coconut

    - P: Shearing or cutting of tail hair- T: Upholstery, filling materials, etc.

    - S: Fibroin (silk substance 70 . . . 80%) -> Sericin(silk bast, 3 layers, 19 . . . 28% > fat substance(0.5 . . . 1%) -> mineral components (0.5 . . . 1%)

    - Fineness depending on origin 1 . . . ^ 4 dtex; figure 1.4

    - P: Pulling of the plant (linum usitatissimum) when starting toyellow; after drying and removing the seed bolls, rettingremoves the bast fibers from the wood, breaking andhackling -> tow -> line

    - P: Similar to flax, but also pulled when green between breakingand hackling usually some scutching or cutting

    - M: Bast hemp is broken hemp; pure hemp after removingimpurities; strand hemp is broken and scutched, stone orspin hemp is ready to be spun, ground hemp is made bypeeling the bast from the stem

    - S: Much higher tenacity than LI (and LI higher tenacity thancotton)

    - T: Coarse yarns, twisted or plied or braided ropes, tarsdepending on origin, Galician, Polish, French etc. splithemp is particularly fine

    - P: Manual or mechanical pulling of the fiber bundles (possiblyafter rotting) from the leaf flesh, drying and hackling; or byuse of a defibreur

    - M: Long hemp yarns Ne > 0.65 = Nm > 0.39 spun, hemp towyarns Ne = 0.39...10; finest fibers by stamping in a mortarfor fine fabrics

    - T: Ropes, netting, cable wrap, saddle thread, twine

    - P: Two year old stock dried after harvest, boiled to destroy thechlorophyll, retting in running water, separate from othermatter with wooden clubs

    - P: After braking the outer layer solving of the fibers from theinner nut, months of retting in a mixture of fresh and saltwater, removing of the fiber coat by beating, scutching andpressing; drying, hackling. The combings are pulled by gearteeth and are cleaned, bleached, dried and mechanicallyspun.

    - S: Highly resistant to weather and mechanical wear- T: Rope, twine, mats, runners, foot mats, etc.

    See fiber tablechapter 11;schematic infigure 1.3

    See fiber tablechapter 11

    See fiber tablechapter 11

  • Table 1.1 The Most Important Synthetic, Chemical, and Natu