5.1 - redes sísmicas

45
5.1 - Redes Sísmicas

Upload: tieve

Post on 24-Feb-2016

50 views

Category:

Documents


0 download

DESCRIPTION

5.1 - Redes Sísmicas. 5 - Redes Sismicas. 5.1 - Arreglos 5.2 - Estudios de ruido 5.3 - Redes de cobertura mundial, regional y local 5.4 - Redes sísmicas de México 5.5 - Boletines de sismicidad 5.6 - Catálogos de sismicidad y su utilidad - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 5.1 - Redes Sísmicas

5.1 - Redes Sísmicas

Page 2: 5.1 - Redes Sísmicas

5 - Redes Sismicas• 5.1 - Arreglos• 5.2 - Estudios de ruido• 5.3 - Redes de cobertura mundial, regional y local

• 5.4 - Redes sísmicas de México• 5.5 - Boletines de sismicidad• 5.6 - Catálogos de sismicidad y su utilidad• 5.7 - Criterios de selección de instrumentación sísmica

Page 3: 5.1 - Redes Sísmicas

• Tamaño o apertura: máxima distancia entre 2 estaciones

• Diferencia red - arreglo: técnicas usadas en procesado (red ↔ arreglo ↔ estación). “una red puede utilizarse como un arreglo o un arreglo como una red “.

Arreglos: Redes Sísmicas con alta coherencia entre Señales

ARCES (N Noruega):4 anillos concéntricos 150, 325, 700 y 1500 m (3) (5) (7) (9)

24 SP Z + BB centro

Page 4: 5.1 - Redes Sísmicas

MÉtodos de arreglos

• Método establecidos. Por datos nuevos es muy “de moda”.

• Desarrollado para hacer detecciones y localizaciones muy precisas de explosiones nucleares.

• Unos nuevos aplicaciones son estudios de temblores grandes y localización de tremor no-volcánicos.

Page 5: 5.1 - Redes Sísmicas

Método de Arreglos• Essentialmente una búsqueda de malla sobre localizaciónes

(o back-azimuth,angulo de incidencia).

• La localización nos da una desfase que aplicamos a la señal.

• Luego se suman las señales (apilado).

• El valor máximo de la suma se guarda en una figura de backazimuth contra angulo de incidencia, o en un mapa (este, norte) de localizaciones de prueba.

• La mejor localización es la que nos proporciona los desfases que causan mejor alineamiento en tiempo o mas bien, un apilado mas grande.

Page 6: 5.1 - Redes Sísmicas

• Ventajas:- detección señales muy débiles, mal identificables 1 sitio (detección nuclear)- mejora localización epicentral: ‘orientación’ del array como antena (prueba ≠ vapp y Φ) - identificación de fases (≠ vpropagación)

• Condiciones:- r >> 20·Øarreglo aproximación ondas planas- r > 10·λ “ “ “- r suficientemente pequeña comportamiento no puntual- alta precisión medida t relativos entre estaciones - uso técnicas específicas:

- filtrado en velocidad o formación de haz (i: beam forming)- apilado (i: stacking)- análisis f-k

• supresión ruido y mejora ratio s/n

Métodos de arreglos: para amplificar la señal y detectar la dirección

NORSAR (Noruega):60 km Ø42 sitios

7 subarreglos: 6 SP Z, ~ 3 km Ø

Page 7: 5.1 - Redes Sísmicas

Yellowknife (Canadá):SP (azul y rojo) + BB (verde)

↑↑ volumen datos tratamiento automático- detección (filtros STA/LTA, formación de haz)- procesado- atributos de la señal (f-k, tllegada, T, amplitud, polarización)

Page 8: 5.1 - Redes Sísmicas

• Conceptos básicos:

• rj: vector posición sitio j respecto sitio referencia

• Φ: azimut (realmente back-azimut)• Θ: dirección de propagación del frente de ondas resp. N• Θ = Φ ± 180º

• i: ángulo incidencia (≤ 90º)• vapp: velocidad aparente con que frente ‘barre’ arreglo

• [vc, ∞) -↑,→

• f(i, vc)

• s = 1/vapp: lentitud (constante para un rayo específico)

• s/km local o regional• s/º telesísmico –parám. rayo: 1/(vapp·p), p = 6371π/180º ≈ 111.19 km/º-

• k = ω·s = ω/vapp = 2π/λ número de onda (km-1)

• τj: tiempo de retraso de sitio j respecto sitio de referencia

• >0: llegada antes a j que a sitio referencia

Page 9: 5.1 - Redes Sísmicas

τ2 = t2-t1 = L/vc retraso sitio 2 resp. a 1vapp = d/(t2-t1) = vc/sen ii) Si diferencias altitud entre sitios <<

no corrección (sup. vapp,z = ∞ y sz = 0)Para sitio j (xj,yj):

ii) Si diferencias altitud entre sitios imp.(p.ej., pozos)

corrección:

El tiempo de retraso entre estaciones depende de la velocidad aparente y el back azimut

Page 10: 5.1 - Redes Sísmicas

Apilado (stacking)

si no existe gran atenuación local entre sitios arreglodistancia entre sitios próximos

sftem. pequeña onda plana efectos 3D/sitio minimales

sftem. grande ruido no común en cada sitio

ruido más incoherente que la señal mejora ratio señal/ruido por suma (apilado)

señal observada: w(t) = S(t) + n(t) (señal mas ruido)

obteniendo el registro suma o haz (beam) de las trazas de los M sitios del arreglo:

Desfase

Page 11: 5.1 - Redes Sísmicas

Apilado (stacking)

Suponiendo n(t) distribución normal de amplitudesvalor medio 0varianza = σ2 para todos los sitios

Al sumar las trazas la varianza del ruido queda σs2 = M·σ2 σs

= √M · σ

ruido apilado α √M señal apilada α M ganancia o mejora en la ganancia G2 = M

vapp = 10 km/s, Φ = 158º, evento en Grecia fase PcP sismo mar Tierreno, 9.6º

Page 12: 5.1 - Redes Sísmicas

• Una de las mayores dificultades: detección de señales diferentes del ruido de fondo

• uso algoritmo STA/LTA

Page 13: 5.1 - Redes Sísmicas

• Función de transferencia de un arreglo:

• describe sensibilidad y resolución arreglo = f (sfase observada, kfase observada, geometría arreglo)

arreglo óptimo para detectar señales con lentitud s0 (señales con otra s: supresión parcial)

• Influencia de los distintos parámetros del arreglo:• apertura: define resolución para k pequeños• + apertura menor k medible (mayor λ)• λ máxima analizable ~ apertura• nº sitios arreglo (M): controla habilidad arreglo para suprimir energía que cruza arreglo al

mismo tiempo que señal y con diferente s (≡ filtro en k)• distancia entre sitios: define mayor k que puede resolverse (menor λ)• menor distancia menor k para una velocidad dada• geometría: define dependencia de los puntos anteriores con azimut

Page 14: 5.1 - Redes Sísmicas

ej. geometría muy diferente función transferencia muy distinta distinta resolución a la s (lentitud) de un frente

Yellowknife: gran apertura alta resolución para medir vapp

pobre resolución azimutal

ARCES: pequeña apertura incapacidad para resolver ondas con peq. difs en k resolución azimutal perfecta

Page 15: 5.1 - Redes Sísmicas

• Análisis f-k

• dominio f

• empleado para estimar s de una fase

• red de 51x51 puntos equiespaciados de s

• entre -0.4 y 0.4 s/km

• para cada punto se evalúa potencia del haz:

• máxima potencia define s de la fase

Page 16: 5.1 - Redes Sísmicas

Arreglos y estructura• Arreglos 2D (lineares)

o 3D

• más útiles donde los cambios en estructura son más grande en una dimensión que otra

• usados en experimentos de reflexión y refracción

MASE

Iglesias et al 2010

Page 17: 5.1 - Redes Sísmicas

Temblor de Sumatra 2004• Empezar con una localización

de prueba• Alinear los registros• Estimar la coherencia entre

sismogramas para la localización de prueba para una ventana de tiempo pequeña (aquí 30 segundos).

• Repetir para todas las localizaciones en un mapa.

• Desafortunadamente funciona mejor para temblores muy grandes.

• Difícil interpretar (qué significan los colores?)

• En el caso de Sumatra 2004, los colores fueron interpretados como deslizamiento Ishii et al 2007

Page 18: 5.1 - Redes Sísmicas

Ishii, Harvard

Temblor de Japon 2011

Page 19: 5.1 - Redes Sísmicas

Meng y Ampuero, Caltech

Page 20: 5.1 - Redes Sísmicas

Ji, UCSB

Sismogramas, usando multiple ventanas

Page 21: 5.1 - Redes Sísmicas

• Los circulos y rectangulos son las localizaciones de los altas frecuencias, uno usando el arreglo de los estaciones en Europa y el otro con los de USArray

• El superficie de colores es el deslizamiento en derivado por datos de GPS. Simons et al 2011

Page 22: 5.1 - Redes Sísmicas

Estudios de tremor no-volcanico

• T

“The million dollar question”: El tremor no-volcanico es causado por (a) deslizamiento en el interface (b) por movimiento de fluidos en la corteza arriba de el interface (c) otroPara contestar es escencial saber las localizaciones de los tremores.

Kostoglodov

Page 23: 5.1 - Redes Sísmicas

G-GAPParte del proyecto son studios de tremor no-volcanico en la zona de subducción de GuerreroUna localización muy precisa es esencial para entender el proceso físico que causa los tremores

Kostoglodov

Page 24: 5.1 - Redes Sísmicas

5 - Redes Sismicas• 5.1 - Arreglos• 5.2 - Estudios de ruido• 5.3 - Redes de cobertura mundial, regional y local

• 5.4 - Redes sísmicas de México• 5.5 - Boletines de sismicidad• 5.6 - Catálogos de sismicidad y su utilidad• 5.7 - Criterios de selección de instrumentación sísmica

Page 25: 5.1 - Redes Sísmicas

Ruido• existe en todo registro (amplitudes ~ 10-3 – 10-8 cm)• dos fuentes:• - instrumentación (sensor, digitalizador, amplificador…)• térmico (mov. browniano masa, muelle…) -1/α m, α h, <<<-• electrónico (ruido de Johnson -paso I por compons. electróns-• ruido elementos semiconductores)• limitación sensibilidad (ppalmente a ↓f -señal ↓, ruido semi ↑-)• - vibraciones del suelo (ruido sísmico)• cultural o humano (↑f, >2-4 Hz, m-km, ++ Δdía/noche, aten. ++ con r o H)• natural: viento (↑f, cualq. cuerpo sobre sup. terrestre + topografía)• circulación atmosférica (variaciones diarias, estacionales…)• marino (microsismos; ↓f; olas -10-16 s- - mareas)• otras fuentes (corrientes de agua, actividad volcánica, etc.)

Page 26: 5.1 - Redes Sísmicas

Fuentes de Ruido• Cultural: Por tráfico y máquinas. Frecuencias altas (>2-4 Hz).

Cambia mucho entre noche y dia. Disaparece rápido con distancia de la fuente y con profundidad.

• Viento: Similar a ruido cultural, pero por el acoplamiento de estructuras grandes que se mueven en el viento, puede tener más frecuencias bajas.

• Océano: Más grande cerca de las costas, tiene periodos de la mitad a las ondas en el océano, 0.5*(10-16 segundos). Puede tener amplitudes hasta 20.000 nm cerca de la costa en tormentas.

Page 27: 5.1 - Redes Sísmicas

La Fuente de el pico microsísmico

• El pico microsísmico (8 seg en el Pacífico, 3-5 seg en el Atlántico) es causado por ondas estacionarias en la costa.

• Las ondas estacionarias son la interacción entre ondas llegando a y saliendo de la costa.

Page 28: 5.1 - Redes Sísmicas

Ruido Del Sensor

• Ruido de un 4.5 Hz Geofon

• El ruido del sensor es más que el ruido de la Tierra (Low Noise Model)

Page 29: 5.1 - Redes Sísmicas

Ruido

Page 30: 5.1 - Redes Sísmicas

• Ruido

• existe en todo registro

Page 31: 5.1 - Redes Sísmicas

• Diferente contenido de frecuencias diferentes fuentes

¿cómo observar y medir el ruido?dominio t: depende ancho de banda del filtro usado

Estación MOL (Serv. Sism. Noruego)40 km del Mar del Norte

Amplitud en cuentas

Frecuencia dominante del ruido

Desplazamiento

Page 32: 5.1 - Redes Sísmicas

• Dominio f

• espectro de densidad de potencia del ruido en aceleración, Pa(ω)

• u(t): ms-2 U(ω): ms-1

• u(t): ms-2 p(t): m2s-4 ≡ (ms-2)2

• u(t): ms-2 PSD(t): m2s-3 ≡ (ms-2)2/Hz

• Pa(ω): (ms-2)2/Hz

• Pv(ω): (ms-1)2/Hz

• representación ruido: Pd(ω): (m)2/Hz

p(t) = u2(t)Potencia instantanea

Regresar a acceleración:

Page 33: 5.1 - Redes Sísmicas

RUIDO

Page 34: 5.1 - Redes Sísmicas

• Ruido: generalidades y curvas de Peterson (1993)

• * componentes horizontales > vertical

• * reducción a profundidad• p.ej. enterramiento 0.5 m sitios temporales• reducción ++ fluctuaciones Tsuperficie

• * modelos globales (NHNM y NLNM -new (global) high/low noise models-) (Peterson, 1993)• 75 estaciones en todo el mundo: límites sup. e inf.

• * generalmente ruido int. continentess. < costa (pero r>>…)

• * análisis emplazamiento:• t• ≠ momentos día/semana/estaciones…

Page 35: 5.1 - Redes Sísmicas

Ruido

Page 36: 5.1 - Redes Sísmicas

Ruido en GSN

Page 37: 5.1 - Redes Sísmicas

Ruido y localización

Page 38: 5.1 - Redes Sísmicas

Variabilidad de Ruido

Page 39: 5.1 - Redes Sísmicas

“Lo Nuevo”

• En la decada pasada fue “rediscubierto” que se puede estimar la función de Green (o algo similar) entre dos estaciones, haciendo una corelación cruzada de registros largos de ruido.

• Primero mapas de velocidad de grupo, ahora hacen mapas de velocidad de fase que se puede trasladar a modelos 3D de velocidad.

• El ruido es más grande < 30 segundos, por eso solo tenemos señal para ondas de superficie con sensitividad a profundidades 30 km (muy aproximadamente).

• Ya tenemos una exploción en el uso de ruido como señal, en estudios de la estructura de la Tierra, en escala regional hasta escalas de exploración.

Page 40: 5.1 - Redes Sísmicas

Ruido como señal

Shapiro, Campillo et al 2005

Page 41: 5.1 - Redes Sísmicas

Ejemplo: Cascadia

Calkins et al, JGR 2011

Page 42: 5.1 - Redes Sísmicas

Velocidad de fase, Onda Rayleigh 12 segundos

Ekstrom, Abers, Webb 2009

??

Page 43: 5.1 - Redes Sísmicas

Velocidad de Grupo y Fase en México

• Lo más nuevo: Gaite, Iglesias, Villaseñor, Herraiz, Pacheco 2012

Page 44: 5.1 - Redes Sísmicas

Gaite, Iglesias, Villaseñor, Herraiz, Pacheco 2012

Page 45: 5.1 - Redes Sísmicas

Ahora: cambios en velocidades

• Ahora: Monitorear volcanes, campos de exploración, zonas de subducción (México) para buscar cambios en velocidades con tiempo.