5 feedback control pid - upm

15
1 1 Linear Control 5. Basic Regulatory Control by Pascual Campoy Universidad Politécnica Madrid 2 Basic Regulatory Control Feedback control structure Basic control actions PID controllers Close loop behaviour Controller tuning for 1st order systems Controller tuning for higher order systems

Upload: others

Post on 11-Mar-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

1

Control de Procesos Industriales

1

Linear Control

5. Basic Regulatory Control by

Pascual Campoy Universidad Politécnica Madrid

2

Basic Regulatory Control

•  Feedback control structure •  Basic control actions •  PID controllers •  Close loop behaviour •  Controller tuning for 1st order systems •  Controller tuning for higher order systems

2

Linear Control U.P.M.-C.V.G. P. Campoy

Feedback control structure

3

¿how to evaluate u(t) depending on ε(t)?

system y(t) r(t)

- +

sensor

Control law ε(t)

ym(t)

u(t)

4

Basic Regulatory Control

•  Feedback control structure •  Basic control actions •  PID controllers •  Close loop behaviour •  Controller tuning for 1st order systems •  Controller tuning for higher order systems

3

Linear Control U.P.M.-C.V.G. P. Campoy 5

Basic control actions: proportional action

Kc= 1, 2, 4, 8, 16, 32

Linear Control U.P.M.-C.V.G. P. Campoy 6

Basic control actions: proportional-derivative action

Td= 0, 0.1, 0.2, 0.4, 0.8, 1.6

Kc= 16

4

Linear Control U.P.M.-C.V.G. P. Campoy 7

Basic control actions: proportional-integral action

1/Ti= 0, 0.1, 0.2, 0.4, 0.8

Kc= 16

Linear Control U.P.M.-C.V.G. P. Campoy 8

Basic control actions: proportional-integral-derivative

P, Gc(s) = 16 PD, Gc(s) = 16 (1+0.4s) PI, Gc(s) = 16 (1+0.4/s) PID, Gc(s) = 16 (1+0.4s+0.4/s)

5

9

Basic Regulatory Control

•  Feedback control structure •  Basic control actions •  PID controllers •  Close loop behaviour •  Controller tuning for 1st order systems •  Controller tuning for higher order systems

Linear Control U.P.M.-C.V.G. P. Campoy

10

Parallel PID controller

system Y(s) R(s)

- +

sensor

Tds

ε(s)

Ym(s)

U(s) 1/Tis Kc

6

Linear Control U.P.M.-C.V.G. P. Campoy

11

Serial PID controller

system Y(s) R(s)

- +

sensor

ε(s)

Ym(s)

U(s) 1/T´is

K´c

U(s) = K´c (1+1/T´is) (1+T´ds) ε(s)

T´ds

Linear Control U.P.M.-C.V.G. P. Campoy

Serial vs. Parallel controllers

12

•  Serial controller ( ): –  Also known as “classical controller”, easier for analogue

implementation (e.g. pneumatic, electrical, ) •  Parallel controller ( ) :

–  Also known as “non interlaced controller”, each parameter is associated to one control action

•  serial version only when Ti≥4Td parallel version is more general and allows complex ceros

•  same values when Td/Ti→0 Parameter relationships:

7

13

Feasible PID controllers

•  Ideal PID controller: parallel:

where γ is a fixed parameter for each controller, whose value is isually in the range 0.05 y 0.1

•  Feasible PID controller : parallel: serial:

serial:

14

Basic Regulatory Control

•  Feedback control structure •  Basic control actions •  PID controllers •  Close loop behaviour •  Controller tuning for 1st order systems •  Controller tuning for higher order systems

8

Linear Control U.P.M.-C.V.G. P. Campoy

15

Feedback transfer function

Dynamic:

Estatic when estable:

Y(s) Yref(s) -

+ ε(s) U(s) Gp(s) Gc(s)

Linear Control U.P.M.-C.V.G. P. Campoy

16

Performance evaluation

Y(s) Yref(s) -

+ ε(s) U(s) Gp(s) Gc(s)

9

17

Basic Regulatory Control

•  Feedback control structure •  Basic control actions •  PID controllers •  Close loop behaviour •  Controller tuning for 1st order systems •  Controller tuning for higher order systems

Linear Control U.P.M.-C.V.G. P. Campoy

18

PI tuning in 1st. order systems

Y(s) Yref(s)

- + ε(s) U(s)

Kp (tps+1)

Kc(Tis+1) Tis

when:

10

19

Basic Regulatory Control

•  Feedback control structure •  Basic control actions •  PID controllers •  Close loop behaviour •  Controller tuning for 1st order systems •  Controller tuning for higher order systems

20

PID empirical tuning: Ziegler Nichols based in open loop behaviour

•  Open loop step response:

Controller Kc

Gain

Ti Integral

time

Td Derivative

time

P 1Kp

tctd

PI 0,9Kp

tctd

3,33 td

PID 1,2Kp

tctd

2 td 0,5 td

System ue(t) y(t)

tc td

Kp

tc td

tc td Kp

tc td Kp

application range:

11

Linear Control U.P.M.-C.V.G. P. Campoy

PID empirical tuning: Ziegler-Nichols based in close loop behaviour

21

Controller Kc

Gain

Ti Integral

time

Td Derivative

time

P 0,5 Ku PI 0,45 Ku 0,83 Tu

PID 0,6 Ku 0,5 Tu 0,125 Tu Tu

system KC y(t) yr(t)

- +

Linear Control U.P.M.-C.V.G. P. Campoy

Z-N parameters for which tipe of controller ?

22

1.  Only PID controllers are different 2.  It is not clear which controller Z-N used in

their original work 3.  The parallel version (with or without filter) is

used in most of the cases. 4.  Results are similar, slightly better when

applied to parallel controllers (calculating the parallel version in case they were the serial parameters, we obtain Kc=1.25K’c, Ti=1.25T’i, Td=0.8T’d, that implies a more generic and overshooting response)

12

23

Example 5.1 …

•  Zigler-Nichols open loop tuning:

td=0.5 tc=2.1

KP=0.166 Kc=30 ti=1 td=0.25

tc td

Kp y(t)

ue(t) y(t) 1 (s+1)(s+2)(s+3)

Linear Control U.P.M.-C.V.G. P. Campoy

… example 5.1 …

24

y(t)

Tu=2

Ku=60

Ku=60 Tu=2

Kc=36 ti=1 td=0.25

KC r(t)

-+ 1

(s+1)(s+2)(s+3)

•  Zigler-Nichols close loop tuning:

13

25

… example 5.1

•  Results for both controllers:

Kc=30, ti=1, td=0.25

Kc=36, ti=1, td=0.25

Linear Control U.P.M.-C.V.G. P. Campoy

Example 5.2 …

26

td=0.25 tc=1

KP=1 Kc=4.8 ti=0.5 td=0.125

tc td

ue(t) y(t) e-0.25s 1+s

•  Zigler-Nichols open loop tuning:

14

Linear Control U.P.M.-C.V.G. P. Campoy

… example 5.2 …

27

Tu=1

Ku=7.2

Ku=7.2 Tu=1

Kc=4.32 ti=0.5 td=0.125

e-0.25s 1+s KC

y(t) r(t) -

+

•  Zigler-Nichols close loop tuning:

28

… example 5.2

•  Results for both controllers:

Kc=4.8, ti=0.5, td=0.125

Kc=4.32, ti=0.5, td=0.125

15

Linear Control U.P.M.-C.V.G. P. Campoy

29

Exercise 5.1

En el sistema de la figura se desea controlar ΔH2 mediante la entrada ΔF1:

Parámetros: A1=A2=1, s10=s20=0.3 Punto equilibrio: f10=f20=f30=1, h10=h20=0.5669

a)  Diseñar en Simulink una estructura de CRB, usando un PID formado por sus bloques básicos (P, I y D) (3 puntos)

b)  Calcular los valores del PID (3 puntos) c)  Comprobar la variación de la respuesta ante cambios en los 3 parámetros del

PID (3 puntos) d)  Modificar los parámetros del PID para minimizar la ICE ante Yref=0.6 (1 punto)