5. advanced wastewater treatment

Upload: pragathees-waran

Post on 08-Jan-2016

47 views

Category:

Documents


0 download

DESCRIPTION

advanced water treatment

TRANSCRIPT

  • 1

    CIE4485

    Wastewater Treatment

    Dr.ir. Arjen van Nieuwenhuijzen Guestlecture

    5. Advanced Wastewater Treatment

  • 1Advanced Wastewater Treatment Technologies within the EU Water Framework Directive

    Dr.ir. Arjen van Nieuwenhuijzen

    SeniorTechnology Advisor &CoordinatorWater,EnergyandMaterials

    SectorWater Witteveen+Bos

    2

    Content: why, what, where and how

    Why to apply advanced physical-chemical (post) treatment

    What kind of technology is required

    Where do we apply these technologies

    How do we apply these techniques

  • 3Why, because of WFD

    The European Water Framework Directive (WFD) became effective in 2000

    The WFD aims to achieve and maintain Europeanwater bodies in a "good status", chemically as well as ecologically by the year 2015.

    Leading in the WFD goals is the sufficient removal(2015) or zero-emission (by 2021/2027)

    4

  • 5Why, because of these substancesIdentified actual WWTP-relevant WFD substances:

    (1) the nutrients nitrogen and phosphorous;(2) certain polyaromatic hydrocarbons;(3) the pesticides hexachlorocyclohexane, atrazine and diuron;(4) the metal ions cadmium, copper, zinc, lead and nickel;(5) plasticising additive DEHP (diethylhexylpthalate).

    Today: Ntotal < 10 mg/l

    Future WFD: Ntotal < 2,2 mg/l

    Today: Ptotal < 1 mg/l

    Future WFD: Ptotal < 0,15 mg/l

    6

    Traffic

    Industry

    Greenhouses

    Agriculture

    Nickel

    CopperP-totalN-total

    Landfill

    Household

    Deposition

    Fisheries and hunting

    Benzo(a)pyreneFluoranthene

    Why, because of these substances

  • 7Why, because of these substancesIdentified future WWTP-relevant WFD substances:category Substanceshormone disrupters 17 -ethinyloestradiol

    bisphenol Aoestrogen

    medicinal substances ibuprofenanhydro-erythromycinesulphamethoxazolcarbamazepinesotalolamidotrizoic acid

    8

    Identification of applicable technologies

    Witteveen+Bos Consulting EngineersKIWA Water Research

    conducted exploratory research

    for

    STOWADutch Ministery of Water & InfrasturcturUrban Water Cycle

  • 9Identification of applicabel technologies

    The efficiency of treatment techniques for the removal of (priority) substances, which occur typically in extremelylow concentrations, is strongly influenced by the characteristics of the effluent as a whole and the presence of other components (the effluent matrix).

    The efficiency of treatment techniques for the removal of (priority) substances, which occur typically in extremelylow concentrations, is strongly influenced by the characteristics of the effluent as a whole and the presence of other components (the effluent matrix).

    It is therefore useful to first consider the relationshipbetween the effluent matrix and the characteristics of the techniques.

    10

    Identification of applicabel technologies

    Temperature

    Acidity

    Suspended and colloidal substances

    Organic macro-molecules and degradable organic matter

    e.g. NOM in wastewater influent and effluent (residual N and P)

    Dissolved salts

    For the effectiveness of treatment techniques aimed at advanced removal of the identified substances, the followingaspects were identified as being important:

  • 11

    Identification of applicabel technologies

    To be identified as an applicable treatment technique, the technique should fulfil the following criteria:

    (potentially) capable of removing the described problematic

    substances to the levels presented in the required standards;

    applicable at full-scale by 2009;

    capable of treating large flows;

    preferably capable of removing a broad range of substances;

    preferably require little energy, space and additives;

    preferably producing limited amounts of byproducts.

    12

    Identified effective treatment techniques per substancedegradation

    separation

    biological degradation

    chemical oxidation

    chemical precipitation techniques

    membrane filtration

    bed filtration

    adsorption techniques

    disinfectionphysical UV light / Ozone

    chemical desinfection (Cl)

    bounding

  • 13

    Identified treatmenttechnique 1

    Ultra low P-concentration

    coagulation aspects: Me/P-ratio mixing intensity mixing time

    flocculation aspects: mixing intensity mixing time

    14

    Identified treatmenttechnique 2

  • 15

    Identified treatmenttechnique 3

    Hybrid

    MB

    R H

    eenvliet

    16

    Identified treatmenttechnique 4

  • 17

    Identified treatmenttechnique 5

    18

    Identified treatmenttechnique 6

  • 19

    Identified treatment concepts

    WWTP activated carbon filtration

    metal salt

    coagulation bio / floc filtration

    carbon residuebackwash

    discharge

    c-source

    metal salt

    WWTP coagulation / flocculation filtration

    c-source

    biofiltration

    backwash backwash

    discharge

    powdered activated carbon

    WWTP

    metal salt

    coagulation bio / floc filtration

    backwash

    oxidation

    oxidant, UV

    discharge

    c- source

    WFD treatment concept 1

    WFD treatment concept 2

    WFD treatment concept 3

    WWTP activated carbon filtration

    metal salt

    coagulation bio / floc filtration

    carbon residuebackwash

    discharge

    c-source

    metal salt

    coagulation / flocculation filtration

    c-source

    biofiltration

    backwash backwash

    discharge

    powdered activated carbon

    metal salt

    coagulation bio / floc filtration

    backwash

    oxidation

    oxidant, UV

    discharge

    c- source

    WFD treatment concept 1

    WFD treatment concept 2

    WFD treatment concept 3

    20

    How is this applied Identified treatment concepts are:

    based on physical-chemical technology

    with or without smart biotechnology

    fast processes -> short retention times

    chemically and hydraulically design

    Me/P-ratios -> efficient coagulant and flocculant dosage

    C/N-ratios -> efficient carbon dosage

    mixing (intensity and time)

  • 21

    Treatment costs of WDF technologyWWTP of 20,000 P.E.= 0.18 - 0.43 EUR/m (13 - 31 EUR/P.E./year)

    WWTP 100,000 P.E.= 0.06 - 0.24 EUR/m (5 - 18 EUR/P.E./year)

    highest costs: coagulation+filtration+advanced oxidation (UV/H2O2)

    lowest costs: powdered activated carbon dosage + coagulation + filtration/biofiltration (concept 2 / concept 1)

    22

    WFD research on large pilot scale I WFD Test Location WWTP Horstermeer (Waterboard

    of Amsterdam Waternet - The Netherlands)

    1 STEP(Singel Treatment of Effluent Process)-filtration: combination of advanced WDF technologies in one process

    step: advanced coagulation (metal salt addition) filtration (filter bed) biofiltration (Carbon addition) adsorption (activated carbon)

  • 23

    WFD research on large pilot scale II

    WFD Test Demonstration Site WWTP Leiden ZuidWest(Waterboard of Rijnland - The Netherlands)

    WFD TEST DEMONSTRATION TREATMENT PLANT

    WWTP LEIDEN ZUIDWEST (Waterboard of Rijnland)

    THE NETHERLANDS

    Treatment Line A

    Treatment Line B

    Staticmixer

    C-source

    C-source

    Phase 2:

    powderedactivatedcarbon

    Static

    mixer

    Coagulation & / flocculation zone

    Coagulation & / flocculation zone

    Upflowcontinuous

    moving sand filter

    Downflowsand filter

    Active carbon filter 1

    Active carbon filter 2

    Fase 2:

    AOP

    WFD effluent treatment line A

    WFD effluent treatment line A phase 1

    WFD effluent treatment line B

    WFD effluent treatment line B phase 1

    M = measurement

    24

    Conclusions WFD requirements are emerging fast (and furious?)

    High potential for physical-chemical technology: advanced coagulation/flocculation filtration biofiltration adsorptionPreferably in 1 configuration (1-STEP Filtration)

    Chemically and hydraulically design optimisation Me/P-ratios - efficient coagulant and flocculant dosage C/N - ratios - efficient carbon dosage mixing (intensity and time)

    Cost reduction by optimised design

  • 25

    STOWA report WFD Techniques

    Digital copy available

    Please contact me with business card

    or visit:

    www.stowa.nl

    26

    Goals of the research1. Comparing One Step Total Effluent Polishing (1-

    STEP) filter (GAC) with Dual Media Filtration (sand + anthracite) for P removal

    2. Investigate if the target value for Ptotal (

  • 27

    WWTP HorstermeerNaarden-Bussum, Hilversum-West and Nederhorst den BergCapacity: 200.000 p.e.Daily Flow: 26.000 m3Max. hydraulic load: 5,000 m3/hSludge load: 0,054 kg BOD/kg MLSS/d

    28

    Introduction Effluent quality

    Parameter Scale Average Discharge permit

    River Vecht reduction program

    Target concentration

    COD mg/L 32 BOD mg/L 4 N-total mg/L 13.5 14.0 5.0 2.2 Nkj mg/L 2.9 NO3-N mg/L 10.3 P-total mg/L 0.8 1.0 0.5 0.15 P-ortho mg/L 0.4 Suspended solids

    mg/L 11

  • 29

    Pilot installations

    30

    Process parameters - DMF Filtration rate of 10 m/h Filter runtime of 12 hours MeOH/NO3-N ratio of 4.7 g/g metal/P-ortho ratio of 4.0 mol/mol

    80 cm anthracite grain size: 2.0 4.0 mm 40 cm quartz sand grain size: 1.25 1.5 mm

  • 31

    Process parameters 1-STEP

    Filtration rate of 10 m/h Filter runtime of 12 hours MeOH/NO3-N ratio of 4.7 g/g PACl dosage

    PO4-P < 0,25 MeP 5 mol/mol

    > 0,25 PO4-P MeP 4mol/mol

    190 cm GAC Grain size: 1.70 3.35 mm

    32

    TUDelft Phosphorus Distribution Method Developed in co-operation with Witteveen+Bos,

    Waterboard Rijnland and Water Company Waternet

    Distribution into orthophosphorus, metal bound phosphorus, dissolved organic phosphorus and particulate organic phosphorus

    Detailed information about coagulation-, flocculation-and filtration processes

    Tool to compare different design and operational settings

  • 33

    TUDelft Phosphorus Distribution Method - Measurements

    Orthophosphorus unfiltrated Total phosphorus unfiltrated

    Orthophosphorus < 0,45 m Total phosphorus < 0,45 m

    34

    Phosphorus distribution

    Total particulate PhosphorusP-total unfiltrated - P-total

  • 35

    P distribution WWTP Effluent (57 samples)

    Orthophosphorus Dissolved "organic" P Particulate "organic" P Metal bound PANBT 0,38 0,05 0,08 0,22

    7%

    11%

    30%

    52%

    OrthophosphorusDissolved "organic" PParticulate "organic" PMetal bound P

    0,000,100,200,300,400,500,600,700,80

    ANBT

    Con

    cent

    ratie

    (mg/

    L)

    OrthophosphorusMetal bound PDissolved "organic" PParticulate "organic" P

    36

    Profile Measurements To investigate the removal through a filter bed

    Samples: WWTP effluent, the upper water layer, every 10 or 20 cm in the filter bed (by taps which are placed on the side of the filter) and in the filtrate

    Orthophosphorus (< 0.45 m), nitrate, nitrite, COD are measured. Additionally the oxygen concentration.

  • 37

    38

    Online Results - Dual Media Filter

    0,00

    0,50

    1,00

    1,50

    2,00

    2,50

    3,00

    01-06-08 11-06-08 21-06-08 01-07-08 11-07-08 21-07-08 31-07-08Date (dd-mm-yy)

    Phos

    phor

    us c

    once

    ntra

    tion

    (mg/

    L)

    Portho WWTP Effluent Portho_metal bound filtrate Ptotal filtrate Target Value Ptotal

    Ptotal FiltrateP-ortho WWTP Effluent

    P-ortho_metal bound phosphorus

  • 39

    Online Results 1-STEP Filter

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    1-07-08 21-07-08 10-08-08 30-08-08 19-09-08 9-10-08 29-10-08

    Date (dd-mm-yy)

    Phos

    phor

    us c

    once

    ntra

    tion

    (mg/

    L)

    P-ortho WWTP Effluent P-ortho_metal bound phosphorus Ptotal Filtrate Target value Ptotal

    P-ortho WWTP Effluent Ptotal Filtrate P-ortho_metal bound phosphorus

    40

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0P-ortho concentration WWTP effluent (mg/L)

    Phos

    phor

    us c

    once

    ntra

    tion

    (mg/

    L)

    P-ortho WWTP effluent P-ortho_metal bound filtrate Ptotal filtrate

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

    Portho concentration WWTP Effluent (mg/L)

    Phos

    phor

    us c

    once

    ntra

    tion

    (mg/

    L)

    Portho WWTP Effluent Portho_metal bound filtrate Ptotal Filtrate

    Dual Media Filter

    1-STEP filter

  • 41

    Phosphorus distribution (14 measurements) Dual Media Filter

    10%19%

    12%

    30%6%

    8%

    40%57%

    24%

    20%18%

    55%

    0%10%20%30%40%50%60%70%80%90%

    100%

    WWTP Eflfuent Upper Water Layer Filtrate

    Per

    cent

    age

    phos

    phor

    us fo

    rm (%

    )

    Particulate "organic" P Dissolved "organic" P Metal bound P P-ortho

    0,01 mg/L

    0,11 mg/L0,06 mg/L 0,03 mg/L0,03 mg/L0,04 mg/L

    0,04 mg/L0,30 mg/L

    0,12 mg/L

    0,02 mg/L0,09 mg/L0,27 mg/L

    0,00

    0,20

    0,40

    0,60

    0,80

    1,00

    1,20

    WWTP Eflfuent Upper Water Layer Filtrate

    Pho

    spho

    rus

    conc

    entra

    tion

    (mg/

    L)

    42

    Phosphorus distribution (14 measurements) 1-STEP filter

    7%16%13%20%1%6%

    39%79%37%

    34%4%

    44%

    0%10%20%30%40%50%60%70%80%90%

    100%

    WWTP Effluent Upper Water Layer Filtrate

    Per

    cent

    age

    phos

    phor

    us fo

    rm (%

    )

    Particulate "organic" P Dissolved "organic" P Metal bound P P-ortho

    0,008 mg/L0,13 mg/L 0,18 mg/L

    0,022 mg/L0,06 mg/L0,01 mg/L0,36 mg/L

    0,86 mg/L

    0,042 mg/L

    0,43 mg/L

    0,04 mg/l

    0,037 mg/L

    0,00

    0,20

    0,40

    0,60

    0,80

    1,00

    1,20

    WWTP Effluent Upper Water Layer Filtrate

    Pho

    spho

    rus

    conc

    entra

    tion

    (mg/

    L)

  • 43

    Profile measurement - Dual Media Filter

    0,00

    0,05

    0,10

    0,15

    0,20

    0,25

    0,30

    0,35

    0,40

    WWTP Effluent UWL 25 45 65 85 105 Filtrate

    Phos

    phor

    us c

    once

    ntra

    tion

    (mg/

    L)

    Metal bound phosphorus Orthophosphorus Particulate "organic" phosphorus Dissolved "organic" phosphorus

    Bed deph (cm)

    Anthracite layer Sand layer

    Metal bound Phosphorus

    Orthophosphorus

    Particulate "organic" Phosphorus

    Dissolved "organic" Phosphorus

    44

    Profile measurement 1-STEP filter

    0,00

    0,05

    0,10

    0,15

    0,20

    0,25

    0,30

    0,35

    0,40

    WWTP Effluent UWL 25 65 105 145 185 Filtrate

    Phos

    phor

    us c

    once

    ntra

    tion

    (mg/

    L)

    Metal bound phosphorus Orthophosphorus Particulate "organic" phosphorus Dissolved "organic" phosphorus

    Bed deph (cm)

    Orthophosphorus

    Particulate "organic" Phosphorus

    Metal bound Phosphorus

    Dissolved "organic" Phosphorus

  • 45

    Conclusions The Dual Media Filter and the 1-STEP filter can

    fulfil the target value of 0.15 mg Ptotal/L The Dual Media Filter for 0.3 mg Portho/L in WWTP Effluent The 1-STEP filter for 0.7 mg Portho/L in the WWTP Effluent

    The removal mechanism for phosphorus is filtration

    P distribution and profile measurements have proven to be a useful tool to compare different filter concepts

    46

    Overview Study, (pilot) research, design & engineering Conventional & advanced Special interest:

    desalination incl. pretreatment polishing relative to (micro) organics wastewater re-use

    Brief introduction to portfolio of signature projects

  • 47

    UV/H2O2

    UV disinfection & UV/H2O2 AOP Andijk 100 MLD conventional/UV/H2O2/GAC

    + Heemskerk 150 MLD UV/H2O2/GAC + Beerenplaat 450 MLD conventional/UV/GAC

    48

    UV and its applications Recent breakthrough for primary disinfection

    Traditional disinfection (chlorine, ozone) inadequate for certain pathogens

    Traditional disinfection involves by-products (tri-halomethanes and bromate)

    UV involves excessive dosage for killing Giardia and Crypto, but

    90-ies research has revealed low dosage exposure Inactivation

    UV is now a very popular crypto barrier

  • 49

    1/150 mm1/150 mm

    ((CourtesyCourtesy PWN)PWN)CryptosporidiumCryptosporidium

    50

    1/300 mm1/300 mm

    ((CourtesyCourtesy PWN)PWN)GiardiaGiardia

  • 51

    UV and its applications UV is recognised as potential technology for

    advanced oxidation UV in combination with H2O2 proves to be a

    successful duo: certain organics susceptible to UV photolysis certain organics susceptible to hydrogen

    radicals (OH*)

    Effective for pesticides, medicine and hormone residuals and other trace organics

    52

  • 53

    atrazineatrazine

    bromacilbromacil

    diurondiuron

    TCATCA

    bentazonebentazone

    2,42,4--DD

    54

    Actief kool gebouw

    dienstgebouw

    inlaat

    bekken

    zandfilters

    flocculatoren

    Locatie UV gebouw

    Hogedrukpompstation

  • 55

    56

    Berenplaat WTW, Rotterdam

  • 57

    58

    Dutch water technology @ work.

  • 59

    Heemskerk-2 (UV/H2O2-GAC)

    60

    Thank you for your attention