6. chapter 6. alternative fuel engine - biodiesel engine...

35
에너지변환특론 Advanced Energy Conversion Chapter 6. Alternative Fuel Engine System (Biodiesel engine system) 교수 박수한 Fall semester, 2014

Upload: others

Post on 17-Nov-2019

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

에너지변환특론Advanced Energy Conversion

Chapter 6. Alternative Fuel Engine System(Biodiesel engine system)

교수 박 수 한

Fall semester, 2014

Page 2: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Introduction

바이오매스 기반 바이오연료의 상업화 개략도(Auto Journal, 2014.04)

Page 3: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Introduction

Page 4: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

국내 바이오디젤 연도별 보급량 (B5, B20)

국내 바이오디젤의 국산비율과원료별 사용비율 현황(2012)※ 2010년 21.8% → 2013년 38.3%

Introduction

※ 바이오디젤 사용시 가격인상 요인리터당 9.6원 (2010년) → 3.1원 (2014년)

※ 이산화탄소 발생 비교 (경유, 바이오디젤) (1000kl당)경유: 3.18톤, 바이오디젤: 0.7톤

출처: ‘바이오디젤업계 현안전망’, 투데이에너지, 최원도 바이오에너지협회장

Page 5: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel 기관

Biodiesel

바이오디젤은 식물성기름, 동물성기름, 폐식용유 등 재생 가능한 자원을 촉매

(산 또는 알칼리) 존재 하에 알코올 (에탄올, 메탄올) 과 반응시켜 생성하는 에

스테르화 기름을 말한다.

*국내 시행령에 따른 정의 : 바이오디젤 및 이를 석유제품인 경유와 혼합하여

제조한 연료

Soybean Oil300 ml heated to 50oC

Methanol75 ml

KOH1.5 grams

Biodiesel

Glycerin

The glycerin will settle to the bottom of the tank.

+ =+

Heating the oil can speed up the reaction; Methanol boils at 65oC (150oF)

Page 6: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel 기관

Biodiesel의 생산원료

식물성 유지 : 대두유, 유채유, 팜유, 면실유, 자트로파유 등

동물성 유지 : 돈지, 우지, 어유 등

Trans-esterification Reaction

Page 7: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel

바이오디젤 제조 방법

촉매촉매

메탄올메탄올

①혼합①혼합 ⑤ 수세처리⑤ 수세처리 ⑥ 증류처리⑥ 증류처리 바이오디젤연료

회수 메탄올회수 메탄올

⑥메탄올회수⑥메탄올회수 (粗)글리세린④상분리④상분리

(粗) 바이오디젤연료(粗) 바이오디젤연료

③중화처리③중화처리산산

②에스테르교환반응

②에스테르교환반응

전처리전처리

원료(식물유)(폐식용유)(동물유지)

(출처 : Biodiesel the comprehensive handbook)

Page 8: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

H3C

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

CO

O CH3

구성 성분 유채 BD 대두 BD 팜 BD Jatropha BD

C16:0 Methyl Palmitate 6 11 35.1 18.5

C18:0 Methyl Stearate 1.9 4 8.2 2.5

C18:1 Methyl oleate 62.1 24 47.7 49.0

C18:2 Methyl Linoleate 20.2 54 7.7 29.7

C18:3 Methyl Linolenate 8.5 7 0.3 0.3

항 목 유채 BD 대두 BD 팜 BD 경 유

밀도 @ 15℃(g/cm3) 0.884 0.885 0.875 0.825

동점도 @ 40℃(mm2/s) 4.53 4.23 4.53 3.00

인화점(℃) 130 186 180 60

황함량(mg/kg) 4 3 <5 20(ULSD)

10% 잔류탄소(%) 0.48 0.63 0.13 0.01

세탄가 57 51 65 50

산화안정도 @110℃(hr) 4.9 2.6 5.0 -

산가(mg KOH/g) 0.14 0.20 0.22 0.00

요오드가(g/100g) 114 131 52 -

발열량(MJ/L) 32.8 32.7 32.4 35.5

CFPP(℃) -12 -2 12 -20(동절기)

Biodiesel

식물성 유지별 구성성분

Page 9: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

참고. 원료에 따른 Biodiesel 물성

Page 10: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel

국내 바이오디젤 장기 보급 계획 (’07년 9월 수립)

• Blend ratio of biodiesel for B5 will be increased by 0.5% each year from 2007.

• B20 is limited on the vehicles enabling to repair in their own facilities

due to the technical problems.

• Tax will be exempted for biodiesel until 2010.

• Policy including blend ratio and tax will be reviewed in 2010.

Page 11: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

11

국내 바이오디젤의 보급정책 흐름도

참고.

Page 12: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel

개발·보급되고 있는 석유대체연료의 품질기준과 제조·판매업 등록 및 세금감면 등 지원책 근거 마련

2006. 1. 1일 부터 시행

바이오디젤연료유 : 바이오디젤 연료유 원액

이를 석유제품 또는 석유화학제품 등과 혼합한 연료

바이오디젤 : 식물성 유지 (폐식용유, 대두유, 유채유 등)와 알코올을 반응시켜 만든

지방산메틸에스테르로서 순도가 96.5% 이상인 것 (BD100)

바이오디젤혼합연료유 : 자동차용 경유 80%와 바이오디젤 20%를 혼합한 연료 (BD 20)

※ 경 유 : 지방산메틸에스테르 함량 5부피% 이하 (BD 5)

<시행령>

<이용보급 고시>

<이용보급 고시>

<품질기준 고시>

바이오디젤 상용화를 위한 추진 내용

바이오디연료유 정의 및 종류

Page 13: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel

국내 바이오디젤 공급 시스템

• B5 is subject to diesel fuel specification, and supplied by refiners.

• B20 is used by Bus and Truck company on their own accord, and supplied by

biodiesel supplier.

Page 14: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel

국내 바이오디젤 보급 현황

Page 15: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

15참고. Biodiesel 적용 양산 엔진

Page 16: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

16참고. Biodiesel 엔진의 배기 특성

• 高 NOx의원인.1) 제어변수 2) 착화지연 3) 연소온도 4)연료성상

• 저부하영역 (예혼합연소영향큼)에서바이오디젤첨가에의한질소산화물증가가더큼.

• 자발화영역에서이론공연비에가까운혼합기형성.→ 연소장의온도를높임→질소산화물생성증가(SNL, Sandia National Laboratory)

Page 17: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel in a CI engine

1. Higher Cetane Number: Rapid reaction of premixed combustion

2. Higher Oxygenated Contents: CO, HC, and P.M. Reduction

1. Low Lower Heating Value (LHV)2. Higher Viscosity & Density

: Poor atomization → Incomplete combustion

3. Higher Cloud & Pour Point: Starting & operating problem at low temperature

4. Increase of NOX

Demerits

Merits

[Properties of Biodiesel]Properties (Units) Values

Density (g/ml) 881

Viscosity @ 313K (cSt) 4.75

Carbon (wt %) 78

Hydrogen (wt %) 11

Cloud point (K) 270.15 ~ 285.15

Oxygen content (wt %) 11~15

Cetane number Min. 47

Boiling point (K) 588.15 ~ 623.15

Auto ignition temperature (K) -

Lower Heating Value (MJ/kg) 38

Flash point (K) Min. 403.15

Sulfur (mass %) Max. 0.05

Water and sediment (Vol. %) Max. 0.05

Biodiesel

Page 18: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel 기관

BDE0

BDE50

Temp.

Temp.

23℃

23℃ -1.2℃

4.3℃

-2

-1

0

1

2

3

4

5

Clo

ud p

oint

(o C)

Ethanol blending ratio (%)0 10 20 30 40 50

30%51%

77%

105%

128%

저온유동 특성

Page 19: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

-40 -30 -20 -10 0 10 20 30 400

2

4

6

8

10

PMEIMEP=0.67MPa

SMEIMEP=0.63MPa

SOI=-15o

Pressure

Crank angle (deg. ATDC)

Com

bust

ion

pres

sure

(MP

a)

ROHR

Single injectiontinj=BTDC 15o

ULSD SME PME

ULSDIMEP=0.72MPa

0

30

60

90

120

150

180 Rate of heat release (J/deg.)

Test condition (Pinj=130MPa,mfuel=10mg, Start of Energizing : BTDC 15 deg.)

Combustion pressure & Rate of Heat Release

• SME and PME biodiesel fuels showed slightly faster ignition timings due to the high cetane number.

• Peak combustion pressure of two biodiesel fuels is lower than that of ULSD due to the low LHV (lower heating value).

Ignition & Combustion

※ ULSD : 42.5MJ/kg, PME : 39.9MJ/kg, SME : 38.0 MJ/kg

• ROHR of SME and PME is similar or slight higher than that of ULSD.

Rate of Heat release (ROHR)

1. IMEP of ULSD is higher than that of SME and PME.

The peak combustion pressure of SME and PME represented before TDC, therefore, it means the negative effect on the IMEP. In addition, the low heating value of SME and PME is lower than that of ULSD.

Biodiesel

Page 20: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

-30 -25 -20 -15 -10 -5 00.0

0.2

0.4

0.6

0.8

1.0

1.2

Indi

cate

d M

ean

Effe

ctiv

e P

ress

ure

(MPa

)

Injection timing (ATDC degree)

Pinj=130MPa, mfuel=10mg ULSD SME PME

-30 -25 -20 -15 -10 -5 00

10

20

30

40

50

60

Pinj=130MPa, mfuel=10mg ULSD SME PME

Indi

cate

d Th

erm

al E

ffici

ency

(%)

Injection timing (ATDC degree)

Test condition (Pinj=130MPa,mfuel=10mg)

※ IMEP : Indicated Mean Effective Pressure, ITE : Indicated Thermal Efficiency

1. As the injection timing retarded, the IMEP and ITE showed the increasing trend.2. IMEP of two biodiesels is lower than that of ULSD. However, ITE of three test fuels

represented almost same value because LHV of three fuels is different. ※ ULSD : 42.5MJ/kg, PME : 39.9MJ/kg, SME : 38.0 MJ/kg

IMEP & ITE

Biodiesel

Page 21: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

0.0

0.1

0.2

0.3 ULSD SME PME

Soo

t (FS

N)

BTDC 30 BTDC 15 TDCInjection timing (degree)

0

5

10

15 ULSD Soybean Palm

NO

x (g/k

Wh)

BTDC 30 BTDC 15 TDCInjection timing (degree)

Test condition (Pinj=130MPa,mfuel=10mg)

• Biodiesel fuels exhausted low soot emissions compared to ULSD due to the high cetane number and oxygen content in fuels. Soot emission of PME is similar that of SME.• The incomplete combustion and the fuel distribution in the squish area induced the high soot emissions at BTDC 30 degrees injection.

Soot emissions

• Biodiesel fuels exhausted somewhat highNOx emissions compared to ULSD due to active combustion. PME showed lower NOxemissions than SME fuel.• At BTDC 15 injection timing, the injected spray entirely entered the piston bowl, then major part of fuels combusted with sufficient oxygen.

NOx emissions

Exhaust emission characteristics

Biodiesel

Page 22: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

0

1

2

3

4

304050 ULSD

Soybean Palm

CO

(g/k

Wh)

BTDC 30 BTDC 15 TDCInjection timing (degree)

0.0

0.1

0.2

0.3

0.4

0.5 ULSD Soybean Palm

HC

(g/k

Wh)

BTDC 30 BTDC 15 TDCInjection timing (degree)

Test condition (Pinj=130MPa,mfuel=10mg)

• Three test fuels showed almost similar CO emission characteristics except BTDC 30 degrees.

CO emissions

• HC emissions were obviously lower with biodiesels in all injection timings.

• The low ambient pressure at BTDC 30 degrees induced the long spray tip penetration. It may occur the piston wall impingement.

HC emissions

Complete combustionOxygen content in fuels

High HC emissions

※ The occurrence of CO is caused by the insufficient oxygen distribution and low temperature in the combustion chamber[b].※ HC results from the wall wetting, insufficient oxygen, and the residual fuel in sac volume[c].

[b] C. R. Ferguson et al., “Internal Combustion Engines – applied thermoscience”, John Wiley & Sons, Inc., 2001.[c] E. Sher, “Handbook of air pollution from internal combustion engines – pollutant formation and control”, Academic Press, 1998.

Exhaust emission characteristics

Biodiesel

Page 23: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel

Exhaust emission characteristics

Page 24: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

0.0 0.5 1.0 1.5 2.0 2.5

0

10

20

30

40

50

60

ULSD PME SME

Pinj=130MPa, Pamb=3.0MPa, mfuel=10mg

Spr

ay ti

p pe

netra

tion

(mm

)

Time after the start of energizing (ms)

Spray tip penetrationTest condition (Pinj=130MPa, Pamb=3MPa, mfuel=10mg)

Injectionduration

Injectiondelay

Three test fuels have almost similar injectiondelay (around 0.3~0.4ms).

Fuel injection delay

Spray tip penetration was mainly affected by the pressure difference between the injection pressure and ambient pressure.

Injection duration

After the endof injection

ULSD fuel showed the lowest spray tip penetration among three test fuels due to the low fuel density.

After the end of injection

1. Spray tip penetration in this work was little affected by the fuel properties during the fuel injection.

2. However, after the end of injection, the spray tip penetration was affected by the spray momentum itself. Therefore, the spray tip penetration of diesel fuel is short compared to other fuels.

Biodiesel

Macroscopic spray characteristics

Page 25: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.70

5

10

15

20

25

30

35

40

45

50

Spra

y co

ne a

ngle

(deg

ree)

Time after the start of energizing (ms)

Pinj=130MPa, Pamb=3.0MPa, mfuel=10mg ULSD PME SME

Test condition (Pinj=130MPa, Pamb= 3MPa, mfuel=10mg) Spray cone angle

1. PME fuel also showed similar spray cone angle characteristics with ULSD and SME.2. PME fuel showed the smallest spray cone angle, because of the high fuel density and high kinematic viscosity.

Injectionduration

After the endof injection

Spray cone angle of ULSD, SME, and PME showed the decreasing trend during the injection.

Injection duration

In all of test fuels, the spray cone angle showed even or somewhat increasing pattern.

After the end of injection

Collision and coalescence between droplets and between early injected and late injected sprays

Biodiesel

Macroscopic spray characteristics

Page 26: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.10

5

10

15

20

25

30

35

40

45

Ove

rall

SM

D (

m)

Time after the start of injection (ms)

ULSD SME PME

Pinj=130MPa, Pamb=3MPa, mfuel=10mg

Test condition (Pinj=130MPa, Pamb= 3MPa, mfuel=10mg) Sauter mean diameter (Overall SMD)

Overall SMD : time dependent droplet size at a specific time in a whole measuring points

2

2 1

2

2

2 1

3

SMD(t)Overalltt

tt

n

ii

tt

tt

n

ii

D

D

• Equation for the overall SMD

• Suddenly after the injection, the injected fuel droplets rapidly decreased, then gradually increa-sed due to the collision and coalescence bet-weendroplets and between early injected and late injected sprays.

1. ULSD is smaller than other two biodiesel fuels.2. PME fuel showed the largest droplet size among three test fuels due to the high kinematic

viscosity and surface tension.

Biodiesel

Microscopic spray characteristics

Page 27: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

10 20 30 40 50 60 70 800

10

20

30

40

50D

ropl

et n

umbe

r per

cent

age

(%)

Droplet size distribution (m)

ULSD

10 20 30 40 50 60 70 800

10

20

30

40

50

Droplet size distribution (m)

Dro

plet

num

ber p

erce

ntag

e (%

)

SME

Test condition (Pinj=130MPa, Pamb= 3MPa, mfuel=10mg)

Larger droplets

Larger droplets

ULSD : 85 %, PME : 69%, SME : 77% Less than 20μm69%

85% 77%

ULSD : 1.4 %, PME : 8.8%, SME : 4.7% More than 50μm

The high portion of the large droplets affectsthe increase of SMD of PME fuel.

10 20 30 40 50 60 70 800

10

20

30

40

50

Dro

plet

num

ber p

erce

ntag

e (%

)

Droplet size distribution (m)

PME

Biodiesel

Microscopic spray characteristics (droplet size distribution)

Page 28: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Biodiesel 기관

Page 29: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Bag breakup regime

D100 BD20

BD40 BD60

BD80 BD100

D100 BD20

BD40 BD60

BD80 BD100

Photographs of bag breakup regimes (We=45)

D100 BD20

BD40 BD60

BD80 BD100

D100 BD20

BD40 BD60

BD80 BD100

Photographs of stretching and thinning breakup regimes (We=80)

Stretching and thinning breakup regime

Photographs of catastrophic breakup regimes (We=350)

D100 BD20

BD40 BD60

BD80 BD100

D100 BD20

BD40 BD60

BD80 BD100

Catastrophic breakup regime

Biodiesel 기관

바이오디젤 액적의 2차 분열

Page 30: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

바이오디젤 기관 (연구동향)

2020년: 총 디젤 사용량의30%를 바이오 디젤로 대체(1999년 대통령령)

미국

1990년

2000년

2010년

2020년

1992년: NBB (National Biodiesel Board) 설립

2000년 미국의회: 바이오 디젤을 청정대체 연료로 지정

보급

목표

(총에

너지

중%

)

2010년 2020년2000년

5

10

15

20

5%

12%

•프랑스: 시내버스의 30% 사용의무화 및 면세•독일, 스웨덴, 벨기에, 이태리: 바이오 디젤 면세

1997년 유럽연합결의

1%미만

유럽

Page 31: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

일 본

NEDO (신에너지 개발 기구) : ‘바이오 연료 에너지의 고효율 전환 기술’ 연구 프로젝트를 진행하여 바이오 디젤의 엔진 적용성에 대한 연구.

농업용 트렉터에 바이오 디젤 연료의 사용을 권장 및 품질 보증.

바이오디젤 기관 (연구동향)

2001년 12월: 전라북도 관용차량에 바이오 디젤 시범 사용

2002년 11월: 수도권 지역을 바이오 디젤 시범 보급 지역으로 선정

(시범보급 기간: 2005년 5월)

신양 현미유와 신한 에너지에서 연간 16만톤의 양질의 바이오 디젤 생산 및 판매 중

한양대학교 – 한국기계연구원 Eco-STAR project (2004~2011, 총연구비 13억)

국 내

Page 32: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

바이오디젤 기관

장 점

1. 국내 자급이 가능하고, 재생 가능한 식물자원에서 생산되므로 에너지자원의 고갈문제 해결

2. CO2 순환으로 CO2 순 배출량이 매우 작다.

3. 산성비의 주범인 SOx의 배출이 없고, 함산소연료로 입자상물질이나 CO, HC 배출이 적다.

4. 세탄가가 높아 디젤엔진에 적용가능하며, 기존 경유에 혼합하여 사용할 경우 엔진 구조의

변경이 필요없으며, 출력 및 연비변화도 거의 문제되지 않는다.

5. 액상 연료로 기존 연료 인프라를 그대로 활용할 수 있다.

단 점

1. 연료의 안정성이 좋지 않다. 연료품질의 악화가능성이 있다.

2. 연료분사 인젝터의 막힘이나 실린더내 카본 퇴적의 증가를 유발

3. 경유에 비해 유동점이 높기 때문에 한냉 시의 시동성 악화를 유발

4. 연료계통의 일부 고무재료 등을 열화시킬 수 있으므로 고농도로

사용할 경우 재질 변경이 필요

5. 높은 점도로 미립화 특성 X.

Page 33: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

분무, 연소 및 배기 특성

1. 동일 분사기간 분사 시 디젤 보다 분무 도달 거리가 다소 길고, 분무각이 작다.

2. 동일 발열량을 위해 분사기간을 늘리고 분사량 증가가 필요하다.

3. 동일 발열량 (에너지) 조건에서 최고 연소압력은 약간 낮다.

4. 입자상물질 및 Soot의 배출이 낮으며, 질소산화물은 증가한다.

5. CO 및 HC의 배출은 저감된다.

바이오디젤 기관

Page 34: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

향후 일정.

10월 28일(화) : Biodiesel Combustion and Engine Application (4교시)

10월 30일(목) : Biodiesel Combustion and Engine Application (4교시)

11월 4일 (화) : Bioalcohol (bioethanol, biomethanol 등) Combustion and Engine Application (3, 4교시)

11월 6일 (목) : 11월 4일로 수업으로 병합

11월 11일 (화) : Stirling Engine System

11월 13일 (목) : 11월 11일으로 수업으로 병합

11월 18일 (화) : Presentation (권오정, 김대석, 손정수, 오진우) / 각 30~40분씩

11월 20일 (목) : 11월 18일 수업으로 병합 ※ 수시모집 면접.

11월 25일 (화) : Presentation (정철, 정필수, Jiang Xiaolong, Zhao Yingying) / 각 30~40분씩

11월 27일 (목) : 11월 25일 수업으로 병합

이후 수업에 대해서는 향후 공지

Page 35: 6. Chapter 6. Alternative Fuel Engine - Biodiesel Engine ...contents.kocw.net/KOCW/document/2015/chungnam/parksuhan/7.pdf · 에너지변환특론 Advanced Energy Conversion Chapter

CNU Engine Research Lab.

Be the Legend, Be the ‘Wanna be’