5. point and interval estimation - estad.uc3m.es5. point and interval estimation introduction...

39
5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods Method of moments Maximum likelihood estimation Sampling in normal populations 1

Upload: others

Post on 30-Jul-2020

32 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

5. Point and interval estimation

Introduction

Properties of estimatorsFinite sample sizeAsymptotic properties

Construction methodsMethod of momentsMaximum likelihood estimation

Sampling in normal populations

1

Page 2: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Interval estimationAsymptotic intervalsIntervals for normal populations

2

5. Point and interval estimation

Page 3: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

INFERENCIA ESTADÍSTICA

Introduction

3

sample thefrom

about n informatioobtain To :Problem

sample ddistribute

y identicall andt independen ,...,,

parameter unknown ;population ;

21

θ

θθ

nXXX

FX

Page 4: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

INFERENCIA ESTADÍSTICA

Point estimation

4

n

n

nn

m

S

X

XXX

median Sample

varianceSample

mean Sample

:Examples

ofestimator ),...,,(ˆ

12

21

= θθθ

Page 5: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

STATISTICAL INFERENCE

Properties of estimators

5

Unbiased estimator

is an unbiased estimator of if

(bias of )

The bias of an unbiased estimator is zero:

nθ̂ θ θθ =nE ˆ

nθ̂θθθ −= )ˆ()ˆ( nn Eb

0)ˆ(ˆ =⇔ nn bunbiased θθ

Page 6: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

6

Efficiency

122

2

1 ˆˆˆˆ

ˆθθθ

θθ

θθVVbecausepreferwe

E

E<

=

=

2

1

ˆ

ˆ

θθ

θ

STATISTICAL INFERENCE

Properties of estimators

Page 7: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

7

Mean squared error

2θ̂E θ

22 )ˆ(ˆ)ˆ( nnn bVEMSE θθθθ +=−=STATISTICAL INFERENCE

Properties of estimators

Page 8: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

8

Mean squared error

If the estimator is unbiased, then and the best one is chosen in terms

of variance.

The global criterion to select between twoestimators is:

is preferred to if )()( nn SMSETMSE ≤

nVMSE θ̂=

nTnS

STATISTICAL INFERENCE

Properties of estimators

Page 9: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Standard error

9

nn Vse θθ ˆ)ˆ( =

STATISTICAL INFERENCE

Page 10: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

10

Properties of estimators when ∞→n

Consistency

is a consistent estimator for parameter ifnθ̂ θθθ →P

STATISTICAL INFERENCE

Asymptotic behavior

(weak consistency)

is strongly consistent for ifnθ̂ θθθ →as

Page 11: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

11

Asymptotically normal

is an asymptotically normal estimator with

parameters if

nθ̂

),( nn ba

)1,0(ˆ

Nb

a d

n

nn →−θ

STATISTICAL INFERENCE

Asymptotic properties

Page 12: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Construction of estimators:method of moments

12STATISTICAL INFERENCE

X with or and we have a sample

The kth moment is

Method of moments:

(i) Equal population moments to sample moments.

(ii) Solve for the parameters.

θp

.,...,1 iidXX n

.kk EX=α

θf

Page 13: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

13

Properties:

(i) Consistency

Let be a method of moments estimator of Then

nθ~ .θ

θθ →Pn

~

STATISTICAL INFERENCE

Construction of estimators:method of moments

Page 14: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

14

(ii) Asymptotic normality

STATISTICAL INFERENCE

Construction of estimators:method of moments

).( and ),..., ,)',...,,(

,')'(

where

),,0()~

(

11

2 θαθ

θθ

θ

∂∂===

Σ→−

jjkk

dn

gg(ggXXXY

gYYgE

Nn

Page 15: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Construction of estimators:maximum likelihood

15STATISTICAL INFERENCE

X; i.i.d. sample

The likelihood function is the probabilitydensity function or the probability mass function ofthe sample:

nXX ,...,1

)()...(),...,;(

)()...(),...,;(

11

11

nn

nn

xfxfxxL

xpxpxxL

θθ

θθ

θ

θ

=

=

Page 16: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

16

is the maximum likelihood estimator of ifθnθ̂

Construction of estimators:maximum likelihood

STATISTICAL INFERENCE

),...,;(max),...,;ˆ( 11 nnn xxLxxL θθ θ=

The maximum likelihood estimator of is the valueof making the observed sample most likely.

θθ

Page 17: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

17

Properties

(i) Consistency

Let be a maximum likelihood estimator of .

Then

(ii) Invariance

If is a maximum likelihood estimator of , then is a maximum likelihood estimatorof

θnθ̂

nθ̂ θ

.ˆ θθ →Pn

)ˆ( ng θ).(θg

Construction of estimators:maximum likelihood

STATISTICAL INFERENCE

Page 18: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

18

Properties

(iii) Asymptotic normality

(iv) Asymptotic efficiency

The variance of is minimum.nθ̂

nn VeswithN

esθθθ ˆˆ)1,0(

ˆ

ˆ=→−

STATISTICAL INFERENCE

Construction of estimators:maximum likelihood

Page 19: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Construction of estimators:maximum likelihood

19INFERENCIA ESTADÍSTICA

)ˆ(

)(

1

n)informatio

(Fisher ));(());(()(

function) (score );( log

);(

11

nnn

n

ii

n

iin

Ies

Ise

XsVXsVI

XfXs

θθ

θθθ

θθθ θ

≈≈

==

∂∂=

∑∑==

Page 20: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Sampling in normal populations:Fisher’’’’s lemma

20

Let

Given the i. i. d. sample let

Then:(i)

(ii)

(iii) are independent.

).,(~ 2σµNX

,,...,1 nXX

),(2

nn NX σµ≡

21

)(2

2

−− ≡∑

n

XX ni χσ

12, −nSX

STATISTICAL INFERENCE

.1

)(a

12

12

−−

== ∑∑ −n

XXSndX

nX ni

i

nin

Page 21: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

21

distribution

Let independent.

Then

We define

and it verifies

niNZ i ,...,1)1,0( =≡

.21

2 χ≡iZ

22n

n

iiZY χ≡=∑

.2nVY

nEY

==

STATISTICAL INFERENCE

Sampling in normal populations

Page 22: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

22

If the population is normal, the distribution of the estimators is exactly known for any sample size.

Sampling in normal populations

STATISTICAL INFERENCE

Page 23: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Confidence intervals

23

Let , and the sample

Construct an interval with

such that

θFX ≡ . ,...,1 iidXX n

),...,(),...,(

1

1

n

n

XXbbXXaa

==

.1)( αθ −≥<< baP

is the confidence coefficient.α−1

STATISTICAL INFERENCE

Page 24: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

24

Exact interval:

Asymptotic interval:

αθ −=<< 1)( baP

αθ − →<< ∞→ 1)(n

baP

STATISTICAL INFERENCE

Confidence intervals

Page 25: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Confidence intervals:asymptotic intervals

25

an asymptotically normal estimator of

Then

nθ̂ θ

)1,0(ˆ

ˆ e., i. ),1,0(

ˆ

ˆN

esN

esnn ≈−→− θθθθ

ˆ(1 b

esaP n <−<≈− θθα

STATISTICAL INFERENCE

Page 26: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

26

Define such that

Then

where

STATISTICAL INFERENCE

Confidence intervals:asymptotic intervals

2αz

.2

)(2

αα => zZP

),ˆ

ˆ()

ˆ

ˆ(1

22αα

θθθθα zes

zPbes

aP nn <−<−=<−<≈−

).ˆˆˆˆ(122

eszeszP nn αα θθθα +<<−≈−

Page 27: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

27

Then, the confidence interval for is

eszI n ˆˆ2

1 αθα ±=−

θ

STATISTICAL INFERENCE

Confidence intervals:asymptotic intervals

Page 28: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Statistics

28

Page 29: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

29

Remark:

For large samples, we can obtain asymptotic confidence intervals.

For small samples, we can obtain exact confidence intervals if the population is normal.

Interval estimation:Asymptotic intervals

STATISTICAL INFERENCE

Page 30: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

30

i. i. d. sample

(i) Confidence interval for µ with known σ02.

Then

),( 2σµNX ≡ .,...,1 nXX

)1,0(),(/0

20 NNX

n

Xn ≡⇒≡ −

σµσµ

STATISTICAL INFERENCE

Intervals for normal populations

nzXI 0

21

σα α±=−

Page 31: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

31

(ii) Confidence intervals for µ with unknown σ2.

σ2 is unknown: we estimate it.

)1,0(),(/

2

NNXn

Xn ≡⇒≡ −

σµσµ

STATISTICAL INFERENCE

Intervals for normal populations

Page 32: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

32

Student t distribution

Let

be independent. Then

2

)1,0(

nYNZχ≡

STATISTICAL INFERENCE

Intervals for normal populations

)1,0(Nt

n

Y

Znn →≡ ∞→

Page 33: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

33

Let

Then

.)1()( 2

12

12

2

2

−− ≡−=

−∑n

ni SnXXχ

σσ

STATISTICAL INFERENCE

Intervals for normal populations

11

)1(

)1(

/

12

21

2 −−

−−

≡−⇒≡

−−n

nS

n

n

Sn

n

X

tX

tnn

µ

σ

σµ

Page 34: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

34

The confidence interval is

thus

STATISTICAL INFERENCE

Intervals for normal populations

)(121

22 ;1;1 αα

µα −− <−<−=−−

n

nS

nt

XtP

n

nS

nntXI 1

2

2;11−

−− ±= αα

Page 35: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

35INFERENCIA ESTADÍSTICA

We change from an expression with σ2 and N(0,1)to another expression with S2

n-1 and tn-1

nS

nntXI 1

2

2;11−

−− ±= αα

Intervals for normal populations

nzXI 0

21

σα α±=−

Page 36: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

Statistics

36

Page 37: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

37

(iii) Confidence interval for σ2 with known µ0.

Each satisfies:

and for the whole sample:

iX

21

2

)1,0(

χσ

µσ

µ

≡−

oi

oi

X

NX

22

2)(n

oiXχ

σµ

≡−∑

STATISTICAL INFERENCE

Intervals for normal populations

Page 38: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

38

and then

STATISTICAL INFERENCE

Intervals for normal populations

))(

(1 22/;2

22

2/1; αα χσ

µχα n

oi

n

XP <

−<=− ∑

))()(

(12

2/1;

22

22/;

2

αα χµ

σχ

µα

∑∑ −<<

−=−

n

oi

n

oi XXP

Page 39: 5. Point and interval estimation - estad.uc3m.es5. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods

39

(iv) Confidence interval for σ2 with unknown µ.

If , then applying Fisher’s Lemma:

The confidence interval is:

),( 2σµNX ≡

STATISTICAL INFERENCE

Intervals for normal populations

212

2)(−≡

−∑n

i XXχ

σ

))()(

(12

2/1;1

22

22/;1

2

αα χσ

χα

−−−

∑∑ −<<

−=−

n

i

n

i XXXXP