6. summary and conclusion 6.1. summary

58
Summary & Conclusion 6. SUMMARY AND CONCLUSION 6.1. Summary Although analysis of a pile is a three-dimensional case, the vertically loaded pile in horizontally bedded soil can be analyzed by simplifying as a problem of the axi- symmetry. The numerical results presented in this report were obtained by using axi- symmetric elements. The meshes were prepared such that in the regions of higher stress concentration the element sizes were smaller. It is known that when the element sizes become smaller (i.e. mesh becomes finer) the result obtained using-the finite element method approaches the analytical result (Zienkiewicz, 1977). The analytical solutions have been derived by considering the influence of the surface loads on a semi-infinite soil medium (i.e. boundaries of the influence region are at the infinity). But in the case of finite element analysis, boundary has to be fixed at a known distance away from the pile. Considering smaller elements and a lager influence region will minimize deviations in the numerical solution. As mentioned, in Chapter four, analysis here was limited to linear elastic materials, and effects of consolidation, secondary creep, etc are not included. However the results are a good indicator for the initial stress distribution and its consequences in the soil medium. As long as a good estimate of secant modules can be made for the pile materials and soils, the predicted results here could be used in a wider perspective. Only a limited parametric study was undertaken in this work, due to limitation of time and length of report, in order to demonstrate the trend of interface shear behavior of the specimen considered. Also, materials are considered as linear isotropic elastic. A more detailed investigation involving a wider range of material parameters is preferable as a further study of'the behavior of piles in layered media. In this aspect, comparison with some available test results is also preferable in order to predict a good representative value for the constitutive parameter used in the interface elements to represent the interface adhesion and friction. University of Moratuwa 6-1

Upload: others

Post on 10-Apr-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6. SUMMARY AND CONCLUSION 6.1. Summary

Summary & Conclusion

6 . S U M M A R Y A N D C O N C L U S I O N

6.1. Summary

Although analysis of a pile is a three-dimensional case, the vertically loaded pile in

horizontally bedded soil can be analyzed by simplifying as a problem of the axi-

symmetry. The numerical results presented in this report were obtained by using axi-

symmetric elements. The meshes were prepared such that in the regions of higher

stress concentration the element sizes were smaller.

It is known that when the element sizes become smaller (i.e. mesh becomes finer) the

result obtained using-the finite element method approaches the analytical result

(Zienkiewicz, 1977).

The analytical solutions have been derived by considering the influence of the surface

loads on a semi-infinite soil medium (i.e. boundaries of the influence region are at the

infinity). But in the case of finite element analysis, boundary has to be fixed at a

known distance away from the pile. Considering smaller elements and a lager

influence region will minimize deviations in the numerical solution.

As mentioned, in Chapter four, analysis here was limited to linear elastic materials,

and effects of consolidation, secondary creep, etc are not included. However the

results are a good indicator for the initial stress distribution and its consequences in

the soil medium. As long as a good estimate of secant modules can be made for the

pile materials and soils, the predicted results here could be used in a wider

perspective.

Only a limited parametric study was undertaken in this work, due to limitation of time

and length of report, in order to demonstrate the trend of interface shear behavior of

the specimen considered. Also, materials are considered as linear isotropic elastic. A

more detailed investigation involving a wider range of material parameters is

preferable as a further study of'the behavior of piles in layered media. In this aspect,

comparison with some available test results is also preferable in order to predict a

good representative value for the constitutive parameter used in the interface elements

to represent the interface adhesion and friction.

University of Moratuwa 6 - 1

Page 2: 6. SUMMARY AND CONCLUSION 6.1. Summary

Summary & Conclusion

The reduction of negative friction by applying coatings to the pile has been

investigated under several field conditions by Bjerrum et al. (1969). The coating can

be bitumen; bentonite slurry or bitumen covered with bentonite slurry can be applied

for driving piles with enlarged base. These coating techniques also can be modelled in

FEAP with interface element and good representative values of interface bond

strength can be found.

6.2. Implementation in Real Situations and Verification

For the implementation of this method in real situations, various relations are

available in the literature for the evaluation of Young's Modulus and Poisson's Ratio

(e.g. Selvadurai, 1979, Tomlinson, 1986). V^

The representative value for the constitutive parameter used in the interface elements

to model the interface adhesion 'arid friction (Cs) actually depends on the

constructional practices such as the method of installation and quality control at the

site. The interface behavior may be totally different than that assumed by the

designer. It can behave like soil, bentonite, concrete or combination of any of the

above and the behavior may differ according to site situations.

The present work focuses on a parametric study to cover the possible range of

behaviour in layered soil as compared to the often-difficult task of evaluating exact

parameters to simulate the real situations.

Tomlinson (1986) illustrated the behaviour of a single pile in a uniform soil when

subjected to vertical loading by Figures 6.1a and 6.1b. These figures show that the

end-bearing component as well as the skin friction component (load carried by the

shaft) increases as the load on the pile is increased. Figure 6.1b shows the expected

shapes of the curves of the axial load carried by the pile versus depth. The curves are

plotted based on readings taken from strain gauges embedded along the length of the

pile. The Figure 5.1b in Chapter 5 of this work shows the numerically predicted

behaviour of the axial load carried by the pile with depth in homogeneous media.

Curves of Figure 5.1b are in general agreement with the behaviour of those in Figure

University of Moratuwa 6 - 2

Page 3: 6. SUMMARY AND CONCLUSION 6.1. Summary

Summary & Conclusion

end-bearing Figure 6.1a Load-settlement curve for a pile Figure^, lb. Strain gauge readings on pile

(after Tomlinson, 1986) shaft (after Tomlinson 1986)

Figure 6.1 Behaviour of a pile in a uniform soil under vertical load, after Tomlinson (1986)

Verification of the behaviour predicted numerically in this work can be performed by

embedding strain gauges along the pile length as indicated by Tomlinson (1986). In

real situations the parameter Cs will increase with settlement, as shown in Figure

6.1b. The present work provides a method to estimate the load transfer from pile to

soil at a given instant in the loading history.

6.3. CONCLUSION

Elastic finite element analysis of piles in layered soil media along with the

incorporation of elastic interface element enables the simulation of the stress-transfer

behaviour of such piles. This work concentrated mainly on the effect of layer

thickness and the properties of a weak layer sandwiched between two competent

layers at the top and bottom of the pile. The load transfer due to shear stress

developed at the interface was also studied by introducing theory - based estimates for

interface elements under drained and undrained conditions. The effect of angle of

friction and cohesion of the weak layer under drained condition for bored piles is

investigated with range of parameters.

Exact parameters applicable for a particular field condition would be difficult to

obtain, and finite element analysis such as presented here enables a parametric

analysis of the problem, by varying the interface roughness, geometry and material

University of Moratuwa 6 - 3

6.1b. This resemblance with Figure 6.1b can be observed even for curves predicted

for layered media, such as those in figures in section 5.3.

Page 4: 6. SUMMARY AND CONCLUSION 6.1. Summary

Summary! & Conclusion

properties. The possible ranges of constitutive parameters for the interface elements

were considered.

According to the numerical results for smooth wall conditions, the interface shear

stress increases linearly with depth and does not depend on the thickness of weak

layer. As the wall roughness increases the shear stress developed becomes non-linear

with depth and the properties and the thickness of the weak layer becomes significant.

When the Young's Modulus of weak layer is very low (one hundredth of the stronger

media) the shear stress developed on the pile-soil interface were observed as negative

at the outer most depth of the weak layer. This is the negative skin friction developed

on the pile-soil interface due to the relative settlement of the weaker soil. The sudden

change in modulus value at the boundaries of the weak layer causes the change in

direction of interface shear.

According to the numerical results, the drained capacity of the skin friction is

somewhat higher for driven piles and lower for bored piles when compared to the

undrained capacity. Percentage of applied load transferred by skin friction for driven

pile is approximately half than that for bored pile. Angle of friction of a weak layer

has only a small effect on the drained skin factional resistance for the range of

drained parameters whereas it shows a higher effect when cohesion introduced.

The numerically predicted results show some agreement with the test data reported by

Tomlinson (1986), and successfully confirm the generally expected trend of shear

stress distribution along the interface and axial load transmission through pile shaft.

6.4. RECOMMENDATIONS

The analysis is limited to horizontally oriented layered soil homogenous in nature and

of uniform diameter of pile. Further studies can be suggested for tapered pile analysis

and layered homogenous soils with inclined orientations.

University of Moratuwa 6 - 4

Page 5: 6. SUMMARY AND CONCLUSION 6.1. Summary

References

REFERENCES

1. Balaam N.P., Poulos H.G. and Booker J.R. (1975) "Finite Element Analysis of the effect of Installation on Piles Load-Settlement Behaviour" Geotechnical Engineering. 6(1), 33-48.

2. Balakirshnan E.G., Balasubramaniam A.S. and Noppadol Phein-wej (1999) "Load Deformation of Analysis of Bored Piles in Residual Weathered Formation" J. Geotech. Engng. ASCE, 125(2), 121-131.

3. Banerjee P.K. (1978); "Analysis of Axially and Laterally Loaded Pile Groups" In Development in Soil Mechanics. Ed. C. Scott, Ch 9, London. Applied Science Publishers.

4. Banerjee P.K. and Davis T.G. (1977); "The Behaviour of Axially and Laterally Loaded Single Pile Embedded in Non-homogeneous Soils", Geotechnigue, 28, No.3, 309-326.

5. Bowles J.E. (1997); "Foundation Analysis and Design", Mc-Graw Hill publications, Fifth Edition, 313-316.

6. Butterfield R. and Banarjee P.K. (1971); "The Elastic Analysis of Compressible Piles and Pile Groups" Geotechnigue, 21, No. l , 43-60.

7. Coyle H.M. and Reese L.C. (1966) "Load Transfer for Axially Loaded Piles in Clays" J. Soil Mechs Fdn Engng, ASCE, 92, No.SM2, 1-26.

8. Desai C S . (1974) "Numerical Design-Analysis for Piles in Sands" J. Geotech. Engng. ASCE, 100(6), 613-635.

9. Desai C S . and Chiristian J.T. (1977) "Numerical Methods in Geotechnical Engineering", Mc Grow-Hill.

10. Ellision R.D. et al. (1971) "Load-Deformation Mechanism of Bored Piles" J. Geotech. Engrg. ASCE, 97(4), 661-678.

11. Guo W.D. (2000) "Vertical Loaded Single Piles in Gibson Soil" J. Geotech. Engng. ASCE, 126(2), 189-193.

12. Guo W.D. and Randolph M.F. (1997) "Vertically Loaded Piles in homogeneous Media" J. Geotech. Engrg. ASCE, 21(8), 507-532.

13. Kodagoda S.S.I and Puswewala U.G.A.P (2001) "Numerical Modelling of Pile-Rock Interface In Rock Socketed Piles", Proc 7th Annual Symposium, ERU, University of Moratuwa.

14. Kraft L.M., Ray R.P. and Kagawa T. (1981) "Theoretical t-z Curves" J. Geotech. Engng. ASCE, 107(11), No. GT11, 1543-1561.

15. Lee C.Y. and Small J .C (1991) "Finite Layer Analysis of Axially Loaded Piles" J. Geotech. Engng. ASCE, 117(11), 1706-1722.

University of Moratuwa 1

Page 6: 6. SUMMARY AND CONCLUSION 6.1. Summary

References

16. Leland M. Kraft Jr. (1999) "Performance of Axially Loaded Piles in Sand" J. Geotech. Engng. ASCE, 117(2), 272-296.

17. Mabsout E.M., Reese L.C. and Tassoulas J.L. (1995) "Study of Pile Driving by Finite Element Method" J. Geotech. Engng. ASCE, 121(7), 535-543.

18. Ottaviani M. (1975) "Three-Dimensional Finite Element Analysis of Vertically Loaded Pile Groups" Geotechnigue, 25, No.2, 159-174.

19. Poulos H.G. (1989) "Pile Behaviour - Theory & Application", Journal of Geotech. Engng. ASCE, 39(3), 365-415.

20. Poulos H.G. and Davis E.H. (1980) "Pile Foundation Analysis and Design" john Willy and Sons, New York. N. Y.

21. Puswewala U.G.A.P (2003) "Lecture Notes on Computer Application", P.G. Dip/M.Eng in Foundation Engineering, University of Moratuwa.

22. Rajashree S.S. and Sitharam T.G. (2001) "Non-linear Finite Element Modeling of Batter Piles under Lateral Load"./ Geotech. Engng. ASCE, 127(7), 604-612.

23. Randolph M.F. and Wroth (1978) "Analysis Deformation of Vertically Loaded Piles" J. Geotech. Engng. ASCE, 104(12), 1465-1488.

24. Selvaduarai, A.P.S. (1979) "Elastic Analysis of Soil Foundation Interaction", Amsterdam: Geotechnical Engineering Vol 17.

25. Tomlinson, M J . (1986) "Foundation Design and Construction" Fifth Ed., ELBS, Longman Group, UK.

26. Thilakasiri H.S. (2003) "Lecture Notes on Design and Construction of Deep Foundation", P.G. Dip/M.Eng in Foundation Engineering, University of Moratuwa.

27. Trochanis A.M., (1991) "Numerical Methods in Geotechnical Engineering", 3rd

Edition, ELBS London.

28. Trochanis A.M., Bielack J. and Christiano P. (1991a) "Three-Dimensional Non-Linear Study of Piles" J. Geotech. Engng. ASCE, 117(3), 429-447.

29. Trochanis A.M., Bielack J. and Christiano P. '(1991b) "Simplified Model Analysis of for One or Two Piles" J. Geotech. Engrg. ASCE, 117(3), 448-466.

30. Wyllie D.C. (1992) "Foundation on Rock" First Edition E& FN Spon London.

31. Zehong Yuan and Koon Meng Chua (1992) "Exact Formulation of Axisymmetric interface Element Stiffness Matrix", J. Geotech. Engng. ASCE, 118(8), 1264-1271.

32. Zienkiewicz O.C. (1977) "The Finite Element Method", 3rd Edition Mc. Graw-Hill Co., London, U.K.

University of Moratuwa 2

Page 7: 6. SUMMARY AND CONCLUSION 6.1. Summary

ABBREVIATIONS

A Cross sectional area of the cylinder

a Half the length of a rectangular element

b Half the width of a rectangular element

C Pile perimeter

c„ Adhesion

Cs A bond modulus for the adhesive strength

D, ri­ Diameter of pile

ds Relative displacement parallel to the bond interface

E Young's modulus

E s Soil modulus

F Total applied force

F w Correction factor for tapered pile

H Thickness of the weak layer

Ko Lateral earth pressure coefficient

K n , K s Interface element stiffness

L Length of pile shaft

N Shape function

P Vector of Transformed stresses

P1.P2 • Force acting on node number 1, 2

Ultimate shaft resistance

Ultimate base resistance

Q Load on head of pile

q Effective overburden pressure at depth Zj

Q s - skin friction on pile

Qb - Base resistant on pile

Q P - Failure load on pile

s - Surface of a finite element

- Strain energy of an elastic body

V - Volume of a finite element

W ] W2 - Weight factors

~ Weight of the pile

University of Moratuwa 1

Page 8: 6. SUMMARY AND CONCLUSION 6.1. Summary

Abbreviations

Work done by surface tractions

~ Work done by body forces

- Ordinates in X-Axis (i=l,2,3 etc)

Yi - Ordinates in X-Axis (i=1,2,3 etc)

a A Coefficient

Constants for shape function (i=l,2,3 etc)

P - A Coefficient

<l> - Angle of friction of soil

M „ - Angle of friction between pile and soil

A. - A Coefficient

r„ - Shear resistance at the pile so iUnter face

_ Normal stress between pile and soil

- Poisson's ratio

- Normalized co-ordinates along X-Axis

- Normalized co-ordinates along Y-Axis

e - Strain vector

~ Potential energy

w ~ Shape function matrix

- Modulus vector

{f} - Body forces vector

w - Derivation vector

M - Displacement matrix

{a} - Stress vector

{T} - Applied traction vector

W - Nodal Displacement vector

University of Moratuwa 2

Page 9: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix A

APPENDIX A: - COMPUTER PROCEDURE FOR FINITE ELEMENT ANALYSIS PROGRAM

Finte element program can be seperated in to two basic parts as follows:

(a) Data input module and preprocessor, and

(b) Solution and output module to carry out the actual analysis. (See Figure A.lfor

simplified schematic)

The data input module shown in Figure A.l must transmit sufficient information to the

other modules so that each problem can be solved. The data input module is used to read

from an input file the necessary geometric, material, and loading data so that all

subsequent finite element arrays can be established. In the program a set of dimensioned

arrays are established which store nodal coordinates, element connections, material

properties, boundary restrains codes, prescribed nodal forces and displacements, nodal

temperature, etc. Table A.l list the array names (and their dimensions) which are used to

store these quantities.

Figure A. 1 Simplified schematic of finite element program

A single array is partitioned to store all the data arrays, as well as some global arrays, e.g.

residuals, displacements, loads, etc. each array indicated in Table A.l is dynamically

Data input Module (Preprocessor)

Solution and Output Module (Postprocessor)

University of Moratuwa A-1

Page 10: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix A

dimensioned to the size and precision required for each problem by using a set of pointers

established in the control program.

Table A. J FORTRAN Variable names used for data storage

Variable names (dimensions) Description

Material property data sets, limited to i8 words per set

Nodal forces and displacements

Boundary restrains conditions after input of data changed to equation numbers in global arrays

Element type for each material set

Element nodal connections and Material set numbers

Nodal temperature

Nodal coordinates

Maximum numbers of degree of freedom at any node (Maximum 6) Spatial dimension of problem (Maximum is 3)

Maximum numbers of nodes connected to any element

NEN+3

Numbers of elements

Numbers of material sets

Numbers of nodes

Once a mesh for a problem has been established data can be prepared for finite element

analysis computer program. The first steps in preparation of input data for the program is

consist of specifying problem title and control information given in Table A.2, which is

used during subsequent data input and also is used to allocate memory in the program.

In addition to the input data formats, Table A.2 gives the variable names used in the

program. The variables NDF,NEN, and NAD are used to calculate the size of the element

arrays, NST. Normally for displacement formulations NDFxNEN is the size of the

element array.

Once the control data is supplied the program expects the data record for the mesh

description, e.g. nodal coordinates, element connections, etc.

D (18, NUMMAT)

F (NDF, NUMNP)

ID (NDF,NUMNP)

IE (8, NUMMAT)

DC (NEN1, NUMEL)

T(^UMNP)

X (NDM, NUMNP)

NDF

NDM

NEN NEN1 NUMEL NUMEL NUMNP

University of Moratuwa A-2

Page 11: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix A

Table A. 2 Title and control information format

Title-Format (20A4) The title also serves as a start of problem record. The first four (4) columns must contain the start word FEAP.

Columns Description Variables

1 to 4 Must contain FEAP TITL(l)

Alphanumeric information for header _ T „ T / , 1 N . _ _ A 5 to 50 . _ , c TITL(l) i=2,20 in output fie

Control Data-Format (715) The title also serves as a start of problem record. The first four (4) columns must contain the start word FEAP. Columns Description Variables

1 to 5 Numbers of nodes NUMEL

6 to 10 Numbers of elements NUMEL

11 to 15 Numbers of material sets NUMNP

16 to 20 Spatial dimensions (<3) NDM

21 to 25 Numbers of unknown per node (<3) NDF

26 to 30 Numbers of nodes/ elements NEN

31 to 35 Added size to elements matrices, in NAD 31 to 35 excess of NDFxNEN NAD

An analysis will require at least:

(a) Coordinate data which follows the macro command COOR and is prepared

according to Table A.3

Table A.3 Coordinate Data

Coordinate Data-Format (2110, 6F10.0) - must immediately follow a COOR macro.

Columns Description Variables

1 to 10 Node number N

10 to 20 Generator increment NG

21 to 30 XI coordinate XL(1)->X(1,N)

31 to 40 X2 coordinate XL(2)->X(2,N)

41 to 50 - X3 coordinate XL(3)->X(3,N)

University of Moratuwa A-3

Page 12: 6. SUMMARY AND CONCLUSION 6.1. Summary

UPJI!/&R§ITY OF M0BATW17A. SB! LAMM M O R A T U W A Appendix A

(b) Element data which follows the macro command ELEM and is prepared according to

Table A.4; and

Table A.4 Element Data

Element Data -Format (1615) - must immediately follow an ELEM macro.

Columns Description Variables

I to 5 Material number L

• 6 to 10 Material set number LX(NEN1,L)

II to 15 Node 1 number K(1,L)

16 to 20 Node 2 number- IX(2,L)

etc.

etc. Node NEN number LX^NEN.L)

etc. Generator increment LX

(c) Material data which follows the macro command MATE and is prepared as described

in Table A.4 and the data required for each particular element

Table A.5 Material Property Data

Material property Data -Format (8110) must immediately follow a MATE macro.

Columns Description Variables

I to 10 Property set number MA

II to 20 Element type (lto4) IEL

21 to 30 Global DOF number for local DOF 1 IDL(l)

31 to 40 Node 1 number IDL(2)

Etc to NDF

In addition most analysis will require specification of nodal boundary restrained

conditions, macro BOUN, and the corresponding nodal force or displacement value,

macro FORC, which are specified according to Table A.6 and A.7 respectively.

8 5 7 9 3

University of Moratuwa A-4

Page 13: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix A

Table A. 6 Boundary Restraint Data

Element Data -Format (1615) -must immediately follow a BOUN macro.

Columns

I to 5

6 to 10

II to 15

16 to 20

etc.

etc.

Description

Node number

Generation increment

DOF 1 boundary code

DOF 2 boundary code

Variables

N

NX IDL(l)->- rDL(l,N)

roL(2)->.IDL(2,N)

DOF NDF boundary code IDL(NDF)—> TDL(NDF,N)

Table A. 7 Nodal Forced Boundary 'Value Data

Material property Data -Format (8110) must immediately follow a MATE macro.

Columns

I to 10

II to 20

21 to 30

31 to 40

etc.

etc.

Description

Node number

Generation increment

DOF 1 Force (Displ.)

DOF 2 Force (Displ.)

Variables

N

NX XL(l)-> XL(1,N)

XL(2)-> XL(2,N)

DOF NDF Force (Displ.) XL(NDF)—>• XL(NDF,N)

Macro commands for solution of a linear elastostatic problem

The following contains list of macroinstruction commands, which may be used to

construct solution algorithms. In batch mode the command MACR must be inserted after

the mesh data. The other macro commands follow immediately and terminate with an

END. macro.

Output can be obtained using the instructions DISP for displacements and STRE for

element variable such as strains and stresses.

University of Moratuwa A-5

Page 14: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix A

Table A. 8 list of macro programming commands

1-4 16-19 31-45 46-60 61-75 Description

TANG VI V2 Compute and factor tangent matrix (IS W=6)*

FORM Form right side of the equations

SOLV Solve for new displacements (after FORM)

DISP All , - N l N2 N3 Out put displacements for node Nl to N2 at increments of N3: ALL prints all

STRE Node Nl N2 N3 Out put variable (Stress,, etc.) for node Nl to N2 at increments of N3 (ISW=8)

Operations are performed in each element sub-program for specified ISW value.

University of Moratuwa A-6 •

Page 15: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix B

APPENDIX B: - MATERIAL PARAMETERS

Typical range values for Poisson ratio v (Bowles, 1968)

Type of soil v -value

Clay, Saturated ' 0.4 - 0.5

Clay, Unsaturated 0.1-0.3

Sandy Clay 0.2 - 0.3

Silt 0.3-0.35

Sand (dense) 0.2 - 0.4

Coarse (e=0.4-0.7) 0.15

Fine grained (e=0.4 - 0.7) 0.25

Rock 0 .1 -0 .4

(Depends somewhat on type of rock)

Range values for modulus of Elasticity Es for selected soils (Bowles, 1968)

Type of soil E-value (kN/m 2)

Very soft Clay 3 5 0 - 2,800

Soft Clay 1,750 -4,200

Medium Clay 4,200 - 8,400

Hard Clay 7,000 --17,500

Sandy Clay 28,000 - 42,000

Silty Sand 7,000 --21,000

Loose Sand 10,500 -24,500

Dense Sand 50,000 - 84,000

Dense Sand & Gravel 100,000 - 200,000

Loess 100,000 - 125,000

University of Moratuwa B-1

Page 16: 6. SUMMARY AND CONCLUSION 6.1. Summary

APPENDIX C: - TYPICAL DATA INPUT FILE

FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 *

2 5 5 2 2 4 5 2 2 4 0

COOR 1 1 0 . 0 - 0 . 0 3 0 2 0 0 . 0 - 0 . 0 4 1 2 0 0 . 0 - 0 . 0 8 0 7 0 0 . 0 - 0 . 0 8 1 7 0 0 . 0 - 0 . 0

1 1 0 1 4 5 0 . 0 - 0 . 0 1 1 1 1 4 5 0 . 0 - 0 . 0 13 0 2 4 5 0 . 0 - 0 . 0 14 0 3 2 0 0 . 0 - 0 . 0 15 0 4 2 0 0 . 0 - 0 . 0 16 1 0 . 0 - 5 0 0 . 0 18 0 2 0 0 . 0 - 5 0 0 . 0 19 1 2 0 0 . 0 - 5 0 0 . 0 23 0 7 0 0 . 0 - 5 0 0 . 0 2 3 1 7 0 0 0 - 5 0 0 0 26 . 0 1 4 5 0 . 0 - 5 0 0 0 26 1 1 4 5 0 0 - 5 0 0 0 2 8 0 2 4 5 0 0 - 5 0 0 0 29 0 3 2 0 0 0 - 5 0 0 0 30 0 4 2 0 0 0 - 5 0 0 0 3 1 1 0 0 - 1 0 0 0 0 33 0 2 0 0 0 - 1 0 0 0 0 34 1 2 0 0 0 - 1 0 0 0 0 38 0 7 0 0 0 - 1 0 0 0 0 38 1 7 0 0 o- - 1 0 0 0 0 4 1 0 1 4 5 0 . 0 - 1 0 0 0 . 0 4 1 1 1 4 5 0 0 - 1 0 0 0 0 4 3 0 2 4 5 0 . 0 - 1 0 0 0 . 0 44 0 3 2 0 0 . 0 - 1 0 0 0 . 0 4 5 0 4 2 0 0 . 0 - 1 0 0 0 . 0 46 1 0 . 0 - 1 5 0 0 . 0 4 8 0 2 0 0 . 0 - 1 5 0 0 . 0 4 9 1 2 0 0 . 0 - 1 5 0 0 . 0 53 0 7 0 0 . 0 - 1 5 0 0 . 0 53 1 7 0 0 . 0 - 1 5 0 0 . 0 56 0 1 4 5 0 . 0 - 1 5 0 0 . 0 56 1 1 4 5 0 . 0 - 1 5 0 0 . 0 .58 0 2 4 5 0 . 0 - 1 5 0 0 . 0 59 0 3 2 0 0 . 0 - 1 5 0 0 . 0 60 0 4 2 0 0 . 0 - 1 5 0 0 . 0 6 1 1 0 . 0 - 2 0 0 0 . 0 63 0 2 0 0 . 0 - 2 0 0 0 . 0 64 1 2 0 0 . 0 - 2 0 0 0 . 0

University of Moratuwa C-1

Page 17: 6. SUMMARY AND CONCLUSION 6.1. Summary

68 0 7 0 0 . 0 - 2 0 0 0 . 0 6 8 1 7 0 0 . 0 - 2 0 0 0 . 0 7 1 0 1 4 5 0 . 0 - 2 0 0 0 . 0 7 1 1 1 4 5 0 . 0 - 2 0 0 0 . 0 73 0 2 4 5 0 . 0 - 2 0 0 0 . 0 74 0 3 2 0 0 . 0 - 2 0 0 0 . 0 7 5 0 4 2 0 0 . 0 - 2 0 0 0 . 0 76 1 0 . 0 - 2 5 0 0 . 0 7 8 0 2 0 0 . 0 - 2 5 0 0 . 0 79 1 2 0 0 . 0 - 2 5 0 0 . 0 83 0 7 0 0 . 0 - 2 5 0 0 . 0 83 1 7 0 0 . 0 - 2 5 0 0 . 0 86 0 1 4 5 0 . 0 - 2 5 0 0 . 0 86 1 1 4 5 0 . 0 - 2 5 0 0 . 0 8 8 0 2 4 5 0 . 0 - 2 5 0 0 . 0 89 0 3 2 0 0 . 0 - 2 5 0 0 . 0 90 0 4 2 0 0 . 0 - 2 5 0 0 . 0 9 1 1 0 . 0 - 3 0 0 0 . 0 93 0- 2 0 0 . 0 - 3 0 0 0 . 0 94 1 2 0 0 0 - 3 0 0 0 . 0 98 0 7 0 0 0 - 3 0 0 0 . 0 98 1 7 0 0 0 - 3 0 0 0 . 0

1 0 1 0 1 4 5 0 0 - 3 0 0 0 0 1 0 1 1 1 4 5 0 0 - 3 0 0 0 0 1 0 3 0 2 4 5 0 0 - 3 0 0 0 0 1 0 4 0 3 2 0 0 0 - 3 0 0 0 0 1 0 5 0 4 2 0 0 0 - 3 0 0 0 0 1 0 6 1 0 0 - 3 5 0 0 0 1 0 8 0 • 2 00 . 0 - 3 5 0 0 0 1 0 9 1 2 0 0 . 0 - 3 5 0 0 0 1 1 3 0 7 0 0 . 0 - 3 5 0 0 0 1 1 3 1 7 0 0 . 0 - 3 5 0 0 0 1 1 6 0 1 4 5 0 . 0 - 3 5 0 0 . 0 1 1 6 1 1 4 5 0 . 0 - 3 5 0 0 . 0 1 1 8 0 2 4 5 0 . 0 - 3 5 0 0 . 0 1 1 9 0 3 2 0 0 . 0 - 3 5 0 0 . 0 1 2 0 . .. 0 4 2 0 0 . 0 - 3 5 0 0 . 0 1 2 1 1 0 . 0 - 4 0 0 0 . 0 1 2 3 0 2 0 0 . 0 - 4 0 0 0 . 0 1 2 4 1 2 0 0 . 0 - 4 0 0 0 . 0 1 2 8 0 7 0 0 . 0 - 4 0 0 0 . 0 1 2 8 1 7 0 0 . 0 - 4 0 0 0 . 0 1 3 1 0 1 4 5 0 . 0 - 4 0 0 0 . 0 1 3 1 1 1 4 5 0 . 0 - 4 0 0 0 . 0 1 3 3 0 2 4 5 0 . 0 - 4 0 0 0 . 0 1 3 4 0 3 2 0 0 . 0 - 4 0 0 0 . 0 1 3 5 0 4 2 0 0 . 0 - 4 0 0 0 . 0 1 3 6 1 0 . 0 - 4 5 0 0 . 0 1 3 8 0 2 0 0 . 0 - 4 5 0 0 . 0 1 3 9 1 2 0 0 . 0 - 4 5 0 0 . 0

University of Moratuwa C-2

Page 18: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix C

1 4 3 0 7 0 0 . 0 - 4 5 0 0 . 0 1 4 3 1 7 0 0 . 0 - 4 5 0 0 . 0 1 4 6 0 1 4 5 0 . 0 - 4 5 0 0 . 0 1 4 6 1 1 4 5 0 . 0 - 4 5 0 0 . 0 1 4 8 0 2 4 5 0 . 0 - 4 5 0 0 . 0 1 4 9 0 3 2 0 0 . 0 - 4 5 0 0 . 0 1 5 0 0 4 2 0 0 . 0 - 4 5 0 0 . 0 1 5 1 1 0 . 0 - 5 0 0 0 . 0 1 5 3 0 2 0 0 . 0 - 5 0 0 0 . 0 1 5 4 1 2 0 0 . 0 - 5 0 0 0 . 0 1 5 8 0 7 0 0 . 0 - 5 0 0 0 . 0 1 5 8 1 7 0 0 . 0 - 5 0 0 0 . 0 1 6 1 0 1 4 5 0 . 0 - 5 0 0 0 . 0 1 6 1 1 1 4 5 0 . 0 - 5 0 0 0 . o-1 6 3 0 2 4 5 0 . 0 - 5 0 0 0 . 0 1 6 4 0 3 2 0 0 . 0 - 5 0 0 0 . 0 1 6 5 0 4-200 . 0 - 5 0 0 0 . 0 1 6 6 1 \ o . 0 - 5 5 0 0 . 0 1 6 8 0 2 0 0 . 0 - 5 5 0 0 . 0 1 6 9 1 2 0 0 . 0 - 5 5 0 0 . 0 1 7 3 0 7 0 0 . o . - 5 5 0 0 0 1 7 3 1 7 0 0 0 - 5 5 0 0 0 1 7 6 0 1 4 5 0 0 - 5 5 0 0 0 1 7 6 1 1 4 5 0 0 - 5 5 0 0 0 1 7 8 0 2 4 5 0 0 - 5 5 0 0 0 1 7 9 0 3 2 0 0 0 - 5 5 0 0 0 1 8 0 0 4 2 0 0 0 - 5 5 0 0 0 1 8 1 1 0 0 - 6 0 0 0 0 1 8 3 0 2 0 0 0 - 6 0 0 0 0 1 8 4 1 2 0 0 0 - 6 0 0 0 . 0 1 8 8 0 7 0 0 . 0 - 6 0 0 0 . 0 1 8 8 1 7 0 0 . 0 - 6 0 0 0 . 0 1 9 1 0 1 4 5 0 . 0 - 6 0 0 0 . 0 1 9 1 1 1 4 5 0 . 0 - 6 0 0 0 . 0 1 9 3 0 2 4 5 0 . 0 - 6 0 0 0 . 0 1 9 4 0 3 2 0 0 . 0 - 6 0 0 0 . 0 1 9 5 0 4 2 0 0 . 0 - 6 0 0 0 . 0 1 9 6 1 0 . 0 - 6 5 0 0 . 0 1 9 8 0 2 0 0 . 0 - 6 5 0 0 . 0 1 9 9 1 2 0 0 . 0 - 6 5 0 0 . 0 2 0 3 0 7 0 0 . 0 - 6 5 0 0 . 0 2 0 3 1 7 0 0 . 0 - 6 5 0 0 . 0 2 0 6 0 1 4 5 0 . 0 - 6 5 0 0 . 0 2 0 6 1 1 4 5 0 . 0 - 6 5 0 0 . 0 2 0 8 0 2 4 5 0 . 0 - 6 5 0 0 . 0 2 0 9 0 3 2 0 0 . 0 - 6 5 0 0 . 0 2 1 0 0 4 2 0 0 . 0 - 6 5 0 0 . 0 2 1 1 1 0 . 0 - 7 5 0 0 . 0 2 1 3 0 2 0 0 . 0 - 7 5 0 0 . 0 2 1 4 1 2 0 0 . 0 - 7 5 0 0 . 0

University of Moratuwa C-3

Page 19: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix C

2 1 8 0 7 0 0 . 0 - 7 5 0 0 . 0 2 1 8 1 7 0 0 . 0 - 7 5 0 0 . 0 2 2 1 0 1 4 5 0 . 0 - 7 5 0 0 . 0 2 2 1 1 1 4 5 0 . 0 - 7 5 0 0 . 0 2 2 3 0 2 4 5 0 . 0 - 7 5 0 0 . 0 224 0 3 2 0 0 . 0 - 7 5 0 0 . 0 2 2 5 0 4 2 0 0 . 0 - 7 5 0 0 . 0 226 1 0 . 0 - 9 0 0 0 . 0 2 2 8 0 2 0 0 . 0 - 9 0 0 0 . 0 2 2 9 1 2 0 0 . 0 - 9 0 0 0 . 0 2 3 3 0 .700 0 - 9 0 0 0 0 2 3 3 1 7 0 0 0 - 9 0 0 0 0 2 3 6 0 1 4 5 0 0 - 9 0 0 0 0 2 3 6 1 1 4 5 0 0 - 9 0 0 0 0 2 3 8 0 2 4 5 0 0 - 9 0 0 0 0 2 3 9 0 3 2 0 0 0 - 9 0 0 0 0 2 4 0 0 4 2 0 0 0 - 9 0 0 0 0 2 4 1 1 0 0 - 1 1 0 0 0 . 0 2 4 3 0 2 0 0 0 - 1 1 0 0 0 . 0 2 4 4 1 2 0 0 . 0 - 1 1 0 0 0 . 0 2 4 8 0 7 0 0 . 0 - 1 1 0 0 0 . 0 2 4 8 1 7 0 0 . 0 - 1 1 0 0 0 . 0 2 5 1 0 1 4 5 0 . 0 - 1 1 0 0 0 . 0 2 5 1 1 1 4 5 0 . 0 - 1 1 0 0 0 . 0 2 5 3 0 2 4 5 0 . 0 - 1 1 0 0 0 . 0 254 0 3 2 0 0 . 0 - 1 1 0 0 0 . 0 2 5 5 0 4 2 0 0 . 0 - 1 1 0 0 0 . 0

E L E M

1 1 1 16 1 7 2 1 3 4 1 8 3 19 4 0 4 2 4 1 9 20 5 1

15 1 16 3 1 32 17 1 17 4 3 3 1 8 34 19 0 18 2 19 3 4 35 20 1 29 1 3 1 4 6 47 32 1 3 1 6 4 8 3 3 49 34 0 32 3 34 4 9 50 3 5 1 43 1 4 6 6 1 62 4 7 1 4 5 6 6 3 4 8 64 4 9 0 46 3 4 9 64 65 50 1 57 1 6 1 76 77 62 1 59 4 7 8 6 3 79 64 0 60 2 64 7 9 80 65 1 7 1 1 76 9 1 92 77 1 73 4 93 7 8 94 79 0 74 2 7 9 94 95 80 1 85 1 9 1 1 0 6 1 0 7 92 1 87 4 1 0 8 9 3 1 0 9 94 0 88 2 94 1 0 9 1 1 0 95 1

University of Moratuwa C-4

Page 20: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix C

99 1 1 0 6 1 2 1 1 2 2 1 0 7 1 1 0 1 4 1 2 3 1 0 8 1 2 4 1 0 9 0 1 0 2 2 1 0 9 1 2 4 1 2 5 1 1 0 1 1 1 3 1 1 2 1 1 3 6 1 3 7 1 2 2 1 1 1 5 4 1 3 8 1 2 3 1 3 9 1 2 4 0 1 1 6 2 1 2 4 1 3 9 1 4 0 1 2 5 1 1 2 7 1 1 3 6 - 1 5 1 1 5 2 1 3 7 1 1 2 9 4 1 5 3 1 3 8 1 5 4 1 3 9 0 1 3 0 2 1 3 9 1 5 4 1 5 5 1 4 0 1 1 4 1 2 1 5 1 1 6 6 1 6 7 1 5 2 1 1 4 3 5 1 6 8 1 5 3 1 6 9 1 5 4 0 1 4 4 2 1 5 4 1 6 9 1 7 0 1 5 5 1 1 5 5 2 1 6 6 1 8 1 1 8 2 1 6 7 1 1 5 7 5 1 8 3 1 6 8 184 1 6 9 0 1 5 8 2 1 6 9 1 8 4 1 8 5 1 7 0 1 1 6 9 2 1 8 1 1 9 6 1 9 7 1 8 2 1 1 7 1 5 1 9 8 1 8 3 1 9 9 1 8 4 0 1 7 2 2 1 8 4 1 9 9 2 0 0 1 8 5 1 1 8 3 2 1 9 6 2 1 1 2 1 2 1 9 7 1 1 8 5 5 2 1 3 1 9 8 2 1 4 1 9 9 0 1 8 6 2 1 9 9 2 1 4 2 1 5 2 0 0 1 1 9 7 2 2 1 1 2 2 6 2 2 7 2 1 2 1 1 9 9 5 2 2 8 2 1 3 2 2 9 2 1 4 0 2 0 0 2 2 1 4 2 2 9 2 3 0 2 1 5 1 2 1 1 2 2 2 6 2 4 1 2 4 2 2 2 7 1 2 1 3 5 2 4 3 2 2 8 2 4 4 2 2 9 • 0 2 1 4 2 2 2 9 2 4 4 2 4 5 2 3 0 1 2 2 4 2 2 3 9 2 5 4 2 5 5 2 4 0 0

MATE

0

1 1 5 2 . 1 E + 0 4

2 1 5 2 . 1 E + 0 2

3 1 5 2 . 1E + 0 1

4 17 1 . 0 E - 0 1

5 1 7 1 . 0 E + 0 5

6 1 7 1 . O E - 0 2

BOUN

0 . 2 0

0 . 2 5

0 . 4 5

1 . 2 E + 0 5

1 . 2 E + 0 5

1 . 2 E + 0 5

0 . 0

0 . 0

0 . 0

•1 . 0

• 1 . 0

•1 . 0

0 . 0

0 . 0

0 . 0

2 GAUS

2 GAUS

2 GAUS

0 . 0 0

0 . 0 0

0 . 0 0

1 1 5 - 1 0 2 2 6 0 1 0 2 4 1 1 - 1 - 1

University of Moratuwa C-5

Page 21: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix C

2 5 5 0 1 1 15 1 5 - 1 0

2 4 0 0 1 0

FORC 1 2 3

0 0 0

0 . 0 0 . 0 0 . 0

7 8 5 7 6 2 8 3 2 5 4 9 7 8

END MACR TANG,FORM 0 . 0 . SOLV 0 . 0 . D I S P 0 . 0 . STRE 0 . 0 . END 0 . 0 . STOP

University of Moratuwa C-6

Page 22: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

APPENDIX D: - TYPICAL OUTPUT FILE

FINITE E L E M E N T ANALYSIS P R O G R A M (FEA 81)

*****************************************

FEAP IS A GENERAL PURPOSE FINITE ELEMENT PROGRAM DEVELOPED AS A RESEARCH AND EDUCATIONAL TOOL AT U.C.BERKELEY BY R.L.TAYLOR. REFERENCE CAN BE MADE TO FEM TEXT BOOK BY O.C.ZIENKIEWITZ (3RD EDITION) CHAPTER 24. THE 1981 VERSION WAS PREPARED AT AIT IN 1981 BY W.KANOK-NUKULCHAI, AND IS FULLY COMPATIBLE WITH THE BOOK VERSION, ALTHOUGH MANY ADDITIONAL CAPABILITIES ARE INCORPORATED.

********************************************************************************

TITLE OF THIS JOB: FEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03*

**************************************************^***************************** \

M E S H G E N E R A T I O N OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03*

NUMBER OF NODAL POINTS = 255 NUMBER OF ELEMENTS = 224 NUMBER OF MATERIAL SETS = 6 DIMENSION OF COORDINATE SPACE = 2 DEGREE OF FREEDOMS/NODE = 2 NODES PER ELEMENT (MAXIMUM) = 4 EXTRA D.O.F. TO ELEMENT = 0

R-STORAGE = 2006 M-STORAGE = 2155

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL COORDINATES NODE 1 COORD 2 COORD

1 0.0000E+00 0.0000E+00 2 100.0 0.0000E+00 3 200.0 O.0000E+O0 4 200.0 0.0000E+00 5 325.0 0.0000E+00 6 450.0 0.0000E+00 7 575.0 0.0000E+00 8 700.0 0.0000E+00 9 950.0 0.0000E+00 10 1200. O.0OO0E+00 11 1450. 0.0000E+00 12 1950. 0.0000E+00 13 2450. 0.0000E+00 14 3200. 0.0000E+00 15 4200. 0.0000E+00

University of Moratuwa D-1

Page 23: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL COORDINATES

NODE 1 COORD 2 COORD 16 0.O000E+0O -500.0 17 100.0 -500.0 18 200.0 -500.0 19 200.0 -500:0 20 325.0 -500.0 21 450.0 -500.0 22 575.0 -500.0 23 700.0 -500.0 24 950.0 -500.0 25 1200. -500.0 26 1450. -500.0 27 1950. -500.0 28 2450. -500.0 29 3200. -500.0 30 4200. -500.0 31 0.0000E+00 -1000. 32 100.0 -1000. 33 200.0 -1000. 34 200.0 -1000. 35 325.0 -1000. 36 450.0 -1000. 37 575.0 -1000. 38 700.0 -1000. 39 950.0 -1000. 40 1200. -1000. 41 1450. -1000. 42 1950. -1000. 43 2450. -1000. 44 3200. -1000. 45 4200. -1000. 46 0.0000E+00 -1500. 47 100.0 -1500. 48 200.0 -1500. 49 200.0 -1500. 50 325.0 -1500. 51 450.0 -1500. 52 575.0 -1500. 53 700.0 -1500. 54 950.0 -1500. 55 1200. -1500. 56 1450. -1500-. 57 1950. -1500. 58 2450. -1500. 59 3200. -1500. 60 4200. -1500.

University of Moratuwa D-2

Page 24: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL COORDINATES

NODE 1 COORD 2 COORD 61 0.0000E+00 -2000. 62 100.0 -2000. 63 200.0 -2000. 64 200.0 -2000. 65 325.0 -2000. 66 450.0 -2000. 67 575.0 -2000. 68 700.0 -2000. 69 950.0 -2000. 70 1200. -2000. 71 1450. -2000. 72 1950. -2000. 73 2450. -2000. 74 3200. -2000. 75 4200. -2000. 76 0.0000E+00 -2500. 77 100.0 -2500. 78 200.0 -2500. 79 200.0 -2500. 80 325.0 -2500. 81 450.0 -2500. 82 575.0 -2500. 83 700.0 -2500. 84 950.0 -2500. 85 1200. -2500. 86 1450. -2500. 87 1950. -2500. 88 2450. -2500. 89 3200. -2500. 90 4200. -2500. 91 0.0000E+00 -3000. 92 100.0 -3000. 93 200.0 -3000. 94 200.0 -3000. 95 325.0 -3000. 96 450.0 -3000: 97 575.0 -3000. 98 700.0 -3000. 99 950.0 -3000. 100 1200. -3000. 101 1450. -3000. 102 1950. -3000. 103 2450. -3000. 104 3200. -3000. 105 4200. -3000.

University of Moratuwa D-3

Page 25: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL COORDINATES

NODE 1 COORD 2 COORD 106 0.0000E+00 -3500.

107 100.0 -3500.

108 200.0 -3500.

109 200.0 -3500. 110 325.0 -3500. 111 450.0 -3500.

112 575.0 -3500.

113 700.0 -3500.

114 950.0 -3500,

115 • 1200. -3500.

116 1450. -3500. 117 1950. -3500. 118 2450. -3500. 119 3200. -3500. 120 4200. -3500. 121 0.0O00E+00 -4000. 122 100.0 -4000. 123 200.0 -4000. 124 . 200.0 -4000. 125 325.0 -4000. 126 450.0 -4000. 127 575.0 -4000. 128 700.0 -4000. 129 950.0 -4000. 130 1200. -4000. 131 1450. -4000. 132 1950. -4000. 133 2450. -4000. 134 3200. -4000. 135 4200. -4000. 136 0.0000E+00 -4500. 137 100.0 -4500. 138 200.0 -4500. 139 200.0 -4500. 140 325.0 -4500. 141 450..0 -4500. 142 575.0 -4500. 143 700.0 -4500. 144 950.0 -4500. 145 1200. -4500. 146 1450. -4500. 147 1950. -4500. 148 2450. -4500. 149 3200. -4500. 150 4200. -4500.

University of Moratuwa D-4

Page 26: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL COORDINATES

NODE 1 COORD 2 COORD 151 0.0000E+00. -5000 152 100.0 -5000. 153 200.0 -5000. 154 200.0 -5000. 155 325.0 -5000. 156 450.0 -5000. 157 575.0 -5000. 158 700.0 • -5000. 159 950.0 -5000. 160 1200. -.5000. 161 1450. -5000. 162 1950. -5000. 163 2450. -5000.

V

v -5000. -5000.

164 3200. -5000.

V

v -5000. -5000. 165 4200.

-5000. V

v -5000. -5000.

166 0.0000E+00 -5500. 167 100.0 -5500. 168 200.0 -5500. 169 200.0 -5500. 170 325.0 -5500. 171 450.0 -5500. '172 575.0 -5500. 173 700.0 -5500. 174 950.0 -5500. 175 1200. -5500. 176 1450. -5500. 177 1950. -5500. 178 2450. -5500. 179 3200. - -5500. 180 4200. -5500. 181 0.0000E+00 -6000. 182 100.0 -6000. 183 200.0 -6000. 184 200.0 -6000. 185 325.0 -6000. 186 450.0 -6000. 187 575.0 -6000. 188 700.0 -6000. 189 950.0 -6000. 190 1200. -6000. 191 1450. -6000. 192 1950. -6000. 193 2450. -6000. 194 3200. -6000. 195 4200. -6000.

University of Moratuwa D-5

Page 27: 6. SUMMARY AND CONCLUSION 6.1. Summary

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL COORDINATES

NODE 1 COORD 2 COORD 196 0.0000E+00 -6500. 197 100.0 -6500. 198 200.0 -6500. 199 200.0 -6500. 200 325.0 -6500. 201 450.0 6500. 202 575.0 6500. 203 700.0 6500. 204 950.0 6500. 205 1200. 6500. 206 1450. 6500. 207 1950. 6500. 208 2450.

\ 3200. 6500.

209 2450.

\ 3200. 6500. 210 4200. 6500. 211 0.0000E+00 7500. 212 100.0 7500. 213 200.0 7500. 214 200.0 7500. 215 325.0 7500. 216 450.0 7500. 217 575.0 7500. 218 700.0 7500. 219 950.0 7500. 220 1200. 7500. 221 1450. 7500. 222 1950. 7500. 223 2450. 7500. 224 3200. 7500. 225 4200. 7500. 226 0.0000E+00 9000. 227 100.0 9000. 228 200.0 9000. 229 200.0 9000. 230 325.0 9000. 231 450.0 9000. 232 575.0 9000. 233 700.0 9000. 234 950.0 9000. 235 1200. 9000. 236 1450. 9000. 237 1950. 9000. 238 2450. 9000. 239 3200. 9000. 240 4200. 9000.

University of Moratuwa D-6

Page 28: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL COORDINATES

NODE 1 COORD 2 COORD 241 0.0000E+00 0.1100E+05 242 100.0 0.1100E+05 243 200.0 0.1100E+05 244 200.0 0.1100E+05 245 325.0 0.1100E+05 246 450.0 0.1100E+05 247 575.0 0.1100E+05 248 700.0 0.1100E+05 249 950.0 0.1100E+05 250 1200. 0.1100E+05 251 1450. 0.1100E+05 252 1950. 0.1100E+05 253 2450. 0.1100E+05 254 3200. 0.1100E+05 255 4200. 0.1100E+05

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* ELEMENTS

ELEMENT MATERIAL 1 NODE 2 NODE 3 NODE 4 NODE 1 1 1 16 17 2 2 1 2 17 18 3 3 4 18 3 19 4 4 2 4 19 20 5 5 2 5 20 21 6 6 2 6 21 22 • 7 7 2 7 22 23 8 8 2 8 23 24 9 9 2 9 24 25 10 10 2 10 25 26 11 11 2 11 26 27 12 12 2 12 27 28 13 13 2 13 28 29 14 14 2 14 29 30 15 15 1 16 31 32 17 16 1 17 32 33 18 17 4 33 18 34 19 18 2 19 34 35 20 19 2 20 35 36 21 20 2 21 36 37 22 21 2 22 37 38 23 22 2 23 38 39 24 23 2 24 39 40 25 24 2 25 40 41 26 25 2 26 41 42 • • 27 26 2 27 42 43 28 27 2 28 43 44 29

University of Moratuwa D-7

Page 29: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* ELEMENTS

ELEMENT MATERIAL 1 NODE 2 NODE 3 NODE 4 NODE 28 2 29 44 45 30 29 1 31 46 47 32 30 1 32 47 48 33 31 6 48 33 49 34 32 3 34 49 50 35 33 3 35 50 51 36 34 3 36 51 52 37 35 3 37 52 53 38 36 3 38 53 54 39 37 3 39 54 55 40 38 3 40 55 56 41 39 3 41 56 57 42 40 3 42 57 58 43 41 3 43 58 59 44 42 3 44 •59 60 45 43 1 46 61 62 47 44 1 47 62 63 48 45 6 63 48 64 49 46 3 49 64 65 50 47 3 50 65 66 51 48 3 51 66 67 52 49 3 52 67 68 53 50 3 53 68 69 54 51 3 54 69 70 55 52 3 55 70 71 56 53 3 56 71 72 57 54 3 57 72 73 58 55 3 58 73 74 59 56 3 59 74 75 60 57 1 61 76 77 62 58 1 62 77 78 63 59 4 78 63 79 64 60 2 64 79 80 65 61 2 65 80 81 66 62 2 66 81 82 67 63 2 67 82 83 68 64 2 68 83 84 69 65 2 69 84 85 70 66 2 70 85 86 71 67 2 71 86 87 72 68 2 "72 87 88 73 69 2 73 88 89 74 70 2 74 89 90 75 71 1 76 91 92 77 72 1 77 92 93 78

University of Moratuwa D-8

Page 30: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* ELEMENTS

ELEMENT MATERIAL 1 NODE 2 NODE 3 NODE 4 NODE 73 4 93 78 94 79 74 2 79 94 95 80 75 2 80 95 96 81 76 2 81 96 97 82 77 2 82 97 98 83 78 2 83 98 99 84 79 2 84 99 100 85 80 2 85 100 101 86 81 2 86 101 102 87 82 2 87 102 103 88 83 2 88 103 104 89 84 2 89 104 105 90 85 1 91 106 107 92 . 86 1 92 107 108 93 V

94 87 4 108 93 109 93 V

94 88 2 94 109 110 95 89 2 95 110 111 96 90 2 96 111 112 97 91 2 97 112 113 98 92 2 98 113 114 99 93 2 99 114 115 100 94 2 100 115 116 101 95 2 101 116 117 102 96 2 102 117 118 103 97 2 103 118 119 104 98 2 104 119 120 105 99 1 106 121 122 107 100 1 107 122 123 108 101 4 123 108 124 109 102 2 109 124 125 110 103 2 110 125 126 111 104 2 111 126 127 112 105 2 112 127 128 113 106 2 113 128 129 114 107 2 114 129 130 115 108 2 115 130 131 116 109 2 116 131 132 117 110 2 117 132 133 118 111 2 118 133 134 119 112 2 119 134 135 120

" 113 1 121 136 137 122 114 1 122 137 138 123 115 4 138 123 139 124 116 2 124 139 140 125 117 2 125 140 141 126

University of Moratuwa D-9

Page 31: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* ELEMENTS

ELEMENT MATERIAL 1 NODE 2 NODE 3 NODE 4 NODE 118 2 126 141 142 127 119 2 127 142 143 128 120 2 128 143 144 129 121 2 129 144 145 130 122 2 130 145 146 131 123 2 131 146 147 132 124 2 132 147 148 133 125 2 133 148 149 134 126 2 134 149 150 135 127 1 136 151 152 137 128 1 137 152 153 138 129 4 153 138 154 139 130 2 139 154 155 140 131 2 140 1 5 5 x 156 141 132 2 141 156 157 142 133 2 142 157 158 143 134 2 143 158 159 144 135 2 144 159 160 145 136 2 145 160 161 146 137 2 146 161 162 147 138 2 147 162 163 148 139 2 148 163 164 149 140 2 149 164 165 150 141 2 151 166 167 152 142 2 152 167 168 153 143 5 168 153 169 154 144 2 154 169 170 155 ^ C T ^

145 2 155 170 171 156 /gjP®^ 146 2 156 171 172 1 5 7 / i r 147 2 157- 172 173 158 j tUuMW 148 2 158 173 174 159W^>

160 -149 2 159 174 175 159W^> 160 -

150 2 160 175 176 161 151 2 161 176 177 162 152 2 162 177 178 163 153 2 163 178 179 164 154 2 164 179 180 165 155 2 166 181 182 167 156 . 2 167 182 183 168 157 5 183 168 184 169 158 2 169 184 185 170 159 2 170 185 186 171 160 2 171 186 187 172 161 2 172 187 188 173 162 2 173 188 189 174

University of Moratuwa D-10

Page 32: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* ELEMENTS

ELEMENT MATERIAL 1 NODE 2 NODE 3 NODE 4 NODE 163 2 174 189 190 175 164 2 175 190 191 176 165 2 176 191 192 177 166 2 177 192 ' 193 178 167 2 178 193 194 179 168 2 179 194 195 180 169 2. 181 196 197 182 170 2 182 197 198 183 171 5 198 183 199 184 172 2 184 199 200 185 173 2 185 200 201 186 174 2 186 201 202 187 175 2 •

V

2 X

187 202 203 188 176

2 • V

2 X 188 203 204 • 189 177 2 189 204 205 190 178 2 190 205 206 191 179 2 . 191 206 207 192 180 2 192 207 208 193 181 2 193 208 209 194 182 2 194 .209 210 195 183 2 196 211 212 197 184 2 197 212 213 198 185 5 213 198 214 199 186 2 199 214 215 200 187 2 200 215 216 201 188 2 201 216 217 202 189 2 202 217 218 203 190 2 203 218 219 204 191 2 204 219 220 205 192 2 205 220 221 206 193 2 206 221 222 207 194 2 207 222 223 208 195 2 208 223 224 209 196 2 209 224 225 210 197 2 211 226 227 212 198 2 212 227 228 213 199 5 228 213 229 214 200 2 214 229 230 215 201 2 215 230 231 216 202 2 216 231 232 217 203 2 217 232 233 218 204 2 218 233 234 219 205 2 219 234 235 220 206 2 220 235 236 221 207 2 221 236 237 222

University of Moratuwa D-11

Page 33: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* ELEMENTS

ELEMENT MATERIAL 1 NODE 2 NODE 3 NODE 4 NODE 208 2 222 237 238 223 209 2 223 238 239 224 210 2 224 239 240 225 211 2 226 241' 242 227 212 2 227 242 243 228 213 5 243 228 244 229 214 2 229 244 245 230 215 2 230 245 246. 231 216 2 231 246 247 232 217 2 232 247 248 233 218 2 233 248 249 234 219 2 234 249 250 235 220 2 235 250 251 236 221 2 236 251 252 237 222 2 237 252 253 238 223 2 238 253 254 239 224 2 239 254 255 240

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03*

MATERIAL PROPERTIES

MATERIAL SET 1 FOR ELEMENT TYPE 15

AXISYMMETRIC LINEAR ELASTIC ELEMENT/ MODULUS = 0.21000E+05 POISSON RATIO = 0.200 ALPHA = 0.00000E+00 MATERIAL TEMPERATURE = 0.0000E+00 LAMBDA = 0.58333E+04 MU = 0.87500E+04 LB = 2 LS = 2

MATERIAL SET 2 FOR ELEMENT TYPE 15

AXISYMMETRIC LINEAR ELASTIC ELEMENT/ MODULUS = 0.21000E+03 POISSON RATIO = 0.250 ALPHA = O.OO000E+0O MATERIAL TEMPERATURE = 0.0000E+00 LAMBDA = 0.84000E+02 MU = 0.84000E+02 LB = 2 LS = 2

MATERIAL SET 3 FOR ELEMENT TYPE 15

AXISYMMETRIC LINEAR ELASTIC ELEMENT/ MODULUS = 0.21000E+02 POISSON RATIO = 0.450 ALPHA = 0.00000E+00 MATERIAL TEMPERATURE = 0.0000E+00 LAMBDA = 0.65172E+02 MU = 0.72414E+01 LB = 2 LS = 2

MATERIAL SET 4 FOR ELEMENT TYPE 17

INTERFACE/BOND ELEMENT FOR 2-D ANALYSES MODULASC-s = 0.10000 MODULASC-t = 0.12000E+06 NO. OF GAUSS POINTS

University of Moratuwa D-12

Page 34: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

INTERFACE ELEMENT FOR AXISYMMETRIC ANALYSIS GAUSS QUADRATURE FOR ADFREEZE ELEMENTS

MATERIAL SET 5 FOR ELEMENT TYPE 17

INTERFACE/BOND ELEMENT FOR 2-D ANALYSES MODULASC-s = 0.10000E+06 MODULASC-t = 0.12000E+06 NO. OF GAUSS POINTS INTERFACE ELEMENT FOR AXISYMMETRIC ANALYSIS GAUSS QUADRATURE FOR ADFREEZE ELEMENTS

MATERIAL SET 6 FOR ELEMENT TYPE 17

INTERFACE/BOND ELEMENT FOR 2-D ANALYSES MODULASC-s = 0.10000E-01 MODULASC-t = 0.12000E+06 NO. OF GAUSS POINTS INTERFACE ELEMENT FOR AXISYMMETRIC ANALYSIS GAUSS QUADRATURE FOR ADFREEZE ELEMENTS

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL B.C.

NODE 1 B.C. 2 B.C. 1 -1 0

15 -1 0 16 -1 0 30 -1 0 31 -1 0 45 -1 0 46 -1 0 60 -1 0 61 -1 0 75 -1 0 76 -1 0 90 -1 0 91 -1 0 105 -1 0 106 -1 0 120 . -1 0 121 -1 0 135 -1 0 136 -1 0 150 -1 0 151 " -1 0 165 -1 0 166 -1 0 180 -1 0 181 -1 0

University of Moratuwa D - 1 3

Page 35: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile NODAL B.C.

NODE 195 196 210 211 225 226 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

1 B.C.

07/08/03*

2 B.C. 0 0 0 0 0 0 0

>1

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL FORCE/DISPL

NODE 1 2 3

1 FORCE 0.0000E+00 0.0000E+00 0.0000E+00

2 FORCE 7857.

0.6283E+05 0.5498E+05

R-STORAGE = 2902 1

MACRO • PROGRAM MODE

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* • i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

M 1 TANG FORM M 2 SOLV M 3 DISP M 4 STRE M 5 END

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

R-STORAGE = 2966 0.00000E+00 * 0.00000E+00 * 0.00000E+00 * 0.00000E+00 * O.O0000E+00 *

*************************************************

University of Moratuwa D - 1 4

Page 36: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

MACRO COMMANDS EXECUTION

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03*

** 0/ 0/ 0/ 0 M 1 TANG FORM V1 = 0.0000E+00, V2 = 0.0000E+00 R-STORAGE = 16278

UNBALANCED FORCE CONVERGENCE TEST (TOL = 0.10000E-08) MAXIMUM NORM = 83858. INCREMENT NORM = 83858. RAT10 = 1.0000 N O T C O N V E R G E D -

(DISREGARD FOR LINEAR STATICS)

** 0/ 0/ 0/ 0 M 2 SOLV V1 = 0.0000E+00, V2 = 0.0000E+00 ENERGY INCREMENT (DR*K*DR) = 0.5449036560E+05

** 0/ 0/ 0/ 0 M 3 DISP V1 = 0.0000E+00, V2 = 0.0000E+00 OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* TIME 0.00000E+00 v

PROPORTIONAL LOAD 1.0000 OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03*

NODAL DISPLACEMENTS TIME 0.00000E+00 NODE 1 COORD 2 COORD 1 DISPL 2 DISPL

1 0.0000E+00 0.0000E+00 0.0000E+00 0.4331 E+00 2 0.1000E+03 0.0000E+00 -0.7602E-03 0.4337E+00 3 0.2000E+03 0.0000E+00 -0.1534E-02 0.4336E+00

' 4 0.2000E+03 0.0000E+00 -0.1533E-02 0.2317E+00 5 0.3250E+03 0.0000E+00 0.1216E-01 0.2083E+00 6 0.4500E+03 0.0000E+00 0.1910E-01 0.1912E+00 7 0.5750E+03 0.0000E+00 0.2299E-01 0.1769E+00 8 0.7000E+03 0.0000E+00 . 0.2512E-01 0.1642E+00 9 0.9500E+03 0.0000E+00 0.2637E-01 0.1420E+00 10 0.1200E+04 0.0000E+00 0.2531 E-01 0.1233E+00 11 0.1450E+04 0.0000E+00 0.2304E-01 0.1075E+00 12 0.1950E+04 0.0000E+00 0.1766E-01 0.8342E-01

. 13 0.2450E+04 O.0O00E+O0 . 0.1207E-01 0.6727E-01 14 0.3200E+04 0.0000E+00 0.5683E-02 0.5383E-01 15 0.4200E+04 0.0000E+00 0.0000E+00 0.4856E-01 16 0.0000E+00 -0.5000E+03 0.0000E+00 0.4114E+00 17 0.1000E+03 -0.5000E+03 -0.8624E-03 0.4112E+00 18 0.2000E+03 -0.5000E+03 -0.1742E-02 0.4110E+00 19 0.2000E+03 -0.5000E+03 -0.1742E-02 0.2360E+00 20 0.3250E+03 -0.5000E+03 -0.1547E-02 0.2141E+00 21 0.4500E+03 -0.5000E+03 -0.1166E-02 0.1962E+00 22 0.5750E+03 -0.5000E+03 -0.8250E-03 0.1807E+00 23 0.7000E+03 -0.5000E+03 -0.5525E-03 0.1669E+00 24 0.9500E+03 -0.5000E+03 -0.1837E-03 0.1435E+00 25 0.1200E+04 -0.5000E+03 0.3894E-04 0.1238E+00 26 0.1450E+04 -0.5000E+03 0.1588E-03 0.1074E+00 27 0.1950E+04 -0.5000E+03 0.2104E-03 0.8291 E-01 28 0.2450E+04 -0.5000E+03 0.1924E-03 0.6668E-01

University of Moratuwa D-15

Page 37: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL DISPLACEMENTS TIME 0.00000E+00

NODE 1 COORD 2 COORD 1 DISPL 2 DISPL 29 0.3200E+04 -0.5000E+03 0.1105E-03 . 0.5337E-01 30 0.4200E+04 -0.5000E+03 0.0000E+00 0.4813E-01 31 0.0000E+00 -0.1000E+04 0.0000E+00 0.3905E+00 32 0.1000E+03 -0.1000E+04 -0.8624E-03 0.3905E+00 33 0.2000E+03 -0.1000E+04 -0.1704E-02 0.3905E+00 34 0.2000E+03 -0.1000E+04 -0.1704E-02 0.2220E+00 35 0.3250E+03 -0.1000E+04 -0.1172E-01 0.2015E+00 36 0.4500E+03 -0.1000E+04 -0.1745E-01 0.1857E+00 37 0.5750E+03 -0.1000E+04 -0.2085E-01 0.1721E+00 38 0.7000E+03 -0.1000E+04 -0.2277E-01 0.1600E+00 39 0.9500E+03 -0.1000E+04 -0.2397E-01 0.1387E+00 40 • 41 x

0.1200E+04 -0.1000E+04 -0.2309E-01 0.1206E+00 40 • 41 x 0.1450E+04 -0.1000E+04 -0.2109E-01 0.1053E+00 42 0.1950E+04 -0.1000E+04 -0.1621 E-01 0.8213E-01 43 0.2450E+04 -0.1000E+04 -0.1114E-01 0.6659E-01 44 0.3200E+04 -0.1000E+04 -0.5271 E-02 0.5367E-01 45 0.4200E+04 -0.1000E+04 0.0000E+00 0.4857E-01 46 0.0000E+00 -0.1500E+04 0.0000E+00 0.3710E+00 47 0.1000E+03 -0.1500E+04 -0.7642E-03 0.3710E+00 48 0.2000E+03 -0.1500E+04 -0.1533E-02 0.3710E+00 49 0.2000E+03 -0.1500E+04 -0.1533E-02 0.1838E+00 50 0.3250E+03 -0.1500E+04 -0.4127E-02 0.1614E+00 51 0.4500E+03 -0.1500E+04 -0.6295E-02 0.1497E+00 52 0.5750E+03 -0.1500E+04 -0.8173E-02 0.1408E+00 53 0.7000E+03 -0.1500E+04 -0.9752E-02 0.1330E+00 54 0.9500E+03 -0.1500E+04 -0.1195E-01 0.1186E+00 55 0.1200E+04 -0.1500E+04 -0.1300E-01 0.1062E+00 56 0.1450E+04 -0.1500E+04 -0.1307E-01 0.9541 E-01 57 0.1950E+04 -0.1500E+04 -0.1138E-01 0.7810E-01 58 0.2450E+04 -0.1500E+04 -0.8531 E-02 0.6584E-01 59 0.3200E+04 -0.1500E+04 -0.4342E-02 0.5485E-01 60 0.4200E+04 -0.1500E+04 0.0000E+00 0.5050E-01 61 0.0000E+00 -0.2000E+04 0.0000E+00 0.3520E+00 62 0.1000E+03 -0.2000E+04 -0.6896E-03 0.3519E+00 63 0.2000E+03 -0.2000E+04 -0.1387E-02 0.3519E+00 64 0.2000E+03 -0.2000E+04 -0.1387E-02 0.1758E+00 65 0.3250E+03 -0.2000E+04 0.6444E-02 0.1553E+00 66 0.4500E+03 -0.2000E+04 0.1016E-01 0.1412E+00 67 0.5750E+03 -0.2000E+04 0.1197E-01 0.1303E+00 68 0.7000E+03 -0.2000E+04 0.1277E-01 0.1-215E+00 69 0.9500E+03 -0.2000E+04 0.1300E-01 0.1075E+00 70 0.1200E+04 -0.2000E+04 0.1236E-01 0.9650E-01 71 0.1450E+04 -0.2000E+04 0.1138E-01 0.8751 E-01 72 0.1950E+04 -0.2000E+04 0.9261 E-02 0.7344E-01

University of Moratuwa D - 1 6

Page 38: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL DISPLACEMENTS TIME 0.00000E+00

NODE 1 COORD 2 COORD 1 DISPL 2 DISPL 73 0.2450E+04 -0.2000E+04 0.6951 E-02 0.6339E-01 74 0.3200E+04 -0.2000E+04 0.3701 E-02 0.5413E-01 75 0.4200E+04 -0.2000E+04 O.OOOOE+00 0.5030E-01 76 0.0000E+00 -0.2500E+04 0.0000E+00 0.3341 E+00 77 0.1000E+03 -0.2500E+04 -0.6716E-03 0.3340E+00 78 0.2000E+03 -0.2500E+04 -0.1345E-02 • 0.3338E+00 79 0.2000E+03 -0.2500E+04 -0.1345E-02 0.1725E+00 80 0.3250E+03 -0.2500E+04 -0.1025E-02 0.1536E+00. 81 0.4500E+03 -0.2500E+04 -0.3350E-03 0.1399E+00 82 0.5750E+03 -0.2500E+04 0.4789E-03 0.1290E+00 83 0.7000E+03 -0.2500E+04 0.1247E-02 0.1200E+00 84 0.9500E+03 -0.2500E+04 0.2400E-02 0.1059E+00 85 0.1200E+04 -0.2500E+04 0.3105E-02 0.9481 E-01 86 0.1450E+04 -0.2500E+04 0.3439E-02 0.8579E-01 87 0.1950E+04 -0.2500E+04 0.3337E-02 0.7199E-01 88 0.2450E+04 -0.2500E+04 0.2770E-02 0.6220E-01 89 0.3200E+04 -0.2500E+04 0.1596E-02 0.5329E-01 90 0.4200E+04 -0.2500E+04 0.0000E+00 0.4955E-01 91 0.0000E+00 -0.3000E+04 O.OOOOE+00 0.3179E+00 92 0.1000E+03 -0.3000E+04 -0.6083E-03 0.3179E+00 93 0.2000E+03 -0.3000E+04 -0.1212E-02 0.3178E+00 94 0.2000E+03 -0.3000E+04 -0.1212E-02 0.1633E+00 95 0.3250E+03 -0.3000E+04 -0.1037E-02 0.1456E+00 96 0.4500E+03 -0.3000E+04 -0.921 OE-03 0.1335E+00 97 0.5750E+03 -0.3000E+04 -0.8535E-03 0.1239E+00 98 0.7000E+03 -0.3000E+04 -0.7412E-03 0.1158E+00 99 0.9500E+03 -0.3000E+04 -0.4045E-03 0.1028E+00 100 0.1200E+04 -0.3000E+04 -0.6151E-04 0.9229E-01 101 0.1450E+04 -0.3000E+04 0.1903E-03 0.8358E-01 102 0.1950E+04 -0.3000E+04 0.4053E-03 0.7024E-01 103 0.2450E+04 -0.3000E+04 0.4018E-03 0.6083E-01 104 0.3200E+04 -0.3000E+04 0.2523E-03 0.5232E-01 105 0.4200E+04 -0.3000E+04 0.0000E+00 0.4876E-01 106 0.0000E+00 -0.3500E+04 0.0000E+00 0.3036E+00 107 0.1000E+03 -0.3500E+04 -0.5158E-03 0.3036E+00 108 0.2000E+03 -0.3500E+04 -0.1044E-02 0.3035E+00 109 0.2000E+03 -0.3500E+04 -0.1044E-02 0.1566E+00 110 0.3250E+03 -0.3500E+04 -0.6363E-03 0.1402E+00 111 0.4500E+03 -0.3500E+04 -0.7825E-03 0.1281E+00 112 0.5750E+03 -0.3500E+04 -0.7503E-03 0.1191E+00 113 0.7000E+03 -0.3500E+04 -0.6490E-03 0.1116E+00 114 0.9500E+03 -0.3500E+04 -0.5394E-03 0.9924E-01 115 0.1200E+04 -0.3500E+04 -0.5814E-03 0.8911 E-01 116 0.1450E+04 -0.3500E+04 -0.6972E-03 0.8066E-01 117 0.1950E+04 -0.3500E+04 -0.8667E-03 0.6788E-01

University of Moratuwa D - 1 7

Page 39: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL DISPLACEMENTS TIME 0.00000E+00

NODE 1 COORD 2 COORD 1 DISPL 2 DISPL 118 0.2450E+04 -0.3500E+04 -0.8482E-03 0.5899E-01 119 0.3200E+04 -0.3500E+04 -0.5503E-03 0.5106E-01 120 0.4200E+04 -0.3500E+04 0.0000E+00 0.4775E-01 121 0.0000E+00 -0.4000E+04 0.0000E+00 0.2910E+00 122 0.1000E+03 -0.4000E+04 -0.5269E-03 0.2910E+00 123 0.2000E+03 -0.4000E+04 -0.1009E-02 0.2909E+00 124 0.2000E+03 -0.4000E+04 -0.1009E-02 0.1539E+00 125 0.3250E+03 -0.4000E+04 -0.1434E-02 0.1359E+00 126 0.4500E+03 -0.4000E+04 -0.1456E-03 0.1260E+00 127 0.5750E+03 -0.4000E+04 0.631 OE-03 0.1173E+00 128 0.7000E+03 -0.4000E+04 0.8547E-03 0.1094E+00 129 0.9500E+03 -0.4000E+04 0.4560E-03 0.9600E-01 130 0.1200E+04 -0.4000E+04 -0.2736E-03 0.8539E-01 131 0.1450E+04 -0.4000E+04 -0.9150E-03 0.7697E-01 132 0.1950E+04 -0.4000E+04 -0.1579E-02 0.6481 E-01 133 0.2450E+04 -0.4000E+04 -0.1619E-02 0.5664E-01 134 0.3200E+04 -0.4000E+04 -0.1058E-02 0.4943E-01 135 0.4200E+04 -0.4.000E+04 O.OOOOE+00 0.4643E-01 136 0.0000E+00 -0.4500E+04 0.0000E+00 0.2800E+00 137 0.1000E+03 -0.4500E+04 -0.2043E-03 0.2801 E+00 138 0.2000E+03 -0.4500E+04 -0.5151E-03 0.2803E+00 139 0.2000E+03 -0.4500E+04 -0.5149E-03 0.1494E+00 1.4.0. .. 0.3250E+03 -0.4500E+04 0.6226E-02 0.1476E+00 141 0.4500E+03 -0.4500E+04 0.6092E-02 0.1326E+00 142 0.5750E+03 -0.4500E+04 0.4594E-02 0.1188E+00 143 0.7000E+03 -0.4500E+04 0.2992E-02 0.1076E+00 144 0.9500E+03 -0.4500E+04 0.5617E-03 0.9158E-01 145 0.1200E+04 -0.4500E+04 -0.9944E-03 0.8051 E-01 146 0.1450E+04 -0.4500E+04 -0.1894E-02 0.7235E-01 147 0.1950E+04 -0.4500E+04 -0.2513E-02 0.6114E-01 148 0.2450E+04 -0.4500E+04 -0.2333E-02 0.5384E-01 149 0.3200E+04 -0.4500E+04 -0.1441 E-02 0.4744E-01 150 0.4200E+04 -0.4500E+04 0.0000E+00 0.4479E-01 151 0.0000E+00 -0.5000E+04 0.0000E+00 0.2720E+00 152 0.1000E+03 -0.5000E+04 -0.6122E-03 0.2712E+00 153 0.2000E+03 -0.5000E+04 -0.1183E-02 0.2693E+00 154 0.2000E+03 -0.5000E+04 -0.1183E-02 0.2693E+00 155 0.3250E+03 -0.5000E+04 -0.2336E-02 0.1750E+00 156 0.4500E+03 -0.5000E+04 -0.3181 E-02 0.1362E+00 157 0.5750E+03 -0.5000E+04 -0.3741 E-02 0.1151E+00 158 0.7000E+03 -0.5000E+04 -0.4098E-02 0.1016E+00 159 0.9500E+03 -0.5000E+04 -0.4433E-02 0.8491 E-01 160 0.1200E+04 -0.5000E+04 -0.4477E-02 0.7447E-01 161 0.1450E+04 -0.5000E+04 -0.4355E-02 0.6709E-01 162 0.1950E+04 -0.5000E+04 -0.3836E-02 0.5712E-01

University of Moratuwa D - 1 8

Page 40: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL DISPLACEMENTS TIME 0.00000E+00

NODE 1 COORD 2 COORD 1 DISPL 2 DISPL 163 0.2450E+04 -0.5000E+04 -0.3079E-02 0.5073E-01 164 0.3200E+04 -0.5000E+04 -0.1754E-02 0.4514E-01 165 0.4200E+04 -0.5000E+04 0.0000E+00 0.4282E-01 166 0.0000E+00 -0.5500E+04 0.0000E+00 0.1405E+00 167 0.1000E+03 -0.5500E+04 -0.6861 E-02 0.1359E+00 168 0.2000E+03 -0.5500E+04 -0.1396E-01 0.1237E+00 169 0.2000E+03 -0.5500E+04 -0.1396E-01 0.1237E+00 170 0.3250E+03 -0.5500E+04 -0.1740E-01 0.1225E+00 171 0.4500E+03 -0.5500E+04 -0.1601 E-01 0.1098E+00 172 0.5750E+03 -0.5500E+04 -0.1400E-01 0.9843E-01 173 0.7000E+03 -0.5500E+04 -0.1217E-01 0.8937E-01 174 0.9500E+03 -0.5500E+04 -0.9576E-02 0.7656E-01 175 0.1200E+04 -0.5500E+04 -0.7832E-02 0.6789E-01 176 0.1450E+04 -0.5500E+04 -0.6606E-02

-0.4943E^02 0.6158E-01

177 0.1950E+04 -0.5500E+04 -0.6606E-02 -0.4943E^02 0.5298E-01

178 0.2450E+04 -0.5500E+04 -0.3650E-02 0.4742E-01 179 0.3200E+04 -0.5500E+04 -0.1968E-02 0.4256E-01 180 0.4200E+04 -0.5500E+04 0.0000E+00 0.4055E-01 181 0.0000E+00 -0.6000E+04 0.0000E+00 0.8170E-01 182 0.1000E+03 -0.6000E+04 -0.1628E-02 0.8185E-01 183 0.2000E+03 -0.6000E+04 -0.2399E-02 0.8332E-01 184 0.2000E+03 -0.6000E+04 -0.2399E-02 0.8332E-01 185 0.3250E+03 -0.6000E+04 -0.4234E-02 0.8121E-01 186 0.4500E+03 -0.6000E+04 -0.6530E-02 0.7994E-01 187 0.5750E+03 -0.6000E+04 -0.7855E-02 0.7706E-01 188 0.7000E+03 -0.6000E+04 -0.8406E-02 0.7347E-01 189 0.9500E+03 -0.6000E+04 -0.8319E-02 0.6643E-01 190 0.1200E+04 -0.6000E+04 -0.7587E-02 0.6046E-01 191 0.1450E+04 -0.6000E+04 -0.6726E-02 0.5562E-01 192 0.1950E+04 -0.6000E+04 -0.5174E-02 0.4861 E-01 193 0.2450E+04 -0.6000E+04 -0.3807E-02 0.4389E-01 194 0.3200E+04 -0.6000E+04 -0.2029E-02 0.3972E-01 195 0.4200E+04 -0.6000E+04 O.0000E+O0 0.3800E-01 196 0.0000E+00 -0.6500E+04 0.0000E+00 0.6348E-01 197 0.1000E+03 -0.6500E+04 -0.6748E-03 0.6337E-01 198 0.2000E+03 -0.6500E+04 -0.1557E-02 0.6277E-01 199 0.2000E+03 -0.6500E+04 -0.1557E-02 0.6277E-01 200 0.3250E+03 -0.6500E+04 -0.2449E-02 0.6218E-01 201 0.4500E+03 -0.6500E+04 -0.3144E-02 0.6115E-01 202 0.5750E+03 -0.6500E+04 -0.3858E-02 0.6008E-01 203 0.7000E+03 -0.6500E+04 -0.4477E-02 0.5880E-01 204 0.9500E+03 -0.6500E+04 -0.5249E-02 0.5563E-01 205 0.1200E+04 -0.6500E+04 -0.5487E-02 0.5225E-01 206 0.1450E+04 -0.6500E+04 -0.5355E-02 0.4907E-01 207 0.1950E+04 -0.6500E+04 -0.4576E-02 0.4387E-01

University of Moratuwa D-19

Page 41: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL DISPLACEMENTS TIME 0.00000E+00

NODE 1 COORD 2 COORD 1 DISPL 2 DISPL 208 0.2450E+04 -0.6500E+04 -0.3524E-02 0.4007E-01 209 0.3200E+04 -0.6500E+04 -0.1922E-02 0.3661 E-01 210 0.4200E+04 -0.6500E+04 O.OOOOE+OO 0.3516E-01 211 O.OOOOE+OO -0.7500E+04 O.OOOOE+OO 0.4024E-01 212 0.1000E+03 -0.7500E+04 -0.3132E-03 0.4019E-01 213 0.2000E+03 -0.7500E+04 -0.5683E-03 0.4017E-01 214 0.2000E+03. -0.7500E+04 -0.5683E-03 0.4017E-01 215 0.3250E+03 -0.7500E+04 -0.9089E-03 0.4001 E-01 216 0.4500E+03 -0.7500E+04 -0.1258E-02 0.3981 E-01 217 0.5750E+03 -0.7500E+04 -0.1559E-02 0.3949E-01 218 0.7000E+03 -0.7500E+04 -0.1834E-02 0.3913E-01 219 0.9500E+03 -0.7500E+04 -0.2299E-02 0.3826E-01 220 0.1200E+04 •

0.1450E+04 \ 0.1950E+04

-0.7500E+04 -0.2627E-02 0.3723E-01 221

0.1200E+04 • 0.1450E+04 \ 0.1950E+04

-0.7500E+04 -0.2804E-02 0.3608E-01 222

0.1200E+04 • 0.1450E+04 \ 0.1950E+04 -0.7500E+04 -0.2757E-02 0.3371 E-01

223 0.2450E+04 -0.7500E+04 -0.2337E-02 0.3165E-01 224 0.3200E+04 -0.7500E+04 -0.1378E-02 0.2955E-01 225 0.4200E+04 -0.7500E+04 O.OOOOE+OO 0.2863E-01 226 O.OOOOE+00 -0.9000E+04 O.OOOOE+OO 0.2012E-01 227 0.1000E+03 -0.9000E+04 -0.7803E-04 0.2012E-01 228 0.2000E+03 -0.9000E+04 -0.1676E-03 0.2010E-01 229 0.2000E+03 -0.9000E+04 -0.1676E-03 0.2010E-01 230 0.3250E+03 -0.9000E+04 -0.2715E-03 0.2007E-01 231 0.4500E+03 -0.9000E+04 -0.3677E-03 0.2003E-01 232 0.5750E+03 -0.9000E+04 -0.4656E-03 0.1998E-01 233 0.7000E+03 -0.9000E+04 -0.5584E-03 0.1992E-01 234 0.9500E+03 -0.9000E+04 -0.7226E-03 0.1975E-01 235 0.1200E+04 -0.9000E+04 -0.8576E-03 0.1954E-01 236 0.1450E+04 -0.9000E+04 -0.9589E-03 0.1929E-01 237 0.1950E+04 -0.9000E+04 -0.1037E-02 0.1873E-01 238 0.2450E+04 -0.9000E+04 -0.9560E-03 0.1815E-01 239 0.3200E+04 -0.9000E+04 -0.6112E-03 0.1745E-01 240 0.4200E+04 -0.9000E+04 O.OOOOE+OO 0.1712E-01 241 O.OOOOE+OO -0.1100E+05 O.OOOOE+OO O.OOOOE+00 242 0.1000E+03 -0.1100E+05 O.OOOOE+00 O.OOOOE+00 243 0.2000E+03 -0.1100E+05 O.OOOOE+OO O.OOOOE+00 244 0.2000E+03 -0.1100E+05 O.OOOOE+00 O.OOOOE+00 245 0.3250E+03 -0.1100E+05 O.OOOOE+OO O.OOOOE+00 246 0.4500E+03 -0.1100E+05 O.OOOOE+00 O.OOOOE+00 247 0.5750E+03 -0.1100E+05 O.OOOOE+00 O.OOOOE+00 248 0.7000E+03 -0.1100E+05 O.OOOOE+00 O.OOOOE+00 249 0.9500E+03 -0.1100E+05 O.OOOOE+OO O.OOOOE+00 250 0.1200E+04 -0.1100E+05 O.OOOOE+00 O.OOOOE+00 251 0.1450E+04 -0.1100E+05 O.OOOOE+OO O.OOOOE+00 252 0.1950E+04 -0.1100E+05 O.OOOOE+00 O.OOOOE+00

University of Moratuwa D-20

Page 42: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

University of Moratuwa D-21

OFEAP * finite modelling of piles * Axi-symmetric analysis of pile * 07/08/03* NODAL DISPLACEMENTS TIME 0.00000E+00

NODE 1 COORD 2 COORD 1 DISPL 2 DISPL 253 0.2450E+04 -0.1100E+05 0.0000E+00 0.0000E+00 254 0.3200E+04 -0.1100E+05 0.0000E+00 0.0000E+00 255 0.4200E+04 -0.1100E+05 0.0000E+00 0.0000E+00

Page 43: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

** 0 / 0 / 0 / 0 M 4 STRE VI = 0 . 0 0 0 0 E + 0 0 , V2 = O.OOOOE+00 0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

ELEMENT MAT 1-COORD 2-COORD 1 1 1 1

S - 1 2 E - 1 2

S - 2 2 E - 2 2

S - 3 3 E - 3 3

STRESS STRAIN

2 - STRESS 2 - S T R A I N

ANGLE ANGLE

SHEAR SHEAR

5 0 . 0 0 0 0

1 5 0 . 0 0 0 0

- 2 5 0 . 0 0 0 0

- 2 5 0 . 0 0 0 0

0 . 2 0 7 3 E - 0 1 - 0 . 8 1 1 3 E - 0 5

0 . 2 2 2 8 E - 0 1 - 0 . 8 2 6 4 E - 0 5

0 . 1 3 8 3 E - 0 1 0 . 1 5 8 0 E - 0 5

- 0 . 8 0 4 9 E - 0 2 - 0 . 9 1 9 9 E - 0 6

0 -0 0

0 . 4 5 0 4 E - 0 4 - 0 0 7 / 0 8 / 0 3 *

9 3 4 8 E + 0 0 4 4 1 2 E - 0 4 9 5 5 1 E + 0 0

2 0 7 3 E - 0 1 8 1 1 3 E - 0 5 2 4 0 4 E - 0 1 8 1 6 3 E - 0 5

OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e INTERFACE STRESSES AT GAUSS POINTS (TIME = 0)

ELEMENT TYPE 1-C00RD 2-COORD TANGT-STRESS NORML-STRESS 3 4 2 0 0 . 0 0 0 0 - 3 9 4 . 3 3 7 6 - 0 . 1 8 0 7 E - 0 1 - 0 . 6 1 2 5 E - 0 2 3 4 2 0 0 . 0 0 0 0 - 1 0 5 . 6 6 2 4 - 0 . 1 9 6 2 E - 0 1 - 0 . 3 2 2 2 E - 0 1

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

0 . 9 3 5 0 E + 0 0 0 . 4 4 1 3 E - 0 4 0 . 9 5 5 1 E + 0 0

4 5 0 4 E - 0 4 0

. 2 0 5 2 E - 0 1 8 1 2 5 E - 0 5 2 2 2 1 E - 0 1 8 2 6 8 E - 0 5

8 9 . 1 3 89 . 1 3

- 8 9 . 5 1 - 8 9 . 5 1

0 . 4 5 7 2 E + 0 0 0 . 5 2 2 6 E - 0 4 0 . 4 6 6 5 E + 0 0 0 . 5 3 3 1 E - 0 4

AXISYMMETRIC STRESSES

ELEMENT MAT 1 - COORD 2 - COORD s - 1 1 S- 12 S- 22 S- 33 1 - S T R E S S 2 - S T R E S S ANGLE SHEAR E- 1 1 E- 12 E- 2 2 E- 33 1 - S T R A I N 2 - S T R A I N ANGLE SHEAR

3 * 4 2 2 6 2 . 5 0 0 0 - 2 5 0 . 0 0 0 0 0 . 1 3 7 4 E - 0 1 - 0 1 4 0 4 E - 0 1 0 2 7 0 1 E - 0 2 0 5 5 7 7 E - 02 0 2 3 3 1 E - 0 1 - 0 6 8 6 9 E - 0 2 - 3 4 2 7 0 . 1 5 0 9 E - 0 1

0 . 5 5 5 6 E - 04 - 0 1 6 7 2 E - 03 - 0 1 0 1 3 E - 04 0 6 9 9 0 E - 05 0 1 1 2 5 E - 0 3 - 0 6 7 0 9 E - 0 4 - 3 4 2 7 0 . 1 7 9 6 E - 0 3 5 2 3 8 7 . 5 0 0 0 - 2 5 0 . 0 0 0 0 0 8 0 1 5 E - 02 - 0 8 9 1 4 E - 02 0 1 2 7 0 E - 0 2 0 6 1 8 9 E - 02 0 1 4 1 7 E - 0 1 - 0 4 8 8 8 E - 0 2 - 3 4 . 6 4 0 . 9 5 3 0 E - 0 2

0 2 9 2 9 E - 04 - 0 1 0 6 1 E - 03 - 0 1 0 8 6 E - 04 0 1 8 4 2 E - 04 0 6 5 9 4 E - 0 4 - 0 4 7 5 2 E - 0 4 - 3 4 64 0 1 1 3 5 E - 0 3 6 2 5 1 2 . 5 0 0 0 - 2 5 0 . 0 0 0 0 0 5 1 6 9 E - 02 - 0 6 3 2 0 E - 0 2 • 0 8 4 8 1 E - 0 3 0 5 6 1 2 E - 02 0 9 6 8 7 E - 0 2 - 0 3 6 7 1 E - 0 2 - 3 5 56 0 6 6 7 9 E - 0 2

0 1 6 9 2 E - 04 - 0 7 5 2 4 E - 04 - 0 8 7 9 6 E - 0 5 0 1 9 5 6 E - 04 0 4 3 8 2 E - 0 4 - 0 3 5 6 9 E - 0 4 - 3 5 5 6 0 7 9 5 1 E - 0 4 7 2 6 3 7 . 5 0 0 0 - 2 5 0 . 0 0 0 0 0 3 4 0 5 E - 02 - 0 4 7 4 1 E - 02 0 6 9 2 5 E - 03 0 4 8 7 3 E - 02 0 6 9 8 0 E - 0 2 - 0 2 8 8 3 E - 0 2 - 3 7 02 0 4 9 3 1 E - 0 2

0 9 5 9 1 E - 05 - 0 5 6 4 4 E - 04 - 0 6 5 5 7 E - 0 5 0 1 8 3 3 E - 04 0 3 0 8 7 E - 0 4 - 0 2 7 8 4 E - 0 4 - 3 7 02 0 5 8 7 1 E - 0 4 8 2 8 2 5 . 0 0 0 0 - 2 5 0 . 0 0 0 0 0 1 7 6 0 E - 02 - 0 3 2 6 8 E - 02 0 5 1 5 6 E - 0 3 0 3 7 9 9 E - 02 0 4 4 6 5 E - 0 2 - 0 2 1 8 9 E - 0 2 - 3 9 6 1 0 3 3 2 7 E - 0 2

0 3 2 4 6 E - 0 5 - 0 3 8 9 1 E - 04 - 0 4 1 6 2 E - 0 5 0 1 5 3 8 E - 04 0 1 9 3 4 E - 0 4 - 0 2 0 2 6 E - 0 4 - 3 9 6 1 0 3 9 6 1 E - 0 4 9 2 1 0 7 5 . 0 0 0 0 - 2 5 0 . 0 0 0 0 0 4 2 1 8 E - 03 - 0 2 0 8 8 E - 02 0 3 7 9 9 E - 0 3 0 2 7 1 7 E - 02 0 2 4 8 9 E - 0 2 - 0 1 6 8 7 E - 0 2 - 4 4 7 1 0 2 0 8 8 E - 0 2

- 0 1 6 7 8 E - 0 5 - 0 2 4 8 5 E - 04 - 0 1 9 2 8 E - 0 5 0 1 1 9 8 E - 04 0 1 0 6 2 E - 0 4 - 0 1 4 2 3 E - 0 4 - 4 4 7 1 0 2 4 8 5 E - 0 4 1 0 2 1 3 2 5 . 0 0 0 0 - 2 5 0 . 0 0 0 0 - 0 3 5 2 1 E - 03 - 0 1 3 6 5 E - 02 0 2 9 6 8 E - 03 0 1 9 1 0 E - 02 0 1 3 7 5 E - 0 2 - 0 1 4 3 0 E - 0 2 - 5 1 69 0 1 4 0 3 E - 0 2

- 0 4 3 0 3 E - 0 5 - 0 1 6 2 5 E - 04 - 0 4 4 0 8 E - 0 6 0 9 1 5 9 E - 05 0 5 9 7 7 E - 0 5 - 0 1 0 7 2 E - 0 4 - 5 1 6 9 0 1 6 7 0 E - 0 4 11 2 1 7 0 0 . 0 0 0 0 - 2 5 0 . 0 0 0 0 - 0 7 8 6 9 E - 03 - 0 6 9 8 1 E - 03 0 2 0 4 6 E - 0 3 0 1 1 2 3 E - 02 0 5 6 5 0 E - 0 3 - 0 1 1 4 7 E - 0 2 - 6 2 6 9 0 8 5 6 2 E - 0 3

University of Moratuwa D - 2 2

Page 44: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

- 0 5 3 2 7 E - 05 - 0 8 3 1 0 E - 05 0 5 7 4 6 E - 0 6 0 6 0 3 9 E - 05 0 2 7 2 0 E - 0 5 - 0 7 4 7 3 E - 0 5 - 6 2 69 0 1 0 1 9 E - 0 4 2 2 2 0 0 0 0 0 0 - 2 5 0 0 0 0 0 - 0 1 0 3 2 E - 02 - 0 2 5 6 4 E - 03 0 9 3 0 6 E - 0 4 0 4 8 4 3 E - 03 0 1 4 8 7 E - 0 3 - 0 1 0 8 8 E - 02 - 7 7 7 5 0 6 1 8 4 E - 0 3 2 2 0 0

- 0 5 6 0 3 E - 05 - 0 3 0 5 3 E - 05 0 1 0 9 6 E - 0 5 0 3 4 2 4 E - 05 0 1 4 2 7 E - 0 5 - 0 5 9 3 5 E - 05 - 7 7 7 5 0 7 3 6 2 E - 0 5 2 2 8 2 5 0 0 0 0 - 2 5 0 0 0 0 0 - 0 8 6 5 8 E - 03 - 0 3 1 7 8 E - 04 0 3 3 2 3 E - 0 4 0 1 2 7 5 E - 03 0 3 4 3 5 E - 0 4 - 0 8 6 7 0 E - 0 3 - 8 7 9 8 0 4 5 0 7 E - 0 3

- 0 4 3 1 4 E - 05 - 0 3 7 8 3 E - 06 0 1 0 3 7 E - 0 5 0 1 5 9 8 E - 05 0 1 0 4 4 E - 0 5 - 0 4 3 2 1 E - 0 5 - 8 7 98 0 5 3 6 5 E - 0 5 2 3 7 0 0 0 0 0 0 - 2 5 0 0 0 0 0 - 0 6 2 3 2 E - 03 0 2 6 5 3 E - 04 0 1 1 3 3 E - 0 4 - 0 7 0 7 6 E - 04 0 1 2 4 4 E - 0 4 - 0 6 2 4 3 E - 0 3 87 6 1 0 3 1 8 4 E - 0 3

- 0 2 8 9 7 E - 05 0 3 1 5 9 E - 06 0 8 8 0 1 E - 0 6 0 3 9 1 5 E - 06 0 8 8 6 7 E - 0 6 - 0 2 9 0 4 E - 0 5 87 6 1 0 3 7 9 0 E - 0 5 1 50 0 0 0 0 - 7 5 0 0 0 0 0 - 0 8 9 4 0 E - 02 - 0 9 2 3 6 E - 02 0 8 6 9 8 E + 0 0 - 0 8 9 4 0 E - 02 0 8 6 9 9 E + 0 0 - 0 9 0 3 8 E - 0 2 - 8 9 4 0 0 4 3 9 4 E + 0 0

- 0 8 6 2 4 E - 0 5 - 0 1 0 5 5 E - 05 0 4 1 5 9 E - 0 4 - 0 8 6 2 4 E - 05 0 4 1 5 9 E - 0 4 - 0 8 6 3 0 E - 0 5 - 8 9 4 0 0 5 0 2 2 E - 0 4 1 1 5 0 0 0 0 0 - 7 5 0 0 0 0 0 - 0 1 0 6 7 E - 0 1 - 0 1 2 7 0 E - 0 1 0 8 6 1 1 E + 0 0 - 0 1 0 8 8 E - 01 0 8 6 1 3 E + 0 0 - 0 1 0 8 6 E - 0 1 - 8 9 1 7 0 4 3 6 1 E + 0 0

- 0 8 6 0 6 E - 05 - 0 1 4 5 1 E - 05 0 4 1 2 1 E - 0 4 - 0 8 6 1 8 E - 05 0 4 1 2 2 E - 0 4 - 0 8 6 1 6 E - 0 5 - 8 9 17 0 4 9 8 4 E - 0 4 OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 *

INTERFACE STRESSES AT GAUSS POINTS (TIME = 0) ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS

17 4 2 0 0 . 0 0 0 0 - 8 9 4 . 3 3 7 6 - 0 . 1 6 9 9 E - 0 1 0 . 1 2 0 1 E - 0 1 17 4 2 0 0 . 0 0 0 0 - 6 0 5 . 6 6 2 4 - 0 . 1 7 3 7 E - 0 1 0 . 5 7 2 6 E - 0 2

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

ENT MAT 1 - COORD 2 - COORD s - 11 s - 12 S- 2 2 s - 33 1 - STRESS 2 - S T R E S S ANGLE SHEAR E- 11 E- 12 E- 2 2 E- 33 1 -STRAIN 2 -STRAIN ANGLE SHEAR

18 2 2 6 2 . 5 0 0 0 - 7 5 0 . 0 0 0 0 - 0 . 8 9 9 6 E - 02 - 0 . 1 3 3 7 E - 01 0 . 2 0 8 0 E - 02 - 0 . 5 0 7 1 E - 02 0 1 1 0 1 E - 0 1 - 0 1 7 9 3 E - 0 1 - 5 6 . 2 5 0 . 1 4 4 7 E - 0 1 - 0 . 3 9 2 8 E - 04 - 0 . 1 5 9 2 E - 03 0 . 2 6 6 5 E - 04 - 0 . 1 5 9 2 E - 04 0 7 9 8 2 E - 0 4 - 0 . 9 2 4 5 E - 04 - 5 6 2 5 0 . 1 7 2 3 E - 0 3

19 2 3 8 7 . 5 0 0 0 - 7 5 0 . 0 0 0 0 - 0 . 5 1 7 9 E - 02 - 0 . 9 1 1 2 E - 02 0 . 2 3 0 4 E - 02 - 0 . 5 0 3 8 E - 02 0 8 4 1 3 E - 0 2 - 0 1 1 2 9 E - 0 1 - 5 6 16 0 . 9 8 5 0 E - 02 - 0 - 2 1 4 1 E - 04 - 0 1 0 8 5 E - 03 0 . 2 3 1 4 E - 04 - 0 2 0 5 7 E - 04 0 5 9 5 0 E - 0 4 - 0 5 7 7 7 E - 04 - 5 6 16 0 . 1 1 7 3 E - 03

20 2 5 1 2 . 5 0 0 0 - 7 5 0 . 0 0 0 0 - 0 3 1 3 6 E - 02 - 0 6 7 1 6 E - 02 0 . 2 1 1 3 E - 0 2 - 0 4 3 8 3 E - 02 0 6 6 9 9 E - 0 2 - 0 7 7 2 2 E - 02 - 5 5 6 7 0 7 2 1 0 E - 02 - 0 1 2 2 3 E - 04 - 0 7 9 9 5 E - 04 0 1 9 0 2 E - 04 - 0 1 9 6 5 E - 04 0 4 6 3 1 E - 0 4 - 0 3 9 5 3 E - 04 - 5 5 6 7 0 8 5 8 4 E - 04

2 1 2 6 3 7 . 5 0 0 0 - 7 5 0 . 0 0 0 0 - 0 1 8 3 9 E - 02 - 0 5 1 7 4 E - 02 0 1 8 6 8 E - 02 - 0 3 6 9 8 E - 02 0 5 5 1 1 E - 0 2 - 0 5 4 8 2 E - 02 - 5 4 8 5 0 5 4 9 6 E - 02 - 0 6 5 7 7 E - 05 - 0 6 1 6 0 E - 04 0 1 5 4 9 E - 04 - 0 1 7 6 5 E - 04 0 3 7 1 7 E - 0 4 - 0 2 8 2 6 E - 04 - 5 4 8 5 0 6 5 4 3 E - 04

22 2 8 2 5 . 0 0 0 0 - 7 5 0 . 0 0 0 0 - 0 6 4 4 5 E - 03 - 0 3 6 4 6 E - 02 0 1 6 0 2 E - 0 2 - 0 2 7 8 2 E - 02 0 4 2 9 3 E - 0 2 - 0 3 3 3 6 E - 02 - 5 3 5 6 0 3 8 1 5 E - 02 - 0 1 6 6 4 E - 05 - 0 4 3 4 0 E - 04 0 1 1 7 0 E - 04 - 0 1 4 3 9 E - 04 0 2 7 7 3 E - 0 4 - 0 1 7 6 9 E - 04 - 5 3 56 0 4 5 4 1 E - 04

23 2 1 0 7 5 . 0 0 0 0 - 7 5 0 . 0 0 0 0 0 3 0 0 9 E - 03 - 0 2 3 9 3 E - 02 0 1 2 7 0 E - 02 - 0 1 9 1 3 E - 02 0 3 2 2 7 E - 0 2 - 0 1 6 5 6 E - 02 - 5 0 73 0 2 4 4 1 E - 02 0 2 1 9 7 E - 05 - 0 2 8 4 8 E - 04 0 7 9 6 8 E - 0 5 - 0 1 0 9 8 E - 04 0 1 9 6 1 E - 0 4 - 0 9 4 4 9 E - 05 - 5 0 7 3 0 2 9 0 6 E - 04

24 2 1 3 2 5 . 0 0 0 0 - 7 5 0 . 0 0 0 0 0 8 1 8 9 E - 03 - 0 1 5 9 6 E - 02 0 1 0 0 4 E - 0 2 - 0 1 2 8 7 E - 02 0 2 5 1 0 E - 0 2 - 0 6 8 7 6 E - 03 - 4 6 6 6 0 1 5 9 9 E - 0 2 0 4 2 3 7 E - 05 - 0 1 9 0 0 E - 04 0 5 3 3 8 E - 0 5 - 0 8 3 0 0 E - 05 0 1 4 3 1 E - 0 4 - 0 4 7 3 0 E - 0 5 - 4 6 66 0 1 9 0 4 E - 04

2 5 2 1 7 0 0 0 0 0 0 - 7 5 0 0 0 0 0 0 1 0 3 1 E - 02 - 0 8 4 4 2 E - 03 0 6 9 0 9 E - 0 3 - 0 7 1 0 3 E - 03 0 . 1 7 2 2 E - 0 2 - 0 2 2 3 5 E - 0 6 - 3 9 3 1 0 8 6 1 1 E - 03 0 4 9 3 2 E - 05 - 0 . 1 0 0 5 E - 04 0 2 9 0 8 E - 0 5 - 0 5 4 3 2 E - 05 0 . 9 0 4 6 E - 0 5 - 0 1 2 0 6 E - 0 5 - 3 9 3 1 0 1 0 2 5 E - 04

2 6 2 2 2 0 0 0 0 0 0 - 7 5 0 0 0 0 0 0 . 1 0 9 0 E - 02 - 0 . 3 3 7 6 E - 03 0 3 8 6 1 E - 0 3 - 0 2 7 4 0 E - 0 3 / 0 ' . ' 1 2 2 6 E - 0 2 0 2 5 0 4 E - 03 - 2 1 9 0 0 4 8 7 8 E - 0 3

University of Moratuwa D-23

Page 45: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

0 5 0 5 8 E - 05 - 0 4 0 1 9 E - 05 0 8 6 6 6 E - 0 6 - 0 3 0 6 2 E - 0 5 0 5 8 6 6 E - 0 5 0 5 8 8 8 E - 07 - 2 1 9 0 0 5 8 0 7 E - 0 5 2 7 2 2 8 2 5 0 0 0 0 - 7 5 0 0 0 0 0 0 8 3 4 6 E - 03 - 0 6 4 9 6 E - 04 0 1 5 2 1 E - 0 3 - 0 5 2 6 1 E - 04 0 8 4 0 8 E - 0 3 0 1 4 5 9 E - 0 3 - 5 3 9 0 3 4 7 4 E - 0 3

0 3 8 5 6 E - 0 5 - 0 7 7 3 3 E - 06 - 0 2 0 6 9 E - 0 6 - 0 1 4 2 5 E - 05 0 3 8 9 3 E - 0 5 - 0 2 4 3 4 E - 06 - 5 3 9 0 4 1 3 6 E - 0 5 2 8 2 3 7 0 0 0 0 0 0 - 7 5 0 0 0 0 0 0 5 5 8 5 E - 03 0 1 7 6 2 E - 04 0 2 0 8 6 E - 0 6 0 6 6 4 6 E - 04 0 5 5 9 0 E - 0 3 - 0 3 4 6 9 E - 06 1 8 1 0 2 7 9 7 E - 0 3

0 2 5 8 0 E - 0 5 0 2 0 9 8 E - 0 6 - 0 7 4 3 0 E - 0 6 - 0 3 4 8 7 E - 06 0 2 5 8 3 E - 0 5 - 0 7 4 6 3 E - 06 1 8 1 0 3 3 3 0 E - 0 5 2 9 1 50 0 0 0 0 - 1 2 5 0 0 0 0 0 - 0 9 1 9 0 E - 02 - 0 4 3 9 7 E - 03 0 8 1 7 2 E + 0 0 - 0 9 1 9 0 E - 02 0 8 1 7 2 E + 0 0 - 0 9 1 9 0 E - 02 - 8 9 9 7 0 4 1 3 2 E + 0 0

- 0 8 1 3 3 E - 05 - 0 5 0 2 5 E - 07 0 3 9 0 9 E - 0 4 - 0 8 1 3 3 E - 05 0 3 9 0 9 E - 0 4 - 0 8 1 3 3 E - 05 - 8 9 9 7 0 4 7 2 2 E - 0 4 3 0 1 1 5 0 0 0 0 0 - 1 2 5 0 0 0 0 0 - 0 7 7 7 1 E - 02 - 0 3 1 1 2 E - 0 2 0 8 1 5 3 E + 0 0 - 0 8 7 2 5 E - 02 0 8 1 5 3 E + 0 0 - 0 7 7 8 3 E - 02 - 8 9 7 8 0 4 1 1 5 E + 0 0

- 0 8 0 5 1 E - 05 - 0 3 5 5 6 E - 06 0 3 8 9 8 E - 0 4 - 0 8 1 0 6 E - 05 0 3 8 9 8 E - 0 4 - 0 8 0 5 2 E - 0 5 - 8 9 7 8 0 4 7 0 3 E - 0 4 OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f . . p i l e * 0 7 / 0 8 / 0 3 *

INTERFACE STRESSES AT GAUSS POINTS (TIME = 0) ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS

3 1 6 2 0 0 . 0 0 0 0 - 1 3 9 4 . 3 3 7 6 - 0 . 1 8 3 3 E - 0 2 0 . 1 9 8 1 E - 0 2 3 1 6 2 0 0 . 0 0 0 0 - 1 1 0 5 . 6 6 2 4 - 0 . 1 7 2 5 E - 0 2 0 . 1 1 0 1 E - 0 1

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

ENT MAT 1 - COORD 2 - COORD s-- 1 1 S- 12 s- 22 s - 3 3 1 - S T R E S S 2 - S T R E S S ANGLE SHEAR E- 1 1 E- 12 E- 22 E- 33 1 - STRAIN 2 - S T R A I N ANGLE SHEAR

3 2 3 2 6 2 . 5 0 0 0 - 1 2 5 0 . 0 0 0 0 - 0 . 1 0 3 6 E - 03 - 0 . 1 2 9 9 E - 02 0 . 1 7 6 0 E - 02 0 . 3 6 3 6 E - 03 0 2 4 2 7 E - 02 - 0 7 7 0 9 E - 03 - 6 2 82 0 1 5 9 9 E - 02 - 0 . 5 0 4 3 E - 04 - 0 . 1 7 9 4 E - 03 0 . 7 8 2 2 E - 04 - 0 . 1 8 1 7 E - 04 0 1 2 4 3 E - 03 - 0 9 6 5 1 E - 04 - 6 2 . 8 2 0 2 2 0 8 E - 0 3

33 3 3 8 7 . 5 0 0 0 - 1 2 5 0 . 0 0 0 0 0 . 7 7 5 6 E - 03 - 0 . 9 3 1 5 E - 03 0 - 2 3 3 5 E - 02 0 8 6 3 4 E - 03 0 2 7 7 0 E - 02 0 3 4 0 5 E - 03 - 6 4 9 7 0 1 2 1 5 E - 02 - 0 . 3 1 6 1 E - 04 - 0 . 1 2 8 6 E - 03 0 . 7 6 0 7 E - 04 - 0 . 2 5 5 4 E - 04 <V 1 0 6 1 E - 0"3 - 0 6 1 6 5 E - 04 - 6 4 . 9 7 0 1 6 7 8 E - 03

34 3 5 1 2 . 5 0 0 0 - 1 2 5 0 . 0 0 0 0 0 . 1 0 3 2 E - 02 - 0 8 2 4 4 E - 0 3 0 2 3 1 3 E - 02 0 9 6 4 8 E - 03 ' 0 2 7 1 7 E - 02 0 6 2 8 5 E - 03 - 6 3 93 0 1 0 4 4 E - 02 - 0 2 1 1 1 E - 04 - 0 1 1 3 8 E - 0 3 0 6 7 3 7 E - 04 - 0 2 5 7 4 E - 04 0 9 5 2 2 E - 04 - 0 4 8 9 6 E - 04 - 6 3 93 0 1 4 4 2 E - 0 3

3 5 3 6 3 7 . 5 0 0 0 - 1 2 5 0 . 0 0 0 0 0 1 1 1 6 E - 02 - 0 7 6 4 3 E - 03 0 2 1 6 3 E - 02 0 9 6 8 6 E - 03 0 2 5 6 6 E - 02 0 7 1 2 9 E - 03 - 6 2 2 1 0 9 2 6 5 E - 03 - 0 1 3 9 8 E - 04 - 0 1 0 5 5 E - 03 0 5 8 3 4 E - 04 - 0 2 4 1 3 E - 04 . 0 . 8 6 1 6 E - 04 - 0 4 1 8 0 E - 04 - 6 2 2 1 0 1 2 8 0 E - 03

3 6 3 8 2 5 . 0 0 0 0 - 1 2 5 0 . 0 0 0 0 0 1 1 7 4 E - 02 - 0 6 9 7 2 E - 03 0 1 9 5 4 E - 02 0 9 7 1 8 E - 03 0 2 3 6 3 E - 02 0 7 6 4 8 E - 03 - 5 9 6 1 0 7 9 8 9 E - 0 3 - 0 6 7 9 7 E - 05 - 0 9 6 2 8 E - 04 0 4 7 0 5 E - 04 - 0 2 0 7 4 E - 04 0 . 7 5 2 9 E - 04 - 0 3 5 0 3 E - 04 - 5 9 6 1 0 1 1 0 3 E - 03

3 7 3 1 0 7 5 . 0 0 0 0 - 1 2 5 0 . 0 0 0 0 0 1 1 2 9 E - 02 - 0 6 0 1 4 E - 03 0 1 6 3 3 E - 02 0 8 9 1 4 E - 03 0 . 2 0 3 3 E - 02 0 7 2 9 0 E - 03 - 5 6 3 8 0 6 5 2 1 E - 03 - 0 3 4 2 2 E - 0 6 - 0 8 3 0 5 E - 04 0 3 4 4 9 E - 04 - 0 1 6 7 5 E - 04 0 . 6 2 1 0 E - 04 - 0 2 7 9 6 E - 04 - 5 6 3 8 0 9 0 0 6 E - 04

3 8 3 1 3 2 5 . 0 0 0 0 - 1 2 5 0 . 0 0 0 0 0 1 0 2 7 E - 02 - 0 5 0 9 5 E - 03 0 1 3 2 4 E - 02 0 7 7 9 7 E - 03 0 . 1 7 0 6 E - 02 0 6 4 4 9 E - 03 - 5 3 1 1 0 5 3 0 7 E - 03 0 3 8 4 9 E - 05 - 0 7 0 3 6 E - 04 0 2 4 3 2 E - 04 - 0 1 3 2 6 E - 04 0 . 5 0 7 2 E - 04 - 0 2 2 5 6 E - 04 - 5 3 1 1 0 7 3 2 8 E - 04

3 9 3 1 7 0 0 . 0 0 0 0 - 1 2 5 0 0 0 0 0 0 8 4 0 3 E - 03 - 0 3 8 6 3 E - 03 0 9 4 7 0 E - 03 0 6 1 3 6 E - 03 0 . 1 2 8 4 E - 02 0 5 0 3 6 E - 03 - 4 8 93 0 3 9 0 0 E - 0 3 0 6 5 7 3 E - 05 - 0 5 3 3 5 E - 04 0 1 3 9 4 E - 04 - 0 9 0 8 2 E - 0 5 0 . 3 7 1 8 E - 04 - 0 1 6 6 7 E - 04 - 4 8 93 0 5 3 8 6 E - 04

4 0 3 2 2 0 0 0 0 0 0 - 1 2 5 0 0 0 0 0 0 5 9 2 9 E - 03 - 0 2 5 5 2 E - 0 3 0 5 4 7 4 E - 03 0 4 0 0 3 E - 03 0 . 8 2 6 4 E - 0 3 0 3 1 3 9 E - 03 - 4 2 4 5 0 2 5 6 2 E - 0 3 0 . 7 9 2 3 E - 05 - 0 . 3 5 2 4 E - 04 0 . 4 7 8 3 E - 0 5 - 0 . 5 3 7 0 E - 05 0 . 2 4 0 5 E - 04 - 0 1 1 3 4 E - 04 - 4 2 4 5 0 3 5 3 8 E - 04

4 1 3 2 8 2 5 0 0 0 0 - 1 2 5 0 0 0 0 0 0 . 3 3 7 2 E - 03 - 0 . 1 4 1 0 E - 0 3 0 2 3 3 9 E - 0 3 0 . 2 0 2 6 E - 03 0 . 4 3 5 7 E - 03 0 1 3 5 4 E - 03 - 3 4 94 0 1 5 0 2 E - 03

University of Moratuwa D-24

Page 46: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

0 . 6 7 0 4 E - 0 5 - 0 . 1 9 4 7 E - 04 - 0 4 2 8 7 E - 0 6 - 0 2 5 9 1 E - 05 0 1 3 5 1 E - 0 4 - 0 7 2 3 1 E - 0 5 - 3 4 94 0 2 0 7 4 E - 0 4 42 3 3 7 0 0 . 0 0 0 0 - 1 2 5 0 . 0 0 0 0 0 . 1 3 8 0 E - 03 - 0 . 4 0 9 3 E - 04 0 2 3 4 4 E - 0 4 0 5 9 0 3 E - 04 0 1 5 1 2 E - 0 3 0 1 0 3 3 E - 04 - 1 7 7 7 0 7 0 4 2 E - 0 4

0 . 4 8 0 6 E - 05 - 0 . 5 6 5 2 E - 05 - 0 3 1 0 7 E - 0 5 - 0 6 4 9 5 E - 06 0 5 7 1 2 E - 0 5 -o. 4 0 1 2 E - 0 5 - 1 7 7 7 0 9 7 2 5 E - 0 5 4 3 1 5 0 . 0 0 0 0 - 1 7 5 0 . 0 0 0 0 0 . 1 0 1 1 E - 0 1 - 0 . 1 5 6 8 E - 02 0 8 0 3 7 E + 0 0 0 1 0 1 1 E - 01 0 8 0 3 7 E + 0 0 0 1 0 1 1 E - 0 1 - 8 9 8 9 0 3 9 6 8 E + 0 0

- 0 . 7 2 6 9 E - 05 - 0 . 1 7 9 2 E - 06 0 3 8 0 8 E - 0 4 - 0 7 2 6 9 E - 05 0 3 8 0 8 E - 0 4 - 0 7 2 6 9 E - 0 5 - 8 9 8 9 0 4 5 3 5 E - 0 4 4 4 1 1 5 0 . 0 0 0 0 - 1 7 5 0 . 0 0 0 0 0 . 9 5 1 6 E - 02 - 0 . 3 4 2 8 E - 02 0 8 0 6 9 E + 0 0 0 1 0 2 2 E - 01 0 8 0 6 9 E + 0 0 0 9 5 0 1 E - 0 2 - 8 9 7 5 0 3 9 8 7 E + 0 0 .

- 0 . 7 3 2 9 E - 05 - 0 . 3 9 1 7 E - 06 0 3 8 2 4 E - 0 4 - 0 7 2 8 9 E - 05 0 3 8 2 4 E - 0 4 - 0 7 3 3 0 E - 0 5 - 8 9 7 5 0 4 5 5 7 E - 0 4 f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 * OFEAP

INTERFACE STRESSES AT GAUSS POINTS (TIME = 0) ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS

4 5 6 2 0 0 . 0 0 0 0 - 1 8 9 4 . 3 3 7 6 - 0 . 1 7 8 5 E - 0 2 - 0 . 1 2 0 7 E - 0 1 45 6 2 0 0 . 0 0 0 0 - 1 6 0 5 . 6 6 2 4 - 0 . 1 8 4 9 E - 0 2 - 0 . 4 2 0 3 E - 0 2

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

ENT MAT 1 - COORD 2 - COORD s - 1 1 s- 12 s - 22 s - 33 1 - S T R E S S 2 - S T R E S S ANGLE SHEAR E- 11 E- 12 E- 22 E- 33 1 -STRAIN 2 - S T R A I N ANGLE SHEAR

4 6 3 2 6 2 . 5 0 0 0 - 1 7 5 0 . 0 0 0 0 0 . 2 5 5 4 E - 02 - 0 . 1 3 1 9 E - 02 0 . 2 4 5 6 E - 02 0 . 2 2 4 3 E - 02 0 3 8 2 5 E - 02 0 1 1 8 5 E - 02 - 4 3 . 9 3 0 . 1 3 2 0 E - 0 2 0 . 2 0 9 5 E - 04 - 0 . 1 8 2 2 E - 03 0 . 1 4 1 6 E - 04 - 0 . 5 7 3 2 E - 06 0 1 0 8 7 E - 03 - 0 7 3 6 0 E - 04 - 4 3 . 93 0 . 1 8 2 3 E - 03

4 7 3 3 8 7 . 5 0 0 0 - 1 7 5 0 . 0 0 0 0 0 . 1 7 0 7 E - 02 - 0 . 9 4 4 7 E - 03 0 1 8 2 9 E - 02 0 . 1 6 7 5 E - 02 0 2 7 1 5 E - 02 0 8 2 1 2 E - 0 3 - 4 6 . 8 6 0 . 9 4 6 7 E - 03 0 . 6 1 8 2 E - 05 - 0 . 1 3 0 5 E - 03 0 . 1 4 6 4 E - 04 0 . 3 9 8 8 E - 05 0 7 5 7 8 E - 04 - 0 5 4 9 5 E - 04 - 4 6 . 8 6 0 . 1 3 0 7 E - 03

4 8 3 5 1 2 . 5 0 0 0 - 1 7 5 0 . 0 0 0 0 0 . 1 4 6 2 E - 02 - 0 8 3 8 2 E - 03 0 1 7 4 1 E - 02 0 1 5 2 0 E - 02 0 2 4 5 1 E - 02 0 7 5 1 4 E - 03 - 4 9 . 7 3 0 . 8 4 9 8 E - 0 3 - 0 2 6 8 7 E - 06 - 0 1 1 5 8 E - 03 0 1 9 0 2 E - 04 0 3 7 3 6 E - 05 0 6 8 0 5 E - 04 - 0 4 9 3 0 E - 04 - 4 9 . 7 3 0 . 1 1 7 3 E - 0 3

4 9 3 6 3 7 . 5 0 0 0 - 1 7 5 0 . 0 0 0 0 0 1 3 6 0 E - 02 - 0 7 9 0 3 E - 03 0 1 7 2 3 E - 02 0 1 4 4 3 E - 02 0 2 3 5 2 E - 02 0 7 3 0 4 E - 0 3 - 5 1 4 8 0 8 1 0 9 E - 03 - 0 3 1 1 0 E - 05 - 0 1 0 9 1 E - 03 0 2 1 9 9 E - 04 0 2 6 7 2 E - 05 0 6 5 4 3 E - 04 - 0 4 6 5 5 E - 04 - 5 1 4 8 0 1 1 2 0 E - 03

50 3 8 2 5 . 0 0 0 0 - 1 7 5 0 . 0 0 0 0 0 1 2 4 4 E - 02 - 0 7 5 4 4 E - 0 3 0 1 6 2 9 E - 02 0 1 3 1 9 E - 02 0 2 2 1 5 E - 0 2 0 6 5 7 9 E - 03 - 5 2 1 6 0 7 7 8 6 E - 03 - 0 3 9 2 7 E - 05 - 0 1 0 4 2 E - 03 0 2 2 6 5 E - 04 0 1 2 3 4 E - 05 0 6 3 1 2 E - 04 - 0 4 4 3 9 E - 04 - 5 2 1 6 0 1 0 7 5 E - 03

5 1 3 1 0 7 5 . 0 0 0 0 - 1 7 5 0 . 0 0 0 0 0 1 0 9 7 E - 02 - 0 7 0 2 9 E - 03 0 1 4 4 7 E - 02 0 1 1 4 7 E - 02 0 1 9 9 7 E - 02 0 5 4 7 5 E - 03 - 5 2 0 1 0 7 2 4 5 E - 0 3 - 0 3 3 7 8 E - 05 - 0 9 7 0 7 E - 04 0 2 0 8 6 E - 04 0 9 7 8 4 E - 07 0 5 8 7 6 E - 04 - 0 4 1 2 9 E - 04 - 5 2 0 1 0 1 0 0 1 E - 0 3

52 3 1 3 2 5 . 0 0 0 0 - 1 7 5 0 . 0 0 0 0 0 9 5 1 0 E - 03 - 0 6 4 7 6 E - 03 0 1 2 3 7 E - 02 0 9 7 5 4 E - 03 0 1 7 5 7 E - 02 0 4 3 0 8 E - 0 3 - 5 1 2 3 0 6 6 3 2 E - 0 3 - 0 2 1 2 1 E - 05 - 0 8 9 4 3 E - 04 0 1 7 6 2 E - 04 - 0 4 3 9 4 E - 06 0 5 3 5 4 E - 04 - 0 3 8 0 4 E - 04 - 5 1 2 3 0 9 1 5 8 E - 04

53 3 1 7 0 0 . 0 0 0 0 - 1 7 5 0 . 0 0 0 0 0 7 4 8 3 E - 03 - 0 5 5 3 6 E - 03 0 9 3 6 3 E - 0 3 0 7 4 6 3 E - 03 0 1 4 0 4 E - 02 0 2 8 0 8 E - 03 - 4 9 82 0 5 6 1 6 E - 03 - 0 4 2 2 8 E - 06 - 0 7 6 4 5 E - 04 0 1 2 5 6 E - 04 - 0 5 6 0 7 E - 06 0 4 4 8 4 E - 04 - 0 3 2 7 1 E - 04 - 4 9 82 0 7 7 5 5 E - 04

54 3 2 2 0 0 . 0 0 0 0 - 1 7 5 0 0 0 0 0 0 4 7 8 6 E - 03 - 0 4 2 3 2 E - 03 0 5 7 3 8 E - 0 3 0 4 6 4 8 E - 03 0 9 5 2 1 E - 0 3 0 1 0 0 4 E - 03 - 4 8 2 1 0 4 2 5 9 E - 03 0 5 3 7 4 E - 06 - 0 5 8 4 4 E - 04 0 7 1 0 8 E - 0 5 - 0 4 2 0 2 E - 06 0 3 3 2 3 E - 04 - 0 2 5 5 8 E - 04 - 4 8 2 1 0 5 8 8 1 E - 04

55 3 2 8 2 5 0 0 0 0 - 1 7 5 0 0 0 0 0 0 . 2 4 3 7 E - 03 - 0 2 6 8 1 E - 03 0 2 8 0 6 E - 0 3 0 2 3 1 8 E - 03 0 5 3 0 9 E - 03 - 0 6 5 7 4 E - 0 5 - 4 6 97 0 2 6 8 7 E - 0 3 0 . 6 2 5 9 E - 06 - 0 3 7 0 2 E - 04 0 3 1 7 1 E - 0 5 - 0 1 9 6 6 E - 06 0 2 0 4 5 E - 04 - 0 1 6 6 6 E - 04 - 4 6 9 7 0 3 7 1 1 E - 04

56 3 3 7 00 0 0 0 0 - 1 7 5 0 0 0 0 0 0 . 8 2 7 0 E - 04 - 0 . 8 7 8 6 E - 04 0 . 9 1 3 9 E - 04 0 7 7 4 3 E - 04 0 1 7 5 0 E - 0 3 - 0 . 9 2 1 6 E - 06 - 4 6 4 1 0 8 7 9 7 E - 04

University of Moratuwa D-25

Page 47: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

0 3 2 0 7 E - 06 - 0 1 2 1 3 E - 04 0 9 2 0 3 E - 0 6 - 0 4 3 3 4 E - 07 0 6 6 9 4 E - 0 5 - 0 5 4 5 3 E - 0 5 - 4 6 4 1 0 1 2 1 5 E - 0 4 5 7 1 50 0 0 0 0 - 2 2 5 0 0 0 0 0 0 1 0 6 9 E - 0 1 - 0 4 2 4 1 E - 02 0 7 5 7 4 E + 0 0 0 1 0 6 9 E - 0 1 0 7 5 7 4 E + 0 0 0 1 0 6 7 E - 0 1 - 8 9 6 7 0 3 7 3 4 E + 0 0

- 0 6 8 0 6 E - 05 - 0 4 8 4 7 E - 06 0 3 5 8 6 E - 0 4 - 0 6 8 0 6 E - 0 5 0 3 5 8 6 E - 0 4 - 0 6 8 0 7 E - 0 5 - 8 9 6 7 0 4 2 6 7 E - 0 4 5 8 1 1 5 0 0 0 0 0 - 2 2 5 0 0 0 0 0 0 1 0 1 0 E - 01 - 0 1 0 3 6 E - 0 1 0 7 5 9 4 E + 0 0 0 1 0 6 5 E - 0 1 0 7 5 9 6 E + 0 0 0 9 9 5 9 E - 0 2 - 8 9 2 1 0 3 7 4 8 E + 0 0

- 0 6 8 5 3 E - 0 5 - 0 1 1 8 4 E - 05 0 3 5 9 7 E - 0 4 - 0 6 8 2 2 E - 05 0 3 5 9 7 E - 0 4 - 0 6 8 6 1 E - 0 5 - 8 9 2 1 0 4 2 8 4 E - 0 4 OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 *

INTERFACE STRESSES AT GAUSS POINTS (TIME = 0) ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS

59 4 2 0 0 . 0 0 0 0 - 2 3 9 4 . 3 3 7 6 - 0 . 1 6 4 5 E - 0 1 - 0 . 5 4 9 6 E - 0 2 59 4 2 0 0 . 0 0 0 0 - 2 1 0 5 . 6 6 2 4 - 0 . 1 7 3 0 E - 0 1 - 0 . 1 2 4 2 E - 0 1

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

ENT MAT 1 - COORD 2 - COORD s-• 1 1 s- 12 s - 2 2 s - 33 1 -STRESS 2 - S T R E S S ANGLE SHEAR E- 11 E- 12 E- 2 2 E- 33 1 -STRAIN 2 - S T R A I N ANGLE SHEAR

6 0 2 2 6 2 . 5 0 0 0 - 2 2 5 0 . 0 0 0 0 0 . 8 8 4 9 E - 02 - 0 . 1 2 5 8 E - 0 1 0 . 4 2 0 6 E - 02 0 . 3 8 0 1 E - 02 0 . 1 9 3 2 E - 0 1 - 0 6 2 6 9 E - 02 - 3 9 7 7 0 1 2 8 0 E - 0 1 0 . 3 2 6 0 E - 04 - 0 . 1 4 9 8 E - 03 0 . 4 9 7 2 E - 0 5 0 . 2 5 6 0 E - 05 0 . 9 4 9 6 E - 0 4 - 0 5 7 3 8 E - 04 - 3 9 7 7 0 1 5 2 3 E - 0 3

6 1 2 3 8 7 . 5 0 0 0 - 2 2 5 0 . 0 0 0 0 0 . 5 5 1 7 E - 02 - 0 . 7 8 7 1 E - 02 0 . 3 0 6 0 E - 0 2 0 . 4 2 1 0 E - 02 0 . 1 2 2 6 E - 0 1 - 0 3 6 7 8 E - 02 - 4 0 5 6 0 7 9 6 6 E - 02 0 . 1 7 6 2 E - 04 - 0 9 3 7 0 E - 04 0 2 9 9 4 E - 0 5 0 . 9 8 3 4 E - 05 0 . 5 7 7 3 E - 0 4 - 0 3 7 1 1 E - 04 - 4 0 56 0 9 4 8 4 E - 04

6 2 2 5 1 2 . 5 0 0 0 - 2 2 5 0 . 0 0 0 0 0 . 3 7 7 6 E - 02 - 0 . 5 4 4 6 E - 02 0 2 4 4 8 E - 02 0 . 3 8 3 7 E - 02 0 . 8 5 9 9 E - 0 2 - 0 2 3 7 5 E - 02 - 4 1 5 2 0 5 4 8 7 E - 0 2 0 . 1 0 5 0 E - 04 - 0 6 4 8 4 E - 04 0 2 5 9 3 E - 0 5 0 . 1 0 8 6 E - 04 0 3 9 2 0 E - 0 4 - 0 2 6 1 1 E - 04 - 4 1 52 0 6 5 3 2 E - 04

6 3 2 6 3 7 . 5 0 0 0 - 2 2 5 0 . 0 0 0 0 0 2 6 8 3 E - 02 - 0 4 0 5 1 E - 02 0 2 0 8 8 E - 02 0 3 3 7 2 E - 02 0 6 4 4 7 E - 0 2 - 0 1 6 7 7 E - 0 2 - 4 2 9 0 0 4 0 6 2 E - 02 0 6 2 7 8 E - 05 - 0 4 8 2 3 E - 04 0 2 7 3 1 E - 0 5 0 1 0 3 8 E - 04 0 2 8 6 8 E - 0 4 - 0 1 9 6 7 E - 04 - 4 2 90 0 4 8 3 6 E - 04

64 2 8 2 5 . 0 0 0 0 - 2 2 5 0 . 0 0 0 0 0 1 7 0 4 E - 02 - 0 2 8 6 8 E - 02 0 1 7 5 0 E - 02 0 2-736E- 02 0 4 5 9 6 E - 0 2 - 0 1 1 4 1 E - 02 - 4 5 2 3 0 2 8 6 8 E - 02 0 2 7 7 5 E - 05 - 0 3 4 1 5 E - 04 0 3 0 4 8 E - 0 5 0 8 9 1 6 E - 0 5 0 1 9 9 9 E - 0 4 - 0 1 4 1 6 E - 04 - 4 5 2 3 0 3 4 1 5 E - 04

6 5 2 1 0 7 5 . 0 0 0 0 - 2 2 5 0 . 0 0 0 0 0 9 1 2 0 E - 03 - 0 2 0 3 6 E - 02 0 1 4 4 6 E - 0 2 0 2 0 9 7 E - 02 0 3 2 3 2 E - 0 2 - 0 8 7 4 3 E - 03 - 4 8 74 0 2 0 5 3 E - 0 2 0 1 2 4 7 E - 06 - 0 2 4 2 4 E - 04 0 3 3 0 3 E - 0 5 0 7 1 8 0 E - 05 0 1 3 9 4 E - 0 4 - 0 1 0 5 1 E - 04 - 4 8 74 0 2 4 4 4 E - 04

6 6 2 1 3 2 5 . 0 0 0 0 - 2 2 5 0 . 0 0 0 0 0 4 3 7 0 E - 03 - 0 1 5 8 1 E - 02 0 1 2 2 8 E - 0 2 0 1 6 1 6 E - 02 0 2 4 6 3 E - 0 2 - 0 7 9 7 2 E - 03 - 5 2 02 0 1 6 3 0 E - 02 - 0 1 3 0 5 E - 05 - 0 1 8 8 2 E - 04 0 3 4 0 5 E - 0 5 0 5 7 1 4 E - 05 0 1 0 7 5 E - 0 4 - 0 8 6 5 2 E - 0 5 - 5 2 02 0 1 9 4 0 E - 04

6 7 2 1 7 0 0 . 0 0 0 0 - 2 2 5 0 . 0 0 0 0 0 4 5 7 7 E - 04 - 0 1 1 7 6 E - 02 0 9 4 9 4 E - 0 3 0 1 0 9 5 E - 02 0 1 7 5 7 E - 0 2 - 0 7 6 2 2 E - 0 3 - 5 5 5 1 0 1 2 6 0 E - 02 - 0 2 2 1 6 E - 05 - 0 1 4 0 0 E - 04 0 3 1 6 2 E - 0 5 0 4 0 3 1 E - 05 0 7 9 7 2 E - 0 5 - 0 7 0 2 5 E - 0 5 - 5 5 5 1 0 1 5 0 0 E - 04

6 8 2 2 2 0 0 0 0 0 0 - 2 2 5 0 . 0 0 0 0 - 0 2 9 0 8 E - 03 - 0 8 1 8 3 E - 03 0 6 3 5 3 E - 0 3 0 6 1 8 7 E - 03 0 1 1 1 2 E - 0 2 - 0 7 6 8 0 E - 0 3 - 5 9 7 5 0 9 4 0 2 E - 0 3 - 0 2 8 7 8 E - 05 - 0 9 7 4 1 E - 05 0 2 6 3 5 E - 0 5 0 2 5 3 6 E - 05 0 5 4 7 5 E - 0 5 - 0 5 7 1 8 E - 0 5 - 5 9 7 5 0 1 1 1 9 E - 04

6 9 2 2 8 2 5 0 0 0 0 - 2 2 5 0 0 0 0 0 - 0 4 6 1 7 E - 03 - 0 4 8 9 4 E - 03 0 3 7 3 9 E - 03 0 2 5 7 1 E - 03 0 5 9 9 6 E - 0 3 - 0 6 8 7 4 E - 0 3 - 6 5 24 0 6 4 3 5 E - 03 - 0 2 9 5 0 E - 05 - 0 . 5 8 2 7 E - 05 0 2 0 2 4 E - 0 5 0 1 3 2 9 E - 05 0 3 3 6 8 E - 0 5 - 0 4 2 9 3 E - 0 5 - 6 5 2 4 0 7 6 6 1 E - 0 5

7 0 2 3 7 0 0 0 0 0 0 - 2 2 5 0 0 0 0 0 - 0 . 5 0 3 6 E - 03 - 0 . 1 4 1 2 E - 03 0 . 2 0 8 7 E - 0 3 0 1 4 2 0 E - 0 5 0 2 3 5 6 E - 0 3 - 0 5 3 0 5 E - 0 3 - 7 9 1 9 0 3 8 3 1 E - 03 - 0 . 2 6 4 8 E - 05 - 0 . 1 6 8 1 E - 05 0 1 5 9 1 E - 0 5 0 3 5 7 8 E - 06 0 1 7 5 2 E - 0 5 - 0 2 8 0 9 E - 0 5 - 7 9 1 9 0 4 5 6 1 E - 0 5

7 1 1 50 0 0 0 0 - 2 7 5 0 0 0 0 0 0 . 1 7 3 4 E - 02 - 0 . 5 2 2 4 E - 02 0 . 6 7 8 9 E + 0 0 0 1 7 3 4 E - 02 0 6 7 8 9 E + 0 0 0 1 6 9 4 E - 02 - 8 9 5 6 0 3 3 8 6 E + 0 0

University of Moratuwa D-26

Page 48: 6. SUMMARY AND CONCLUSION 6.1. Summary

9

Appendix D

72 1 5 0 . 0 0 0 0 - 2 7 5 0 . 0 0 0 0 - 0 . 6 3 9 9 E - 0 5 - 0 . 5 9 7 0 E - 0 6 0

0 . 1 7 6 0 E - 0 2 - 0 . 1 2 8 7 E - 0 1 0 - 0 . 6 3 8 4 E - 0 5 - 0 . 1 4 7 1 E - 0 5 0

OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e INTERFACE STRESSES AT GAUSS POINTS (TIME = 0)

ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS 73 4 2 0 0 . 0 0 0 0 - 2 8 9 4 . 3 3 7 6 - 0 . 1 5 5 9 E - 0 1 - 0 . 1 5 0 1 E - 0 2 73 4 2 0 0 . 0 0 0 0 - 2 6 0 5 . 6 6 2 4 - 0 . 1 5 9 9 E - 0 1 - 0 . 2 5 7 1 E - 0 2

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e

3 2 2 9 E - 0 4 - 0 . 6 3 9 9 E - 0 5 6 7 7 6 E + 0 0 0 . 1 5 8 5 E - 0 2 3 2 2 3 E - 0 4 - 0 . 6 3 9 4 E - 0 5 * 0 7 / 0 8 / 0 3 *

0 7 / 0 8 / 0

3 2 3 0 E - 0 4 6 7 7 8 E + 0 0 3 2 2 5 E - 0 4

- 0 . 6 4 0 2 E - 0 5 0 . 1 5 1 5 E - 0 2

- 0 . 6 3 9 8 E - 0 5

• 8 9 . 5 6 • 8 8 . 9 1 • 8 8 . 9 1

0 . 3 8 7 0 E - 0 4 0 . 3 3 8 2 E + 0 0 0 . 3 8 6 5 E - 0 4

AX ISYMMETRIC STRESSES

ELEMENT MAT 1 - COORD 2 - COORD S- 11 s - 12 S- 22 S- 33 1 - STRESS 2 - STRESS ANGLE , SHEAR E- 1 1 E- 12 E- 22 E- 3 3 1 - STRAIN 2 - S T R A I N ANGLE SHEAR

3 * 74 2 2 6 2 . 5 0 0 0 - 2 7 5 0 . 0 0 0 0 0 . 1 5 7 2 E - 02 - 0 . 1 2 2 8 E - 0 1 0 . 4 1 2 7 E - 02 0 . 5 0 0 8 E - 03 0 1 5 2 0 E - 0 1 - 0 . 9 4 9 9 E - 02 - 4 7 . 9 7 0 . 1 2 3 5 E - 0 1

0 . 1 9 7 7 E - 05 - 0 . 1 4 6 2 E - 03 0 . 1 7 1 8 E - 04 - 0 . 4 3 9 9 E - 05 0 . 8 3 0 8 E - 0 4 - 0 . 6 3 9 2 E - 04 - 4 7 . 9 7 0 . 1 4 7 0 E - 0 3 7 5 2 3 8 7 . 5 0 0 0 - 2 7 5 0 . 0 0 0 0 . 0 . 1 8 3 7 E - 02 - 0 . 8 6 4 6 E - 02 0 . 3 7 0 4 E - 02 0 . 9 3 5 8 E - 03 0 1 1 4 7 E - 0 1 - 0 5 9 2 5 E - 02 - 4 8 . 0 8 0 . 8 6 9 6 E - 0 2

0 . 3 2 2 6 E - 05 - 0 . 1 0 2 9 E - 03 0 . 1 4 3 4 E - 04 - 0 . 2 1 4 1 E - 05 0 6 0 5 4 E - 0 4 - 0 . 4 2 9 8 E - 04 - 4 8 . 0 8 0 . 1 0 3 5 E - 0 3 76 2 5 1 2 . 5 0 0 0 - 2 7 5 0 . 0 0 0 0 0 . 1 7 8 6 E - 02 - 0 6 7 2 2 E - 02 0 3 1 2 3 E - 02 0 . 1 0 6 0 E - 02 0 9 2 0 9 E - 0 2 - 0 4 3 0 0 E - 02 - 4 7 . 8 4 0 . 6 7 5 5 E - 0 2

0 . 3 5 2 6 E - 05 - 0 . 8 0 0 2 E - 04 0 1 1 4 8 E - 04 - 0 . 7 9 5 5 E - 06 0 4 7 7 1 E - 0 4 - 0 3 2 7 0 E - 04 - 4 7 . 8 4 0 . 8 0 4 2 E - 0 4 77 2 6 3 7 . 5 0 0 0 - 2 7 5 0 . 0 0 0 0 0 1 6 7 7 E - 02 - 0 5 4 4 5 E - 02 0 2 6 5 6 E - 02 0 1 0 9 4 E - 02 0 7 6 3 3 E - 0 2 - 0 3 3 0 0 E - 02 - 4 7 5 7 0 . 5 4 6 7 E - 0 2

0 3 5 2 2 E - 05 - 0 6 4 8 2 E - 04 0 9 3 4 8 E - 05 0 . 5 1 4 7 E - 07 0 3 8 9 8 E - 0 4 - 0 2 6 1 1 E - 04 - 4 7 . 5 7 0 . 6 5 0 8 E - 0 4 78 2 8 2 5 . 0 0 0 0 - 2 7 5 0 . 0 0 0 0 0 1 4 2 9 E - 02 - 0 4 1 6 7 E - 02 0 2 1 5 8 E - 02 0 1 0 5 6 E - 02 0 5 9 7 7 E - 0 2 - 0 2 3 8 9 E - 0 2 - 4 7' 5 0 0 4 1 8 3 E - 0 2

0 2 9 8 0 E - 05 - 0 4 9 6 1 E - 04 0 7 3 1 9 E - 0 5 0 7 5 8 0 E - 06 0 3 0 0 5 E - 0 4 - 0 1 9 7 5 E - 04 - 4 7 5 0 0 4 9 8 0 E - 0 4 7 9 2 1 0 7 5 . 0 0 0 0 - 2 7 5 0 . 0 0 0 0 0 1 0 9 9 E - 02 - 0 3 1 1 8 E - 02 0 1 6 9 1 E - 02 0 9 4 3 6 E - 03 0 4 5 2 7 E - 0 2 - 0 1 7 3 7 E - 02 - 4 7 7 1 0 3 1 3 2 E - 0 2

0 2 0 9 5 E - 05 - 0 3 7 1 2 E - 04 0 5 6 2 3 E - 05 0 1 1 7 2 E - 05 0 2 2 5 0 E - 0 4 - 0 1 4 7 9 E - 04 - 4 7 7 1 0 3 7 2 9 E - 0 4 8 0 2 1 3 2 5 . 0 0 0 0 - 2 7 5 0 . 0 0 0 0 0 7 9 8 4 E - 03 - 0 2 4 3 8 E - 02 0 1 3 9 6 E - 02 0 8 1 3 1 E - 03 0 3 5 5 4 E - 0 2 - 0 1 3 5 9 E - 02 - 4 8 5 0 0 2 4 5 7 E - 0 2

0 1 1 7 2 E - 05 - 0 2 9 0 3 E - 04 0 4 7 3 1 E - 05 0 1 2 5 9 E - 05 0 1 7 5 7 E - 0 4 - 0 1 1 6 7 E - 04 - 4 8 5 0 0 2 9 2 5 E - 0 4 81 2 1 7 0 0 . 0 0 0 0 - 2 7 5 0 . 0 0 0 0 0 4 5 2 7 E - 03 - 0 1 7 6 1 E - 02 0 1 1 0 0 E - 0 2 0 6 1 5 7 E - 03 0 2 5 6 6 E - 0 2 - 0 1 0 1 4 E - 02 - 5 0 2 1 0 1 7 9 0 E - 0 2

0 1 1 3 8 E - 06 - 0 2 0 9 6 E - 04 0 3 9 6 4 E - 0 5 0 1 0 8 4 E - 05 0 1 2 6 9 E - 0 4 - 0 8 6 1 6 E - 0 5 - 5 0 2 1 0 2 1 3 1 E - 0 4 82 2 2 2 0 0 . 0 0 0 0 - 2 7 5 0 . 0 0 0 0 0 1 8 4 9 E - 03 - 0 1 1 6 8 E - 0 2 0 8 0 6 6 E - 03 0 4 1 2 9 E - 03 0 1 7 0 4 E - 0 2 - 0 7 1 3 0 E - 03 - 5 2 4 5 0 1 2 0 9 E - 0 2

- 0 5 7 1 3 E - 06 - 0 1 3 9 1 E - 04 0 3 1 2 9 E - 05 0 7 8 5 7 E - 06 0 8 4 7 4 E - 0 5 - 0 5 9 1 6 E - 0 5 - 5 2 4 5 0 1 4 3 9 E - 0 4 83 2 2 8 2 5 0 0 0 0 - 2 7 5 0 . 0 0 0 0 0 1 1 9 4 E - 04 - 0 6 6 3 6 E - 03 0 5 5 4 1 E - 0 3 0 2 3 4 8 E - 03 0 9 9 9 9 E - 0 3 - 0 4 3 3 8 E - 0 3 - 5 6 1 1 0 7 1 6 8 E - 0 3

- 0 8 8 2 4 E - 06 - 0 7 9 0 0 E - 05 0 2 3 4 5 E - 0 5 0 4 4 4 2 E - 06 0 4 9 9 8 E - 0 5 - 0 3 5 3 5 E - 0 5 - 5 6 1 1 0 8 5 3 4 E - 0 5 84 2 3 7 0 0 0 0 0 0 - 2 7 5 0 . 0 0 0 0 - 0 7 4 3 5 E - 04 - 0 1 9 4 2 E - 03 0 3 7 6 9 E - 03 0 1 0 1 8 E - 03 0 4 4 8 9 E - 0 3 - 0 1 4 6 4 E - 0 3 - 6 9 6 4 0 2 9 7 7 E - 0 3

- 0 9 2 3 9 E - 06 - 0 2 3 1 2 E - 0 5 0 1 7 6 2 E - 0 5 0 1 2 4 9 E - 06 0 2 1 9 1 E - 0 5 - 0 1 3 5 3 E - 0 5 - 6 9 6 4 0 3 5 4 4 E - 0 5 8 5 1 5 0 0 0 0 0 - 3 2 5 0 0 0 0 0 0 . 2 5 6 7 E - 02 - 0 5 2 7 8 E - 02 0 6 0 0 5 E + 0 0 0 2 5 6 7 E - 02 0 6 0 0 5 E + 0 0 0 2 5 2 0 E - 02 - 8 9 4 9 0 2 9 9 0 E + 0 0

- 0 5 6 2 1 E - 0 5 - 0 6 0 3 2 E - 06 0 . 2 8 5 4 E - 04 - 0 5 6 2 1 E - 05 0 . 2 8 5 5 E - 0 4 - 0 5 6 2 4 E - 0 5 - 8 9 4 9 0 3 4 1 7 E - 0 4 8 6 1 1 5 0 0 0 0 0 - 3 2 5 0 0 0 0 0 0 1 7 5 1 E - 02 - 0 1 1 7 9 E - 01 0 . 6 0 0 6 E + 0 0 0 2 1 7 8 E - 02 0 . 6 0 0 8 E + 0 0 0 1 5 1 9 E - 02 - 8 8 8 7 0 2 9 9 7 E + 0 0

University of Moratuwa D -27

Page 49: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

- 0 . 5 6 5 7 E - 0 5 - 0 . 1 3 4 8 E - 0 5 0 . 2 8 5 6 E - 0 4 - 0 . 5 6 3 3 E - 0 5 0 . 2 8 5 8 E - O 4 - 0 . 5 6 7 1 E - 0 5 - 8 8 . 8 7 0 . 3 4 2 5 E - 0 4 OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 *

INTERFACE STRESSES AT GAUSS POINTS (TIME = 0) ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS

87 4 2 0 0 . 0 0 0 0 - 3 3 9 4 . 3 3 7 6 - 0 . 1 4 8 5 E - 0 1 - 0 . 1 9 1 6 E - 0 2 87 4 2 0 0 . 0 0 0 0 - 3 1 0 5 . 6 6 2 4 - 0 . 1 5 2 9 E - 0 1 - 0 . 1 3 2 5 E - 0 2

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

MENT MAT 1 - COORD 2 - COORD , s-- 1 1 s - 1 2 E-- 1 1 E - 1 2

88 2 2 6 2 . 5 0 0 0 - 3 2 5 0 . 0 0 0 0 0 . 1 2 9 3 E - 02 - 0 . 1 1 5 1 E -- 0 1 0 . 2 3 2 8 E - 0 5 - 0 . 1 3 7 0 E - 03

8 9 2 3 8 7 . 5 0 0 0 - 3 2 5 0 . 0 0 0 0 0 . 6 9 9 7 E - 03 - 0 . 8 1 6 5 E --02 - 0 . 1 1 9 5 E - 06 - 0 . 9 7 2 0 E - 04

90 2 5 1 2 . 5 0 0 0 - 3 2 5 0 . 0 0 0 0 0 . 8 2 2 2 E - 03 - 0 . 6 2 9 7 E - 02 0 . 3 9 8 9 E - 06 - 0 . 7 4 9 7 E - 04

91 2 6 3 7 . 5 0 0 0 - 3 2 5 0 . 0 0 0 0 0 . 8 7 4 3 E - 03 - 0 5 2 3 1 E - 02 0 . 8 5 4 7 E - 06 - 0 6 2 2 7 E - 04

92 2 8 2 5 . 0 0 0 0 - 3 2 5 0 . 0 0 0 0 0 8 1 5 4 E - 03 - 0 4 2 6 5 E - 02 0 8 9 2 4 E - 0 6 - 0 5 0 7 7 E - 04

93 2 1 0 7 5 . 0 0 0 0 - 3 2 5 0 . 0 0 0 0 0 6 8 4 4 E - 03 - 0 3 4 0 9 E - 02 0 6 0 2 1 E - 06 - 0 4 0 5 8 E - 04

94 2 1 3 2 5 . 0 0 0 0 - 3 2 5 0 . 0 0 0 0 0 5 6 2 8 E - 03 - 0 2 7 6 3 E - 02 0 2 7 1 9 E - 06 - 0 3 2 8 9 E - 04

95 2 1 7 0 0 . 0 0 0 0 - 3 2 5 0 . 0 0 0 0 0 4 4 3 1 E - 03 - 0 2 0 1 3 E - 02 0 4 5 4 7 E - 07 - 0 2 3 9 6 E - 04

96 2 2 2 0 0 . 0 0 0 0 - 3 2 5 0 0 0 0 0 0 3 4 7 5 E - 03 - 0 1 3 2 5 E - 0 2 0 1 5 0 7 E - 07 - 0 1 5 7 8 E - 04

97 2 2 8 2 5 0 0 0 0 - 3 2 5 0 0 0 0 0 0 2 7 9 5 E - 03 - 0 7 4 8 2 E - 03 0 9 8 9 2 E - 07 - 0 8 9 0 7 E - 05

98 2 3 7 0 0 0 0 0 0 - 3 2 5 0 0 0 0 0 0 2 2 6 7 E - 03 - 0 2 2 1 5 E - 03 0 . 1 4 9 0 E - 06 - 0 . 2 6 3 6 E - 0 5

99 1 5 0 0 0 0 0 - 3 7 5 0 0 0 0 0 - 0 . 5 2 8 9 E - 02 - 0 . 3 7 2 5 E - 02 - 0 . 5 2 1 4 E - 05 - 0 . 4 2 5 8 E - 06

1 0 0 1 1 5 0 0 0 0 0 - 3 7 5 0 0 0 0 0 - 0 . 1 1 8 0 E - 02 - 0 . 1 1 5 3 E - 0 1 - 0 . 5 0 5 3 E - 05 - 0 . 1 3 1 7 E - 05

OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f

S - 2 2 S - 3 3 1 -STRESS 2 - S T R E S S ANGLE SHEAR E-- 2 2 E- 33 1 -STRAIN 2 - S T R A I N ANGLE SHEAR

0 . 2 9 4 5 E - -02 0 . 2 7 3 7 E - 03 0 1 3 6 6 E - 0 1 - 0 . 9 4 1 8 E - 02 - 4 7 . 05 0 . 1 1 5 4 E - 0 1 0 . 1 2 1 6 E - 04 - 0 . 3 7 4 2 E - 05 0 7 5 9 1 E - 04 - 0 6 1 4 3 E - 04 - 4 7 . 0 5 0 . 1 3 7 3 E - 0 3 0 . 2 5 4 5 E - -02 0 . 3 5 3 7 E - -03 0 9 8 3 9 E - 02 - 0 . 6 5 9 4 E - 0 2 - 4 8 . 2 2 0 - 8 2 1 7 E - 0 2 0 . 1 0 8 7 E - 04 - 0 . 2 1 7 9 E - 05 '. 0 5 4 2 8 E - 04 - 0 4 3 5 3 E - 04 ' - 4 8 . 2 2 0 . 9 7 8 2 E - 04 0 . 2 4 6 9 E - 0 2 0 . 4 8 4 1 E - 03 0 7 9 9 7 E - 0 2 - 0 4 7 0 5 E - 02 - 4 8 7 3 0 - 6 3 5 1 E - 0 2 0 . 1 0 2 0 E - 04 - 0 . 1 6 1 3 E - 05 0 4 3 1 0 E - 04 - 0 3 2 5 0 E - 04 - 4 8 73 0 7 5 6 1 E - 04 0 . 2 2 4 6 E - 0 2 0 5 3 3 4 E - 03 0 6 8 3 5 E - 02 - 0 3 7 1 6 E - 0 2 - 4 8 73 0 5 2 7 5 E - 0 2 0 . 9 0 1 8 E - 0 5 - 0 1 1 7 4 E - 05 0 3 6 3 4 E - 04 - 0 2 6 4 7 E - 04 - 4 8 7 3 0 6 2 8 0 E - 04 0 1 9 6 5 E - 02 0 5 4 6 6 E - 03 0 5 6 9 3 E - 02 - 0 2 9 1 3 E - 02 - 4 8 84 0 4 3 0 3 E - 02 0 7 7 3 7 E - 05'" - 0 7 0 7 3 E - 06 0 2 9 9 3 E - 04 - 0 2 1 3 0 E - 04 - 4 8 84 0 5 1 2 3 E - 04 0 1 7 1 0 E - 02 0 5 2 1 2 E - 03 0 . 4 6 4 5 E - 02 - 0 2 2 5 0 E - 02 - 4 9 2 8 0 3 4 4 7 E - 02 0 6 7 1 0 E - 0 5 - 0 3 6 9 0 E - 06 0 . 2 4 1 8 E - 04 - 0 1 6 8 . 6 E - 04 - 4 9 2 8 0 4 1 0 4 E - 04 0 1 5 4 2 E - 02 0 4 8 0 7 E - 03 0 . 3 8 5 8 E - 02 - 0 1 7 5 3 E - 02 - 5 0 02 0 2 8 0 6 E - 0 2 0 6 1 0 1 E - 0 5 - 0 2 1 7 0 E - 06 0 . 1 9 8 9 E - 04 - 0 1 3 5 2 E - 04 - 5 0 02 0 3 3 4 0 E - 04 0 1 3 2 3 E - 02 0 4 1 1 6 E - 03 0 . 2 9 4 3 E - 02 - 0 1 1 7 8 E - 02 - 5 1 16 0 2 0 6 1 E - 02 0 5 2 8 1 E - 0 5 - 0 1 4 2 4 E - 06 0 . 1 4 9 3 E - 04 - 0 9 6 0 2 E - 0 5 - 5 1 16 0 2 4 5 3 E - 0 4 0 1 0 5 0 E - 0 2 0 3 2 7 7 E - 03 0 . 2 0 7 0 E - 02 - 0 6 7 2 3 E - 0 3 - 5 2 4 2 0 1 3 7 1 E - 02 0 4 1 9 5 E - 0 5 - 0 1 0 3 2 E - 06 0 . 1 0 2 7 E - 04 - 0 6 0 5 5 E - 0 5 - 5 2 4 2 0 1 6 3 2 E - 0 4 0 7 8 3 1 E - 03 0 2 5 1 8 E - 03 0 . 1 3 2 1 E - 02 - 0 2 5 8 1 E - 0 3 - 5 4 3 0 0 7 8 9 4 E - 0 3 0 3 0 9 6 E - 0 5 - 0 6 5 8 8 E - 07 0 . 6 2 9 7 E - 05 - 0 3 1 0 1 E - 0 5 - 5 4 3 0 0 9 3 9 8 E - 0 5 0 5 8 3 2 E - 0 3 0 1 9 8 2 E - 03 0 . 6 8 9 2 E - 03 0 1 2 0 6 E - 0 3 - 6 4 4 2 0 2 8 4 3 E - 03 0 2 2 7 1 E - 0 5 - 0 2 0 1 4 E - 0 7 / <f. 2 9 0 2 E - 0 5 - 0 4 8 2 1 E - 0 6 - 6 4 4 2 0 3 3 8 5 E - 0 5 0 5 2 6 3 E + 0 0 - 0 . 5 2 8 9 E - 02 0 . 5 2 6 3 E + 0 0 - 0 5 3 1 5 E - 0 2 - 8 9 6 0 0 2 6 5 8 E + 0 0 0 . 2 5 1 6 E - 04 - 0 . 5 2 1 4 E - 0 5 0 . 2 5 1 6 E - 04 - 0 . 5 2 1 5 E - 0 5 - 8 9 6 0 0 3 0 3 8 E - 04 0 . 5 2 7 7 E + 0 0 - 0 . 3 0 5 6 E - 02 0 . 5 2 8 0 E + 0 0 - 0 . 1 4 3 1 E - 02 - 8 8 75 0 2 6 4 7 E + 0 0 0 . 2 5 1 7 E - 04 - 0 . 5 1 6 0 E - 05 0 . 2 5 1 8 E - 04 - 0 . 5 0 6 7 E - 0 5 - 8 8 7 5 0 3 0 2 5 E - 04 e * 0 7 / 0 8 / 0 3 *

University of Moratuwa D-28

Page 50: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

INTERFACE STRESSES AT GAUSS POINTS (TIME = 0) ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS

1 0 1 4 2 0 0 . 0 0 0 0 - 3 8 9 4 . 3 3 7 6 - 0 . 1 3 9 1 E - 0 1 0 . 9 8 1 2 E - 0 3 1 0 1 4 2 0 0 . 0 0 0 0 - 3 6 0 5 . 6 6 2 4 - 0 . 1 4 4 8 E - 0 1 - 0 . 1 2 9 8 E - 0 2

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

MENT MAT 1 - COORD 2 - COORD S-• 1 1 s-•12 s - •22 S-•33 1 - S T R E S S 2 - S T R E S S ANGLE SHEAR E-• 1 1 E-•12 E-•22 E- 33 1 -STRAIN 2 - S T R A I N ANGLE SHEAR

1 0 2 2 2 6 2 . 5 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . 2 4 3 1 E - •03 - 0 . 1 1 5 2 E - •01 0 . 1 4 3 4 E - •02 - 0 . 4 0 5 4 E - •03 0 . 1 2 3 7 E - 0 1 - 0 . 1 0 7 0 E - •01 - 4 6 . 4 8 0 . 1 1 5 4 E - 0 1 - 0 . 6 6 6 6 E - •07 - 0 . 1 3 7 2 E - 03 0 . 7 0 2 1 E - •05 - 0 . 3 9 2 7 E - •05 0 . 7 2 1 4 E - 0 4 - 0 . 6 5 1 9 E - •04 - 4 6 . 4 8 0 . 1 3 7 3 E - 0 3

1 0 3 2 3 8 7 . 5 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . 1 5 2 7 E - •02 - 0 . 7 3 4 2 E -•02 0 . 1 8 3 6 E - 02 0 . 4 3 4 6 E - 03 0 . 9 0 2 5 E - 0 2 - 0 . 5 6 6 2 E - •02 - 4 5 . 60 0 . 7 3 4 3 E - 0 2 0 . 4 5 6 8 E - •05 - 0 . 8 7 4 0 E -•04 0 . 6 4 0 9 E - 0 5 - 0 . 1 9 3 4 E - 05 0 . 4 9 2 0 E - 0 4 - 0 . 3 8 2 2 E - •04 - 4 5 . 6 0 0 . 8 7 4 2 E - 0 4

1 0 4 2 5 1 2 . 5 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . 1 0 9 3 E - 0 2 - 0 . 6 1 1 9 E - 02 0 . 1 1 9 2 E - 0 2 0 . 4 6 4 1 E - 03 0 . 7 2 6 2 E - 0 2 - 0 . 4 9 7 6 E - •02 - 4 5 . 2 3 0 . 6 1 1 9 E - 0 2 0 . 3 2 3 5 E - 0 5 - 0 . 7 2 8 4 E - 04 0 . 3 8 2 2 E - 0 5 - 0 - 5 1 0 9 E - 06 0 . 3 9 9 5 E - 0 4 - 0 . 3 2 8 9 E ; 04 - 4 5 . 2 3 0 . 7 2 8 5 E - 0 4

1 0 5 2 6 3 7 . 5 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . 6 5 8 7 E - 03 - 0 . 5 4 1 4 E - 02 0 . 1 0 9 7 E - 0 2 0 . 4 4 6 0 E - 03 0. . 6 2 9 7 E - 0 2 - 0 . 4 5 4 1 E - 0 2 - 4 6 . 1 6 0 . 5 4 1 9 E - 0 2 0 . 1 3 0 0 E - 05 - 0 . 6 4 4 6 E - 04 0 . 3 9 0 8 E - 0 5 0 . 3 3 9 1 E - 07 0 . . 3 4 8 6 E - 0 4 - 0 . 2 9 6 5 E - 04 - 4 6 . 16 0 . 6 4 5 1 E - 0 4

1 0 6 2 8 2 5 . 0 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . 3 1 4 1 E - 03 - 0 . 4 5 4 1 E - 02 0 . 1 3 2 5 E - 02 0 . 4 1 7 5 E - 03 0 . . 5 3 8 8 E - 0 2 - 0 . 375 .0E- 02 - 4 8 . 1 8 0 . 4 5 6 9 E - 0 2 - 0 . 5 7 8 4 E - 06 - 0 . 5 4 0 6 E - 04 0 . 5 4 3 8 E - 0 5 0 . 3 7 0 5 E - 07 / '0 'T2963E-04 - 0 . 2 4 7 7 E - 04 - 4 8 . 18 0 . 5 4 3 9 E - 0 4

1 0 7 2 1 0 7 5 . 0 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . 1 7 7 8 E - 03 - 0 . . 3 5 9 4 E - 02 0 . 1 6 0 7 E - 02 0 . 4 0 0 3 E - 03 0 . . 4 5 5 7 E - 0 2 - 0 . 2 7 7 2 E - 02 - 5 0 . 6 2 0 . 3 6 6 5 E - 0 2 - 0 . 1 5 4 3 E - 05 - 0 . 4 2 7 9 E - 04 0 . 6 9 6 4 E - 0 5 - 0 . 2 1 8 3 E - 06 0 . 2 4 5 2 E - 0 4 - 0 . 1 9 1 0 E - 04 - 5 0 . 62 0 . 4 3 6 3 E - 0 4

1 0 8 2 1 3 2 5 . 0 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . 2 0 1 9 E - 03 - 0 . . 2 8 4 1 E - 02 0 . 1 7 0 2 E - 02 0 . 3 7 8 1 E - 03 0 . . 3 8 9 0 E - 0 2 - 0 . 1 9 8 6 E - 02 - 5 2 . 3 9 0 . 2 9 3 8 E - 0 2 - 0 . . 1 5 1 4 E - 0 5 - 0 . . 3 3 8 2 E - 04 0. . 7 4 1 3 E - 0 5 - 0 . 4 6 5 5 E - 06 0 . . 2 0 4 4 E - 0 4 - 0 . . 1 4 5 4 E - 04 - 5 2 . 3 9 0 . 3 4 9 8 E - 0 4

1 0 9 2 1 7 0 0 . 0 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . . 3 0 7 8 E - 03 - 0 . . 2 0 1 7 E - 02 0 . . 1 5 8 4 E - 0 2 0 . 3 4 7 6 E - 03 0 . 3 0 6 1 E - 0 2 - 0 . . 1 1 6 9 E - 02 - 5 3 . . 7 8 0 . . 2 1 1 5 E - 0 2 - 0 . . 8 3 3 7 E - 0 6 - 0 . . 2 4 0 1 E - 04 0 . . 6 7 6 2 E - 0 5 - 0 . . 5 9 6 8 E - 06 0 . 1 5 5 6 E - 0 4 - 0 . . 9 6 2 6 E - 0 5 - 5 3 . . 7 8 0 . . 2 5 1 8 E - 0 4

1 1 0 2 2 2 0 0 . 0 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . . 4 0 3 0 E - 03 - 0 . . 1 3 0 8 E - 02 0 . . 1 3 1 7 E - 02 0 . . 3 1 2 9 E - 03' 0 . 2 2 4 6 E - 0 2 - 0 . . 5 2 5 6 E - 03 - 5 4 . . 63 0 . . 1 3 8 6 E - 0 2 - 0 . 2 1 6 9 E - 07 - 0 . 1 5 5 7 E - 04 0 . 5 4 2 1 E - 0 5 - 0 . . 5 5 8 4 E - 06 0 . 1 0 9 5 E - 0 4 - 0 . . 5 5 4 9 E - 0 5 - 5 4 . . 63 0 . . 1 6 5 0 E - 0 4

1 1 1 2 2 8 2 5 . 0 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . . 4 4 8 9 E - 03 - 0 . 7 4 0 8 E - 03 0 . . 1 0 2 2 E - 0 2 0 . 2 9 2 1 E - 03 0 . 1 5 3 0 E - 0 2 - 0 . . 5 8 7 1 E - 04 - 5 5 . . 5 8 0 . . 7 9 4 4 E - 0 3 0 . 5 7 2 6 E - 06 - 0 . 8 8 1 9 E - 05 0 . 3 9 8 7 E - 0 5 - 0 . . 3 6 0 7 E - 06 0 . 7 0 0 8 E - 0 5 - 0 . 2 4 4 9 E - 0 5 - 5 5 . . 5 8 0 . 9 4 5 7 E - 0 5

1 1 2 2 3 7 0 0 . 0 0 0 0 - 3 7 5 0 . 0 0 0 0 0 . 4 4 1 1 E - 03 - 0 . 2 2 2 1 E - 03 0 . 8 0 1 0 E - 03 0 . 2 8 7 7 E - 03 0 . 9 0 6 9 E - 0 3 0 . 3 3 5 2 E - 03 - 6 4 . 5 1 0 . 2 8 5 9 E - 0 3 0 . 8 0 4 4 E - 06 - 0 . 2 6 4 4 E - 05 0 . 2 9 4 7 E - 0 5 - 0 . 1 0 8 7 E - 06 0 . 3 5 7 7 E - 0 5 0 . 1 7 3 9 E - 06 - 6 4 . 5 1 0 . 3 4 0 3 E - 0 5

1 1 3 1 5 0 . 0 0 0 0 - 4 2 5 0 . 0 0 0 0 0 . 2 1 5 7 E - 01 - 0 . 2 2 4 6 E - 02 0 . 4 7 0 2 E + 0 0 0 . 2 1 5 7 E - 01 0 . 4 7 0 2 E + 0 0 0 . 2 1 5 6 E - 0 1 - 8 9 . 7 1 0 . 2 2 4 3 E + 0 0 - 0 . 3 6 5 6 E - 05 - 0 . 2 5 6 7 E - 06 0 . 2 1 9 8 E - 04 - 0 . 3 6 5 6 E - 05 0 . 2 1 9 8 E - 0 4 - 0 . 3 6 5 7 E - 0 5 - 8 9 . 7 1 0 . 2 5 6 4 E - 0 4

1 1 4 1 1 5 0 . . 0 0 0 0 - 4 2 5 0 . 0 0 0 0 0 . 1 0 7 8 E - 01 - 0 . 1 1 4 2 E - 02 0 . 4 5 6 0 E + 0 0 0 . 1 4 4 0 E - 01 0 . 4 5 6 0 E + 0 0 0 . 1 0 7 8 E - 0 1 - 8 9 . 8 5 0 . 2 2 2 6 E + 0 0 - 0 . 3 9 6 7 E - 05 - 0 . 1 3 0 5 E - 06 0 . 2 1 4 7 E - 04 - 0 . 3 7 6 0 E - 05 0 . 2 1 4 7 E - 0 4 - 0 . 3 9 6 7 E - 0 5 - 8 9 . 8 5 0 . 2 5 4 4 E - 0 4

OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 * INTERFACE STRESSES AT GAUSS POINTS (TIME = 0)

ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS

University of Moratuwa D-29

Page 51: 6. SUMMARY AND CONCLUSION 6.1. Summary

9

Appendix D

1 1 5 4 2 0 0 . 0 0 0 0 - 4 3 9 4 . 3 3 7 6 - 0 1 1 5 4 2 0 0 . 0 0 0 0 - 4 1 0 5 . 6 6 2 4 - 0

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s *

. 1 3 2 2 E - 0 1 - 0 . 1 0 4 5 E - 0 1

. 1 3 5 7 E - 0 1 - 0 . 1 4 7 2 E - 0 2 A x i - s y m m e t r i c a n a l y s i s o f ' p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

MENT MAT 1 - COORD 2 - COORD s--11 s-- 1 2 s- 2 2 s - 3 3 ' ^ 1 - S T R E S S 2 - S T R E S S ANGLE SHEAR E- 1 1 E- 12 E- 2 2 E- 3 3 1 -STRAIN 2 -STRAIN ANGLE SHEAR

1 1 6 2 2 6 2 . 5 0 0 0 - 4 2 5 0 . 0 0 0 0 0 . 6 0 2 2 E - 02 - 0 . 7 3 6 4 E - 02 0 . 5 6 3 1 E - 0 3 0 . 2 3 0 0 E - 02 0 . 1 1 1 5 E - 0 1 - 0 . 4 5 6 1 E - 02 - 3 4 . 8 3 0 . 7 8 5 3 E - 0 2 0 . 2 5 2 7 E - 04 - 0 . 8 7 6 7 E - 04 - 0 . 7 2 2 5 E - 0 5 0 . 3 1 1 2 E - 05 0 . 5 5 7 7 E - 0 4 - 0 . 3 7 7 3 E - 04 - 3 4 . 83 0 . 9 3 4 9 E - 0 4

1 1 7 2 3 8 7 . 5 0 0 0 - 4 2 5 0 . 0 0 0 0 0 . 2 1 2 2 E - 03 - 0 . 9 5 1 7 E - 02 - 0 . 3 6 3 1 E - 02 0 . 6 0 0 4 E - 03 0 . 7 9 9 9 E - 0 2 - 0 . 1 1 4 2 E - 0 1 - 3 9 . 2 9 0 . 9 7 0 9 E - 0 2 0 . 4 6 1 8 E - 05 - 0 . 1 1 3 3 E - 0 3 - 0 . 1 8 2 6 E - 04 0 . 6 9 2 8 E - 05 0 . 5 0 9 7 E - 0 4 - 0 . 6 4 6 1 E - 04 - 3 9 . 2 9 0 1 1 5 6 E - 0 3

1 1 8 2 5 1 2 . 5 0 0 0 - 4 2 5 0 . 0 0 0 0 - 0 . 9 4 0 1 E - 03 - 0 . 8 3 9 5 E - 02 - 0 . 1 7 9 6 E - 02 0 . 4 6 0 4 E - 03 0 . 7 0 3 8 E - 0 2 - 0 . 9 7 7 4 E - 02 - 4 3 . 5 4 0 . 8 4 0 6 E - 0 2 - 0 2 8 8 7 E - 05 - 0 9 9 9 4 E - 04 - 0 . 7 9 8 1 E - 0 5 0 5 4 5 0 E - 05 0 4 4 6 0 E - 0 4 - 0 5 5 4 7 E - 04 - 4 3 54 0 1 0 0 1 E - 0 3

1 1 9 2 6 3 7 . 5 0 0 0 - 4 2 5 0 . 0 0 0 0 - 0 . 1 0 6 2 E - 02 - 0 6 9 2 3 E - 02 - 0 . 7 6 7 8 E - 04 0 4 6 2 5 E - 03 0 6 3 7 1 E - 0 2 - 0 7 5 1 0 E - 02 - 4 7 . 0 3 0 . 6 9 4 0 E - 0 2 - 0 5 5 1 5 E - 05 - 0 8 2 4 1 E - 04 0 3 4 7 8 E - 0 6 0 3 5 5 7 E - 05 0 3 8 7 3 E - 0 4 - 0 4 3 8 9 E - 04 - 4 7 0 3 0 8 2 6 2 E - 0 4

1 2 0 2 8 2 5 . 0 0 0 0 - 4 2 5 0 . 0 0 0 0 - 0 7 8 1 9 E - 03 - 0 5 1 3 9 E - 0 2 0 1 2 0 9 E - 02 0 4 1 6 2 E - 03 0 5 4 4 8 E - 0 2 - 0 5 0 2 1 E - 0 2 - 5 0 4 8 0 5 2 3 4 E - 0 2 - 0 5 6 5 8 E - 05 - 0 6 1 1 8 E - 04 0 6 1 9 1 E - 05 0 1 4 7 4 E - 05 0 3 1 4 2 E - 0 4 - 0 3 0 8 9 E - 04 - 5 0 4 8 0 6 2 3 1 E - 0 4

1 2 1 2 1 0 7 5 . 0 0 0 0 - 4 2 5 0 . 0 0 0 0 - 0 3 7 6 3 E - 03 - 0 3 5 9 1 E - 02 0 1 9 5 3 E - 02 0 3 8 2 0 E - 03 0 4 5 6 4 E - 0 2 - 0 2 9 8 7 E - 02 - 5 3 9 8 0 3 7 7 5 E - 0 2 - 0 4 5 7 1 E - 05 - 0 4 2 7 5 E - 04 0 9 2 9 3 E - 0 5 - 0 5 8 2 3 E - 07 0 2 4 8 3 E - 0 4 - 0 2 0 1 1 E - 04 - 5 3 98 0 4 4 9 4 E - 0 4

1 2 2 2 1 3 2 5 . 0 0 0 0 - 4 2 5 0 . 0 0 0 0 - 0 4 3 3 7 E - 04 - 0 2 6 4 2 E - 0 2 0 2 0 6 9 E - 02 0 3 4 5 0 E - 03 0 3 8 5 8 E - 0 2 - 0 1 8 3 2 E - 02 - 5 5 90 0 2 8 4 5 E - 0 2 - 0 3 0 8 1 E - 05 - 0 3 1 4 5 E - 04 0 9 4 9 5 E - 0 5 - 0 7 6 9 2 E - 06 0 2 0 1 4 E - 0 4 - 0 1 3 7 3 E - 04 - 5 5 90 0 3 3 8 7 E - 0 4

1 2 3 2 1 7 0 0 . 0 0 0 0 - 4 2 5 0 . 0 0 0 0 0 2 8 7 6 E - 03 - 0 1 8 0 3 E - 0 2 0 1 8 9 6 E - 02 0 3 3 2 8 E - 03 0 3 0 6 6 E - 0 2 - 0 8 8 2 1 E - 03 - 5 7 02 0 1 9 7 4 E - 0 2 - 0 1 2 8 4 E - 05 - 0 2 1 4 6 E - 04 0 8 2 9 1 E - 0 5 - 0 1 0 1 5 E - 05 0 1 5 2 5 E - 0 4 - 0 8 2 4 6 E - 05 - 5 7 02 0 2 3 5 0 E - 0 4

1 2 4 2 2 2 0 0 . 0 0 0 0 - 4 2 5 0 0 0 0 0 0 5 0 2 9 E - 03 - 0 1 1 6 1 E - 0 2 0 1 5 6 8 E - 02 0 3 2 5 8 E - 03 0 2 3 1 3 E - 0 2 - 0 2 4 2 0 E - 03 - 5 7 3 2 0 1 2 7 8 E - 0 2 0 1 4 0 2 E - 06 - 0 1 3 8 2 E - 04 0 6 4 8 1 E - 0 5 - 0 9 1 4 2 E - 06 0 1 0 9 1 E - 0 4 - 0 4 2 9 4 E - 0 5 - 5 7 3 2 0 1 5 2 1 E - 0 4

1 2 5 2 2 8 2 5 0 0 0 0 - 4 2 5 0 0 0 0 0 0 5 9 8 8 E - 03 - 0 6 7 0 2 E - 0 3 0 1 2 4 1 E - 0 2 0 3 4 0 2 E - 03 0 1 6 6 3 E - 0 2 0 1 7 6 9 E - 0 3 - 5 7 8 1 0 7 4 3 2 E - 0 3 0 9 6 8 7 E - 06 - 0 7 9 7 8 E - 0 5 0 4 7 9 4 E - 0 5 - 0 5 7 0 9 E - 06 0 7 3 0 5 E - 0 5 - 0 1 5 4 3 E - 05 - 5 7 8 1 0 8 8 4 8 E - 0 5

1 2 6 2 3 7 0 0 0 0 0 0 - 4 2 5 0 0 0 0 0 0 6 0 6 3 E - 03 - 0 2 0 5 0 E - 0 3 0 1 0 0 8 E - 0 2 0 3 6 8 0 E - 03 0 1 0 9 4 E - 0 2 0 5 2 0 2 E - 03 - 6 7 1 9 0 2 8 6 9 E - 0 3 0 1 2 5 0 E - 05 - 0 2 4 4 0 E - 0 5 0 3 6 3 8 E - 0 5 - 0 1 6 8 9 E - 06 0 4 1 5 1 E - 0 5 0 7 3 6 6 E - 06 - 6 7 1 9 0 3 4 1 5 E - 0 5

1 2 7 1 50 0 0 0 0 - 4 7 5 0 0 0 0 0 - 0 . 2 0 5 1 E - 0 1 - 0 . 2 6 8 8 E - 0 1 0 3 4 6 6 E + 0 0 - 0 2 0 5 1 E - 01 0 3 4 8 6 E + 0 0 - 0 2 2 4 7 E - 0 1 - 8 5 83 0 . 1 8 5 5 E + 0 0 - 0 . 4 0 8 3 E - 05 - 0 . 3 0 7 2 E - 0 5 0 1 6 9 0 E - 04 - 0 4 0 8 3 E - 05 0 1 7 0 1 E - 0 4 - 0 4 1 9 5 E - 05 - 8 5 8 3 0 2 1 2 0 E - 0 4

1 2 8 1 1 5 0 0 0 0 0 - 4 7 5 0 0 0 0 0 - 0 . 1 1 1 1 E - 01 - 0 . 6 3 6 7 E - 0 1 0 4 1 4 6 E + 0 0 - 0 . 7 3 1 8 E - 02 0 4 2 3 9 E + 0 0 - 0 2 0 4 3 E - 0 1 - 8 1 6 7 0 . 2 2 2 2 E + 0 0 - 0 . 4 4 0 8 E - 05 - 0 . 7 2 7 6 E - 0 5 0 1 9 9 2 E - 04 - 0 4 1 9 1 E - 05 0 2 0 4 5 E - 0 4 - 0 4 9 4 1 E - 0 5 - 8 1 67 0 . 2 5 3 9 E - 0 4

OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 * INTERFACE STRESSES AT GAUSS POINTS (TIME = 0)

ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS 1 2 9 4 2 0 0 . 0 0 0 0 - 4 8 9 4 . 3 3 7 6 - 0 . 2 7 6 7 E - 0 2 - 0 . 1 5 8 2 E - 0 2 1 2 9 4 2 0 0 . 0 0 0 0 - 4 6 0 5 . 6 6 2 4 - 0 . 1 0 3 3 E - 0 1 - 0 . 1 0 4 8 E - 0 1

University of Moratuwa D-30

Page 52: 6. SUMMARY AND CONCLUSION 6.1. Summary

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

3 *

«1ENT MAT 1 - COORD 2 - COORD s - 1 1 s - 12 s - 2 2 s - 3 3 E- 11 E- 12 E- 22 E- •33

1 3 0 2 2 6 2 . 5 0 0 0 - 4 7 5 0 . 0 0 0 0 - 0 6 5 6 4 E - 02 - 0 3 1 5 2 E - 0 1 - 0 3 5 0 6 E - 0 1 - 0 9 9 6 8 E - 02 0 2 2 3 5 E - 04 - 0 3 7 5 3 E - 03 - 0 1 4 7 3 E - 03 0 2 0 8 8 E - 0 5

1 3 1 2 3 8 7 . 5 0 0 0 - 4 7 5 0 . 0 0 0 0 - 0 3 2 2 6 E - 02 - 0 1 6 5 9 E - 0 1 - 0 7 7 8 2 E - 02 - 0 1 8 3 1 E - 02 - 0 3 9 1 8 E - 05 - 0 1 9 7 5 E - 03 - 0 3 1 0 4 E - 04 0 4 3 8 8 E - 0 5

1 3 2 2 5 1 2 . 5 0 0 0 - 4 7 5 0 . 0 0 0 0 - 0 1 9 1 7 E - 02 - 0 1 0 2 2 E - 0 1 - 0 5 2 5 8 E - 03 - 0 2 2 5 0 E - 03

- 0 8 2 3 2 E - 05 - 0 1 2 1 7 E - 03 0 4 5 4 7 E - 07 0 1 8 3 6 E - 0 5

1 3 3 2 6 3 7 . 5 0 0 0 - 4 7 5 0 . 0 0 0 0 - 0 1 1 7 1 E - 02 - 0 6 9 8 4 E - 02 0 1 7 6 9 E - 02 0 1 2 8 5 E - 03

- 0 7 8 3 6 E - 05 - 0 8 3 1 4 E - 04 0 9 6 6 4 E - 0 5 - 0 9 9 3 2 E - 07

1 3 4 2 8 2 5 . 0 0 0 0 - 4 7 5 0 . 0 0 0 0 - 0 4 5 4 7 E - 03 - 0 4 4 9 0 E - 02 0 2 6 0 6 E - 02 0 2 2 1 0 E - 03

- 0 5 5 3 0 E - 05 - 0 5 3 4 6 E - 04 0 1 2 6 9 E - 04 - 0 1 5 0 8 E - 05

1 3 5 2 1 0 7 5 . 0 0 0 0 - 4 7 5 0 . 0 0 0 0 0 7 9 5 1 E - 04 - 0 2 9 0 3 E - 02 0 2 7 5 4 E - 0 2 0 2 5 2 1 E - 03 - 0 3 2 0 0 E - 05 - 0 3 4 5 5 E - 04 0 1 2 7 2 E - 04 - 0 2 1 7 3 E - 05

1 3 6 2 1 3 2 5 . 0 0 0 0 - 4 7 5 0 . 0 0 0 0 0 3 7 1 9 E - 03 - 0 2 1 0 9 E - 02 0 2 5 3 2 E - 02 0 2 6 1 5 E - 03 - 0 1 5 5 4 E - 05 - 0 2 5 1 1 E - 04 0 1 1 3 0 E - 04 - 0 2 2 1 1 E - 05

1 3 7 2 1 7 0 0 . 0 0 0 0 - 4 7 5 0 . 0 0 0 0 0 5 9 8 2 E - 03 - 0 1 4 6 2 E - 0 2 0 2 1 7 4 E - 02 0 3 0 3 9 E - 03 - 0 1 0 0 9 E - 06 - 0 1 7 4 1 E - 04 0 9 2 7 7 E - 0 5 - 0 1 8 5 3 E - 0 5

1 3 8 2 2 2 0 0 . 0 0 0 0 - 4 7 5 0 . 0 0 0 0 0 7 2 2 3 E - 03 - 0 9 7 5 9 E - 03 0 1 7 6 1 E - 02 0 3 4 0 2 E - 03 0 9 3 7 9 E - 06 - 0 1 1 6 2 E - 04 0 7 1 2 1 E - 0 5 - 0 1 3 3 6 E - 05

1 3 9 2 2 8 2 5 . 0 0 0 0 - 4 7 5 0 . 0 0 0 0 0 7 6 2 6 E - 03 - 0 5 8 2 8 E - 0 3 0 1 4 2 3 E - 02 0 3 8 6 4 E - 03 0 1 4 7 8 E - 05 - 0 6 9 3 8 E - 0 5 0 5 4 0 7 E - 0 5 - 0 7 6 1 6 E - 0 6

1 4 0 2 3 7 0 0 . 0 0 0 0 - 4 7 5 0 . 0 0 0 0 0 7 4 3 1 E - 03 - 0 1 8 2 4 E - 03 0 1 1 9 2 E - 02 0 4 3 8 4 E - 03

0 1 5 9 7 E - 05 - 0 2 1 7 1 E - 0 5 0 4 2 7 0 E - 0 5 - 0 2 1 5 9 E - 06

1 4 1 2 50 . 0 0 0 0 - 5 2 5 0 . 0 0 0 0 0 9 8 5 4 E - 02 - 0 1 7 4 8 E - 02 0 6 0 9 5 E - 0 1 0 9 8 5 4 E - 02

- 0 3 7 3 7 E - 04 - 0 2 0 8 1 E - 04 0 2 6 6 8 E - 0 3 - 0 3 7 3 7 E - 04

1 4 2 2 1 5 0 . 0 0 0 0 - 5 2 5 0 . 0 0 0 0 0 1 0 7 7 E - 01 - 0 4 3 2 4 E - 0 2 0 6 4 4 0 E - 0 1 0 1 0 8 8 E - 0 1 - 0 3 8 3 4 E - 04 - 0 5 1 4 7 E - 04 0 2 8 0 9 E - 0 3 - 0 3 7 6 9 E - 04

OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 * INTERFACE STRESSES AT GAUSS POINTS (TIME = 0)

ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS 1 4 3 5 2 0 0 . 0 0 0 0 - 5 3 9 4 . 3 3 7 6 - 0 . 1 1 1 5 E - 0 1 0 . 1 1 8 9 E - 0 2 1 4 3 5 2 0 0 . 0 0 0 0 - 5 1 0 5 . 6 6 2 4 - 0 . 1 6 3 7 0 . 1 5 4 6 E - 0 2

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

1 - STRESS 2 - S T R E S S ANGLE SHEAR 1 -STRAIN 2 -STRAIN ANGLE SHEAR

0 1 3 7 8 E - 0 1 - 0 5 5 4 1 E - 0 1 - 3 2 84 0 3 4 5 9 E - 0 1 0 1 4 3 4 E - 03 - 0 2 6 8 4 E - 03 - 3 2 84 0 4 1 1 8 E - 0 3 0 1 1 2 4 E - 0 1 - 0 2 2 2 5 E - 01 - 4 1 0 9 0 1 6 7 4 E - 0 1 0 8 2 1 8 E - 04 - 0 1 1 7 1 E - 03 - 4 1 0 9 0 1 9 9 3 E - 0 3 0 9 0 2 3 E - 02 - 0 1 1 4 7 E - 0 1 - 4 6 9 5 0 1 0 2 4 E - 0 1 0 5 6 8 8 E - 04 - 0 6 5 0 7 E - 04 - 4 6 9 5 0 1 2 2 0 E - 03 0 7 4 3 5 E - 02 - 0 6 8 3 8 E - 02 - 5 0 94 0 7 1 3 7 E - 02

0 4 3 3 9 E - 04 - 0 4 1 5 7 E - 04 - 5 0 94 0 8 4 9 6 E - 04 0 5 8 2 0 E - 02 - 0 3 6 6 9 E - 02 - 5 4 4 1 0 4 7 4 4 E - 02

0 3 1 8 2 E - 04 - 0 2 4 6 6 E - 04 - 5 4 4 1 0 5 6 4 8 E - 04 0 4 6 1 3 E - 0 2 - 0 1 7 7 9 E - 02 - 5 7 3 7 0 3 1 9 6 E - 0 2 0 2 3 7 8 E - 04 - 0 1 4 2 6 E - 04 - 5 7 3 7 0 3 8 0 5 E - 04 0 3 8 2 1 E - 02 - 0 9 1 7 8 E - 03 - 5 8 5 6 0 2 3 7 0 E - 02 0 1 8 9 8 E - 04 - 0 9 2 3 1 E - 05 - 5 8 5 6 0 2 8 2 1 E - 04 0 3 0 4 7 E - 02 - 0 2 7 5 0 E - 03 - 5 9 1 6 0 1 6 6 1 E - 02 0 1 4 4 7 E - 04 - 0 5 2 9 9 E - 05 - 5 9 1 6 0 1 9 7 7 E - 04 0 2 3 4 7 E - 02 0 1 3 6 1 E - 03 - 5 9 0 1 0 1 1 0 6 E - 02 0 1 0 6 1 E - 04 - 0 2 5 5 1 E - 05 - 5 9 0 1 0 1 3 1 6 E - 04 0 1 7 6 3 E - 02 0 4 2 2 9 E - 03 - 5 9 7 6 0 6 6 9 8 E - 0 3 0 7 4 2 9 E - 05 - 0 5 4 4 5 E - 06 - 5 9 7 6 0 7 9 7 4 E - 0 5 0 1 2 5 7 E - 02 0 6 7 8 3 E - 03 - 7 0 4 5 0 2 8 9 2 E - 03

0 4 6 5 5 E - 0 5 0 1 2 1 2 E - 05 - 7 0 4 5 0 3 4 4 3 E - 0 5 0 6 1 0 1 E - 0 1 0 9 7 9 5 E - 02 - 8 8 04 0 2 5 6 1 E - 0 1

0 2 6 7 1 E - 03 - 0 3 7 7 2 E - 04 - 8 8 04 0 3 0 4 9 E - 0 3 0 6 4 7 5 E - 0 1 0 1 0 4 2 E - 0 1 - 8 5 4 2 0 2 7 1 6 E - 0 1 0 2 8 3 0 E - 03 - 0 4 0 4 0 E - 04 - 8 5 4 2 0 3 2 3 4 E - 03

University of Moratuwa D-31

Appendix D

Page 53: 6. SUMMARY AND CONCLUSION 6.1. Summary

t

AXISYMMETRIC STRESSES

3 *

1ENT MAT 1 - COORD 2 - COORD s - 11 s - 12 s - 22 s - 3 3 E- 11 E- 12 E- 22 E- 3 3

1 4 4 2 2 6 2 . 5 0 0 0 - 5 2 5 0 . 0 0 0 0 0 9 2 1 7 E - 02 - 0 2 9 7 5 E - 0 1 0 4 5 5 7 E - 0 1 0 6 7 2 2 E - 02

- 0 1 8 3 6 E - 04 - 0 3 5 4 2 E - 03 0 1 9 8 0 E - 0 3 - 0 3 3 2 1 E - 04

1 4 5 2 3 8 7 . 5 0 0 0 - 5 2 5 0 . 0 0 0 0 0 5 0 5 2 E - 02 - 0 1 4 9 5 E - 0 1 0 1 7 9 3 E - 0 1 0 4 7 2 1 E - 0 3 0 2 1 4 7 E - 05 - 0 1 7 8 0 E - 0 3 0 7 8 8 2 E - 04 - 0 2 5 1 1 E - 04

1 4 6 2 5 1 2 . 5 0 0 0 - 5 2 5 0 . 0 0 0 0 0 3 5 7 0 E - 02 - 0 8 9 6 4 E - 0 2 0 9 8 1 8 E - 02 - 0 4 3 6 5 E - 03

0 5 8 3 2 E - 0 5 - 0 1 0 6 7 E - 0 3 0 4 3 0 2 E - 04 - 0 1 8 0 2 E - 04

1 4 7 2 6 3 7 . 5 0 0 0 - 5 2 5 0 . 0 0 0 0 0 2 7 9 5 E - 02 - 0 6 0 4 1 E - 02 0 6 6 7 0 E - 02 - 0 4 3 3 9 E - 03

0 5 8 8 6 E - 05 - 0 7 1 9 1 E - 04 0 2 8 9 5 E - 04 - 0 1 3 3 3 E - 04

1 4 8 2 8 2 5 . 0 0 0 0 - 5 2 5 0 . 0 0 0 0 0 2 0 9 7 E - 02 - 0 3 8 5 0 E - 0 2 0 4 8 0 0 E - 02 - 0 2 0 2 2 E - 0 3 0 4 5 1 4 E - 05 - 0 4 5 8 4 E - 04 0 2 0 6 0 E - 04 - 0 9 1 7 4 E - 0 5

1 4 9 2 1 0 7 5 . 0 0 0 0 - 5 2 5 0 . 0 0 0 0 0 1 5 9 6 E - 02 - 0 2 4 9 7 E - 0 2 0 3 5 3 1 E - 02 - 0 3 4 6 8 E - 0 5 0 3 3 9 9 E - 05 - 0 2 9 7 3 E - 04 0 1 4 9 2 E - 04 - 0 6 1 2 1 E - 0 5

1 5 0 2 1 3 2 5 . 0 0 0 0 - 5 2 5 0 . 0 0 0 0 0 1 3 2 6 E - 02 - 0 1 8 2 8 E - 02 0 2 9 0 5 E - 02 0 1 3 5 9 E - 03 0 2 6 9 6 E - 05 - 0 2 1 7 6 E - 04 0 1 2 0 9 E - 04 - 0 4 3 9 1 E - 0 5

1 5 1 2 1 7 0 0 . 0 0 0 0 - 5 2 5 0 . 0 0 0 0 0 1 1 1 7 E - 02 - 0 1 2 7 8 E - 0 2 0 2 3 7 3 E - 0 2 0 2 6 3 0 E - 03 0 2 1 8 2 E - 05 - 0 ' 1 5 2 2 E - 04 0 9 6 5 8 E - 0 5 - 0 2 9 0 3 E - 0 5

1 5 2 2 2 2 0 0 . 0 0 0 0 - 5 2 5 0 . 0 0 0 0 0 9 9 4 7 E - 03 - 0 8 6 2 1 E - 0 3 0 1 9 0 2 E - 02 0 3 5 4 2 E - 03 0 2 0 5 0 E - 05 - 0 1 0 2 6 E - 04 0 7 4 5 3 E - 0 5 - 0 1 7 6 2 E - 0 5

1 5 3 2 2 8 2 5 . 0 0 0 0 - 5 2 5 0 . 0 0 0 0 0 9 2 1 7 E - 03 - 0 5 1 9 7 E - 0 3 0 1 5 7 3 E - 02 0 4 2 9 6 E - 03

0 2 0 0 5 E - 05 - 0 6 1 8 6 E - 0 5 0 5 8 8 4 E - 0 5 - 0 9 2 4 8 E - 06

1 5 4 2 3 7 0 0 . 0 0 0 0 - 5 2 5 0 . 0 0 0 0 0 8 5 4 4 E - 03 - 0 1 6 3 8 E - 03 0 1 3 5 5 E - 02 0 4 9 9 5 E - 03

0 1 8 6 1 E - 0 5 - 0 1 9 4 9 E - 0 5 0 4 8 4 0 E - 0 5 - 0 2 5 1 5 E - 06

1 5 5 2 50 . 0 0 0 0 - 5 7 5 0 . 0 0 0 0 - 0 4 7 8 1 E - 02 - 0 2 3 4 1 E - 02 0 2 1 3 1 E - 0 1 - 0 4 7 8 1 E - 02

- 0 4 2 4 4 E - 04 - 0 2 7 8 7 E - 0.4 0 1 1 2 9 E - 03 - 0 4 2 4 4 E - 04

1 5 6 2 1 5 0 . 0 0 0 0 - 5 7 5 0 . 0 0 0 0 - 0 5 4 6 2 E - 02 - 0 5 8 9 3 E - 02 0 1 7 0 1 E - 0 1 - 0 5 8 0 9 E - 02 - 0 3 9 3 5 E - 04 - 0 7 0 1 5 E - 04 0 9 4 4 2 E - 04 - 0 4 1 4 1 E - 04

OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 * INTERFACE STRESSES AT GAUSS POINTS (TIME = 0)

ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS 1 5 7 5 2 0 0 . 0 0 0 0 - 5 8 9 4 . 3 3 7 6 - 0 . 2 0 4 0 E - 0 2 0 . 6 3 0 0 E - 0 3 1 5 7 5 2 0 0 . 0 0 0 0 - 5 6 0 5 . 6 6 2 4 0 . 3 2 1 8 E - 0 1 0 . 9 4 3 8 E - 0 3

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

1 - S T R E S S 2 - S T R E S S ANGLE SHEAR 1-STRAIN 2 - S T R A I N ANGLE SHEAR

0 6 2 2 6 E - 0 1 - 0 7 4 7 0 E - 02 - 6 0 7 1 0 3 4 8 6 E - 0 1

0 2 9 7 4 E - 03 - 0 1 1 7 7 E - 03 - 6 0 7 1 0 4 1 5 0 E - 0 3

0 2 7 7 7 E - 0 1 - 0 4 . 7 9 0 E - 02 - 5 6 6 5 0 1 6 2 8 E - 0 1

0 1 3 7 4 E - 0 3 - 0 5!643E- 04 - 5 6 6 5 0 1 9 3 8 E - 0 3

0 1 6 1 9 E - 0 1 - 0 2 . 7 9 9 E - 02 - 5 4 6 1 0 9 4 9 3 E - 02

0 8 0 9 3 E - 04 - 0 3 '208E- 04 - 5 4 6 1 0 1 1 3 0 E - 0 3 0 1 1 0 8 E - 0 1 - 0 1 6 1 1 E - 02 - 5 3 8 9 0 6 3 4 4 E - 02

0 5 5 1 8 E - 04 - 0 2 0 3 4 E - 04 - 5 3 8 9 0 7 5 5 2 E - 04

0 7 5 2 9 E - 02 - 0 6 3 1 8 E - 0 3 - 5 4 6 7 0 4 0 8 1 E - 02

0 3 6 8 5 E - 04 - 0 1 1 7 3 E - 04 - 5 4 6 7 0 4 8 5 8 E - 04 0 5 2 4 2 E - 02 - 0 1 1 4 6 E - 0 3 - 5 5 5 9 0 2 6 7 8 E - 02 0 2 5 1 0 E - 04 - 0 6 7 8 2 E - 0 5 - 5 5 5 9 0 3 1 8 8 E - 04 0 4 1 0 7 E - 02 0 1 2 4 8 E - 03 - 5 6 6 8 0 1 9 9 1 E - 02 0 1 9 2 5 E - 04 - 0 4 4 5 7 E - 0 5 -56 - 68 0 2 3 7 0 E - 04 0 3 1 7 0 E - 02 0 3 2 1 2 E - 03 - 5 8 0 8 0 1 4 2 4 E - 02 0 1 4 4 0 E - 04 - 0 2 5 5 7 E - 0 5 - 5 8 0 8 0 1 6 9 5 E - 04 0 2 4 2 3 E - 02 0 4 7 4 3 E - 03 - 5 8 8 8 0 9 7 4 2 E - 0 3 0 1 0 5 5 E - 04 - 0 1 0 4 7 E - 0 5 - 5 8 8 8 0 1 1 6 0 E - 04

0 1 8 6 1 E - 02 0 6 3 4 2 E - 03 - 6 1 04 0 6 1 3 3 E - 0 3

0 7 5 9 5 E - 0 5 0 2 9 3 3 E - 06 - 6 1 04 0 7 3 0 2 E - 0 5

0 1 4 0 4 E - 0 2 0 8 0 5 6 E - 0 3 - 7 3 4 0 0 2 9 9 1 E - 03

0 5 1 3 1 E - 05 0 1 5 7 0 E - 0 5 - 7 3 4 0 0 3 5 6 0 E - 0 5 0 2 1 5 2 E - 0 1 - 0 4 9 9 0 E - 02 - 8 4 91 0 1 3 2 5 E - 0 1

0 1 1 4 1 E - 03 - 0 4 3 6 8 E - 04 - 8 4 9 1 0 1 5 7 8 E - 03 0 1 8 4 6 E - 0 1 - 0 6 9 1 3 E - 02 - 7 6 16 0 1 2 6 9 E - 0 1 0 1 0 3 1 E - 03 - 0 4 7 9 8 E - 04 - 7 6 16 0 1 5 1 0 E - 0 3

University of Moratuwa D-32

Appendix D

Page 54: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

ELEMENT MAT 1 - COORD 2 - COORD S- 1 1 s - 12 s - 2 2 s - 3 3 1 - S T R E S S 2 - S T R E S S ANGLE SHEAR E- 1 1 E- 12 E- 22 E- 3 3 1 -STRAIN 2 - S T R A I N ANGLE SHEAR

3 * 1 5 8 2 2 6 2 . 5 0 0 0 - 5 7 5 0 . 0 0 0 0 - 0 . 1 4 9 2 E - 02 - 0 . 3 1 9 7 E - 02 0 . 1 5 7 8 E - 0 1 - 0 . 4 0 2 7 E - 02 0 1 6 3 5 E - 0 1 - 0 2 0 6 5 E - 02 - 7 9 . 8 4 0 . 9 2 0 7 E - 02

- 0 . 2 1 0 9 E - 04 - 0 . 3 8 0 6 E - 04 0 . 8 1 6 9 E - 04 - 0 . 3 6 1 8 E - 04 0 8 5 1 0 E - 04 - 0 2 4 5 0 E - 04 - 7 9 . 84 0 . 1 0 9 6 E - 03 1 5 9 2 3 8 7 . 5 0 0 0 - 5 7 5 0 . 0 0 0 0 0 . 2 6 6 5 E - 02 - 0 . 6 5 8 2 E - 02 0 . 1 5 2 4 E - 0 1 - 0 . 1 5 0 9 E - 02 0 1 8 0 5 E - 0 1 - 0 1 5 0 4 E - 03 - 6 6 . 8 4 0 . 9 1 0 2 E - 02

- 0 . 3 6 5 3 E - 0 5 - 0 . 7 8 3 6 E - 04 0 . 7 1 1 9 E - 04 - 0 2 8 5 0 E - 04 0 8 7 9 4 E - 04 - 0 2 0 4 1 E - 04 - 6 6 . 8 4 0 . 1 0 8 4 E - 0 3 1 6 0 2 5 1 2 . 5 0 0 0 - 5 7 5 0 . 0 0 0 0 0 - 3 1 8 7 E - 02 - 0 . 6 1 1 5 E - 02 0 . 1 1 3 3 E - 0 1 - 0 9 1 7 6 E - 03 0 1 4 6 1 E - 0 1 - 0 8 7 2 4 E - 04 - 6 1 . 8 4 0 . 7 3 4 8 E - 02

0 . 2 7 7 3 E - 05 - 0 7 2 7 9 E - 04 0 . 5 1 2 7 E - 04 - 0 2 1 6 6 E - 04 0 7 0 7 6 E - 04 - 0 1 6 7 1 E - 04 - 6 1 . 8 4 0 . 8 7 4 7 E - 04 1 6 1 2 6 3 7 . 5 0 0 0 - 5 7 5 0 . 0 0 0 0 0 . 3 0 2 0 E - 02 - 0 5 0 8 1 E - 02 0 . 8 4 2 3 E - 02 - 0 6 3 3 3 E - 03 0 1 1 4 8 E - 0 1 - 0 3 3 8 6 E - 04 - 5 9 . 0 0 0 . 5 7 5 5 E - 02

0 5 1 0 5 E - 05 - 0 6 0 4 9 E - 04 0 3 7 2 7 E - 04 - 0 1 6 6 4 E - 04 0 5 5 4 4 E - 04 - 0 1 3 0 7 E - 04 - 5 9 0 0 0 6 8 5 1 E - 04 1 6 2 2 8 2 5 . 0 0 0 0 - 5 7 5 0 . 0 0 0 0 0 2 5 5 7 E - 02 - 0 3 7 5 5 E - 02 0 6 0 2 9 E - 02 - 0 3 0 1 5 E - 03 0 8 4 3 0 E - 02 0 1 5 6 1 E - 0 3 - 5 7 4 0 0 4 1 3 7 E - 02

0 5 3 5 9 E - 0 5 - 0 4 4 7 1 E - 04 0 2 6 0 2 E - 04 - 0 1 1 6 6 E - 04 0 4 0 3 2 E - 04 - 0 8 9 3 4 E - 0 5 - 5 7 4 0 0 4 9 2 5 E - 04 1 6 3 2 1 0 7 5 . 0 0 0 0 - 5 7 5 0 . 0 0 0 0 0 2 0 7 1 E - 02 - 0 2 5 8 7 E - 02 0 4 1 8 9 E - 02 - 0 6 1 8 7 E - 04 0 5 9 2 6 E - 02 0 3 3 5 0 E - 0 3 - 5 6 1 3 0 2 7 9 5 E - 02

0 4 9 5 0 E - 05 - 0 3 0 8 0 E - 04 0 1 7 5 6 E - 04 - 0 7 7 4 8 E - 0 5 0 2 7 8 9 E - 04 - 0 5 3 8 6 E - 0 5 - 5 6 1 3 0 3 3 2 8 E - 04 1 6 4 2 1 3 2 5 . 0 0 0 0 - 5 7 5 0 . 0 0 0 0 0 1 7 2 1 E - 02 - 0 1 8 8 4 E - 0 2 0 3 2 6 8 E - 0 2 0 1 0 8 0 E - 03 0 . 4 5 3 1 E - 02 0 4 5 7 6 E - 0 3 - 5 6 1 6 0 2 0 3 7 E - 02

0 4 1 7 5 E - 05 - 0 2 2 4 3 E - 04 0 1 3 3 9 E - 04 - 0 5 4 2 5 E - 05 0 . 2 0 9 0 E - 04 - 0 3 3 4 4 E - 0 5 - 5 6 16 0 2 4 2 5 E - 04 1 6 5 2 1 7 0 0 . 0 0 0 0 - 5 7 5 0 . 0 0 0 0 0 1 3 8 8 E - 02 - 0 1 2 8 2 E - 0 2 0 2 5 8 2 E - 02 0 2 6 8 2 E - 03 0 . 3 3 9 9 E - 0 2 0 5 7 0 8 E - 0 3 - 5 7 4 9 0 1 4 1 4 E - 02

0 3 2 1 5 E - 05 - 0 1 5 2 6 E - 04 0 1 0 3 2 E - 04 - 0 3 4 4 8 E - 0 5 0 . 1 5 1 9 E - 04 - 0 1 6 4 7 E - 0 5 - 5 7 4 9 0 1 6 8 3 E - 04 1 6 6 2 2 2 0 0 . 0 0 0 0 - 5 7 5 0 . 0 0 0 0 0 1 1 6 6 E - 02 - 0 8 3 0 6 E - 0 3 0 2 0 4 5 E - 02 0 3 8 3 3 E - 03 0 . 2 5 4 5 E - 02 0 6 6 5 5 E - 03 - 5 8 9 5 0 9 3 9 8 E - 03

0 2 6 6 0 E - 05 - 0 9 8 8 8 E - 0 5 0 7 8 9 4 E - 05 - 0 1 9 9 7 E - 05 0 . 1 0 8 7 E - 04 - 0 3 1 7 1 E - 0 6 - 5 8 9 5 0 1 1 1 9 E - 04 1 6 7 2 2 8 2 5 . 0 0 0 0 - 5 7 5 0 . 0 0 0 0 0 1 0 3 1 E - 02 - 0 4 8 7 3 E - 0 3 0 1 7 1 4 E - 02 0 4 7 3 4 E - 03 0 . 1 9 6 7 E - 02 0 7 7 7 6 E - 03 - 6 2 5 0 0 5 9 4 8 E - 03

0 2 3 0 7 E - 05 - 0 5 8 0 1 E - 0 5 0 6 3 6 9 E - 0 5 - 0 1 0 1 4 E - 0 5 0 . 7 8 7 9 E - 0 5 0 7 9 7 3 E - 06 - 6 2 5 0 0 7 0 8 1 E - 05 1 6 8 2 3 7 0 0 0 0 0 0 - 5 7 5 0 0 0 0 0 0 9 3 3 6 E - 03 - 0 1 5 1 6 E - 03 0 1 5 0 3 E - 0 2 0 5 5 2 6 E - 03 0 . 1 5 4 1 E - 02 0 8 9 5 8 E - 03 - 7 5 9 9 0 3 2 2 8 E - 03

0 1 9 9 8 E - 05 - 0 1 8 0 5 E - 0 5 0 5 3 9 0 E - 0 5 - 0 2 7 0 0 E - 06 0 . 5 6 1 5 E - 05 0 1 7 7 3 E - 0 5 - 7 5 9 9 0 3 8 4 2 E - 0 5 1 6 9 2 50 0 0 0 0 - 6 2 5 0 0 0 0 0 - 0 7 8 5 9 E - 03 - 0 6 1 5 9 E - 04 0 7 3 1 3 E - 02 - 0 7 8 5 9 E - 03 0 . 7 3 1 4 E - 02 - 0 7 8 6 3 E - 03 - 8 9 5 6 0 4 0 5 0 E - 02

- 0 . 1 1 5 1 E - 04 - 0 . 7 3 3 3 E - 0 6 0 3 6 7 0 E - 04 - 0 1 1 5 1 E - 04 0 . 3 6 7 0 E - 04 - 0 . 1 1 5 2 E - 04 - 8 9 5 6 0 4 8 2 2 E - 04 1 7 0 2 1 5 0 0 0 0 0 - 6 2 5 0 0 0 0 0 0 3 1 8 3 E - 03 0 . 2 1 3 4 E - 03 0 8 2 6 3 E - 02 - 0 4 5 2 3 E - 04 0 . 8 2 6 9 E - 02 0 3 1 2 6 E - 0 3 88 4 6 0 3 9 7 8 E - 02

- 0 . 8 2 6 7 E - 05 0 . 2 5 4 0 E - 0 5 0 3 9 0 2 E - 04 - 0 1 0 4 3 E - 04 0 . 3 9 0 6 E - 04 - 0 . 8 3 0 1 E - 0 5 8 8 . 4 6 0 4 7 3 6 E - 04 OFEAP * f i n i t e m o d e l l i n g o f p i l e s i " A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 *

• /•

INTERFACE STRESSES AT GAUSS POINTS (TIME = 0) ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS

1 7 1 5 2 0 0 . 0 0 0 0 - 6 3 9 4 . 3 3 7 6 - 0 1 7 1 5 2 0 0 . 0 0 0 0 - 6 1 0 5 . 6 6 2 4 - 0 FEAP * f i n i t e m o d e l l i n g o f p i l e s *

AXISYMMETRIC STRESSES

1 4 9 6 E - 0 2 0 . 2 3 8 5 E - 0 3 1 1 0 6 E - 0 1 0 . 4 4 1 0 E - 0 3 A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

ELEMENT MAT 1-COORD 2-COORD S - l l E - l l

S - 1 2 E - 1 2

S - 2 2 E - 2 2

S - 3 3 E - 3 3

1 - S T R E S S 1 -STRAIN

2 - S T R E S S 2 - STRAIN

ANGLE ANGLE

SHEAR SHEAR

University of Moratuwa D-33

Page 55: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

1 7 2 2 2 6 2 . 5 0 0 0 - 6 2 5 0 . 0 0 0 0 - 0 . 2 7 5 8 E - -03 - 0 . 1 1 2 7 E - -.02 0 . 8 2 0 6 E - - 0 2 - 0 . 1 4 5 4 E - 03 0 . 8 3 5 3 E - 02 - 0 . 4 2 3 0 E - 0 3 - 8 2 . 5 6 0 . 4 3 8 8 E - 02 - 0 . 1 0 9 1 E --04 - 0 . 1 3 4 2 E - •04 0 . 3 9 5 8 E - -04 - 0 . 1 0 1 3 E - 04 0 . 4 0 4 5 E - 04 - 0 . 1 1 7 9 E - 04 - 8 2 . 5 6 0 . 5 2 2 4 E - 04

1 7 3 2 3 8 7 . 5 0 0 0 - 6 2 5 0 . 0 0 0 0 - 0 . 7 2 3 4 E - -03 - 0 . 1 2 0 9 E - •02 0 . 7 6 4 1 E - - 0 2 - 0 . 4 8 6 8 E - 03 0 . 7 8 1 2 E - 02 - 0 . 8 9 4 6 E - 03 - 8 1 . 94 0 . 4 3 5 3 E - 02 - 0 . 1 1 9 6 E - •04 - 0 . 1 4 3 9 E - •04 0 . 3 7 8 2 E - •04 - 0 . 1 0 5 5 E - 04 0 . 3 8 8 4 E - 04 - 0 . 1 2 9 8 E - 04 - 8 1 . 94 0 . 5 1 8 2 E - 04

1 7 4 2 5 1 2 . 5 0 0 0 - 6 2 5 0 . 0 0 0 0 0 . 7 3 9 6 E - •04 - 0 . 1 9 4 9 E - 0 2 0 . 7 4 5 5 E - •02 - 0 . 3 0 8 6 E - 03 0 . 7 9 3 8 E - 0 2 - 0 . 4 0 9 1 E - 03 - 7 6 . 0 8 0 . 4 1 7 3 E - 02 - 0 . 8 1 5 5 E - •05 - 0 . 2 3 2 0 E - •04 0; - 3 5 7 8 E - •04 - 0 . 1 0 4 3 E - 04 0 . 3 8 6 5 E - 04 - 0 . 1 1 0 3 E - 04 - 7 6 . 0 8 0 . 4 9 6 8 E - 04

1 7 5 2 6 3 7 . 5 0 0 0 - 6 2 5 0 . 0 0 0 0 0 . 6 6 8 7 E -•03 - 0 . 2 2 9 9 E - •02 o' . 6 7 7 4 E - •02 - 0 . 1 6 4 9 E - 03 0 . 7 5 4 3 E - 02 - 0 ' . 1 0 0 2 E - 03 - 7 1 . 5 1 0 . 3 8 2 2 E - 02 - 0 . 4 6 8 4 E - 05 - 0 . 2 7 3 7 E - 04 0: . 3 1 6 6 E - •04 - 0 . 9 6 4 5 E - 05 0 . 3 6 2 3 E - 04 - 0 . 9 2 6 1 E - 0 5 - 7 1 . 5 1 0 . 4 5 4 9 E - 04

1 7 6 2 8 2 5 . 0 0 0 0 - 6 2 5 0 . 0 0 0 0 0 . 1 1 2 2 E - •02 - 0 . 2 3 0 3 E - 02 0 . 5 6 3 3 E - 02 0 . 5 3 0 0 E - 05 0 . 6 6 0 0 E - 02 0 . 1 5 3 8 E - 03 - 6 7 . 2 0 0 . 3 2 2 3 E - 02 - 0 . 1 3 7 0 E - 05 - 0 . 2 7 4 2 E - 04 0 . 2 5 4 8 E - 04 - 0 . 8 0 1 6 E - 0 5 0 . 3 1 2 4 E - 04 - 0 . . 7 1 3 1 E - 0 5 - 6 7 . 2 0 0 . 3 8 3 7 E - 04

1 7 7 2 1 0 7 5 . 0 0 0 0 - 6 2 5 0 . . 0 0 0 0 0 . . 1 3 2 6 E - 02 - 0 . . 2 0 0 5 E - 0 2 0 . 4 3 5 4 E - 0 2 0 . 1 1 8 8 E - 03 0. . 5 3 5 2 E - 02 0 . 3 2 7 5 E - 03 - 6 3 . 5 3 0 . 2 5 1 2 E - 0 2 0 . 9 8 8 7 E - 06 - 0 . 2 3 8 7 E - 04 0 . 1 9 0 1 E - 04 - 0 . . 6 1 9 6 E - 0 5 0 . 2 4 9 6 E - 04 - 0 . . 4 9 5 4 E - 0 5 - 6 3 . 5 3 0 . 2 9 9 1 E - 04

1 7 8 2 1 3 2 5 . . 0 0 0 0 - 6 2 5 0 . . 0 0 0 0 0 . . 1 3 4 1 E - 02 - 0 . . 1 6 3 9 E - 02 0 . . 3 4 8 7 E - 0 2 0 . 2 1 0 3 E - 03 0 . . 4 3 7 3 E - 0 2 0 . . 4 5 4 8 E - 03 - 6 1 . 6 0 0 . 1 9 5 9 E - 02 0 . . 1 9 8 6 E - 0 5 - 0 . . 1 9 5 2 E - 04 0 . . 1 4 7 6 E - 04 - 0 . . 4 7 4 6 E - 05 0 . . 2 0 0 3 E - 04 - 0 . . 3 2 9 1 E - 0 5 - 6 1 . 6 0 0 . 2 3 3 2 E - 04

1 7 9 2 1 7 0 0 . . 0 0 0 0 - 6 2 5 0 . . 0 0 0 0 0 . . 1 2 6 6 E - 02 - 0 . . 1 1 9 1 E - 02 0 . 2 7 7 2 E - 02 0 . . 3 3 5 4 E - 03 / 0 -T3428E- 0 2 0 . . 6 0 9 9 E - 03 - 6 1 . 1 5 0 . 1 4 0 9 E - 02 0 . 2 3 3 1 E - 05 - 0 . 1 4 1 8 E - 04 0 . 1 1 2 9 E - 04 - 0 . 3 2 1 0 E - 05 0 . . 1 5 2 0 E - 04 - 0 . . 1 5 7 6 E - 0 5 - 6 1 . . 1 5 0 . 1 6 7 8 E - 04

1 8 0 2 2 2 0 0 . 0 0 0 0 - 6 2 5 0 . 0 0 0 0 0 . 1 1 6 6 E - 02 - 0 . 7 8 9 1 E - 0 3 0 . 2 1 9 8 E - 0 2 0 . 4 3 3 3 E - 03 0 . . 2 6 2 5 E - 0 2 0 . . 7 3 9 0 E - 03 - 6 1 . . 6 0 0 . 9 4 2 9 E - 0 3 0 . 2 4 1 8 E - 05 - 0 . 9 3 9 4 E - 0 5 0 . 8 5 6 3 E - 0 5 - 0 . . 1 9 4 1 E - 05 0 . . 1 1 1 0 E - 04 - 0 . . 1 2 1 7 E - 06 - 6 1 . . 6 0 0 . 1 1 2 3 E - 04

1 8 1 2 2 8 2 5 . 0 0 0 0 - 6 2 5 0 . 0 0 0 0 0 . 1 0 6 6 E - 02 - 0 . 4 6 0 1 E - 03 0 . 1 8 5 2 E - 02 0 . 5 1 9 9 E - 03 0 . 2 0 6 4 E - 02 0 . . 8 5 4 1 E - 03 • - 6 5 . . 2 4 0 . . 6 0 5 0 E - 0 3 0 . 2 2 5 4 E - 05 - 0 . 5 4 7 8 E - 0 5 0 . 6 9 3 0 E - 0 5 - 0 . 9 9 8 4 E - 06 0 . 8 1 9 3 E - 0 5 0 . . 9 9 1 1 E - 06 ' - 6 5 . . 2 4 0 . 7 2 0 2 E - 0 5

1 8 2 2 3 7 0 0 . 0 0 0 0 - 6 2 5 0 . 0 0 0 0 0 . 9 7 5 2 E - 03 - 0 . 1 4 2 2 E - 03 0 . 1 6 4 3 E - 0 2 0 . 5 9 8 6 E - 03 0 . 1 6 7 2 E - 02 0 . 9 4 6 2 E - 03 - 7 8 . . 4 7 0 . . 3 6 3 0 E - 0 3 0 . 1 9 7 5 E - 05 - 0 . 1 6 9 3 E - 0 5 0 . 5 9 5 1 E - 0 5 - 0 . 2 6 6 9 E - 06 0 . 6 1 2 4 E - 0 5 0 . 1 8 0 2 E - 05 - 7 8 . . 4 7 0 . . 4 3 2 1 E - 0 5

1 8 3 2 50 . 0 0 0 0 - 7 0 0 0 . 0 0 0 0 0 . 2 8 9 9 E - 03 - 0 . 7 8 9 7 E - 04 0 . 5 0 1 9 E - 02 0 . 2 8 9 9 E - 03 0 . 5 0 2 0 E - 02 0 . 2 8 8 6 E - 0 3 - 8 9 . . 0 4 0 . . 2 3 6 6 E - 0 2 - 0 . 4 9 4 0 E - 05 - 0 . 9 4 0 2 E - 0 6 0 . 2 3 2 1 E - 04 - 0 . 4 9 4 0 E - 05 0 . 2 3 2 2 E - 04 - 0 . 4 9 4 8 E - 05 - 8 9 . , 04 0 . . 2 8 1 7 E - 04

1 8 4 2 1 5 0 . 0 0 0 0 - 7 0 0 0 . 0 0 0 0 0 . 5 4 1 3 E - 04 - 0 . 3 1 8 5 E - 03 0 . 4 8 5 5 E - 02 0 . 1 3 7 7 E - 03 0 . 4 8 7 6 E - 0 2 0 . 3 3 0 9 E - 04 - 8 6 . . 2 2 0 . . 2 4 2 1 E - 02 - 0 . 5 6 8 6 E - 05 - 0 . 3 7 9 2 E - 0 5 0 . 2 2 8 9 E - 04 - 0 . 5 1 8 8 E - 05 0 . 2 3 0 2 E - 04 - 0 . 5 8 1 1 E - 0 5 - 8 6 . . 2 2 0 . . 2 8 8 3 E - 04

OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 * INTERFACE STRESSES AT GAUSS POINTS (TIME = 0)

ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS 1 8 5 5 2 0 0 . 0 0 0 0 - 7 2 8 8 . 6 7 5 1 - 0 . 8 5 9 6 E - 0 4 - 0 . 2 7 7 7 E - 0 3 1 8 5 5 2 0 0 . 0 0 0 0 - 6 7 1 1 . 3 2 4 9 0 . 1 4 4 5 E - 0 2 0 . 4 5 9 6 E - 0 4

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

ELEMENT MAT 1-COORD 2-COORD S - l l E - l l

S - 1 2 E - 1 2

S - 2 2 E - 2 2

S - 3 3 E - 3 3

1 - S T R E S S 1 - STRAIN

2 - S T R E S S 2 - S T R A I N

ANGLE ANGLE

SHEAR SHEAR

1 8 6 2 6 2 . 5 0 0 0 • 7 0 0 0 . 0 0 0 0 0 . 1 9 9 0 E - 0 3 - 0 . 3 5 9 4 E - 0 3 0 . 4 7 8 8 E - 0 2 0 . 1 5 0 2 E - 0 3 0 . 4 8 1 6 E - 0 2 0 . 1 7 1 0 E - 0 3 - 8 5 . 5 5 0 . 2 3 2 3 E - 0 2

University of Moratuwa D - 3 4

Page 56: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

- 0 . 4 9 3 2 E - 0 5 - 0 . 4 2 7 9 E - 0 5 0 . 2 2 3 9 E - 04 - 0 . 5 2 2 2 E - 05 0 2 2 5 5 E - 04 - 0 5 0 9 9 E - 0 5 - 8 5 . 5 5 0 . 2 7 6 5 E - 04 1 8 7 2 3 8 7 . 5 0 0 0 - 7 0 0 0 . 0 0 0 0 0 - 3 5 5 6 E - 03 - 0 . 5 5 9 8 E - 03 0 . 4 7 1 2 E - 0 2 0 . 2 1 5 6 E - 03 / 0 < ' 4 7 8 3 E - 0 2 0 2 8 4 8 E - 0 3 - 8 2 . 79 0 . 2 2 4 9 E - 0 2

- 0 . 4 1 7 3 E - 05 - 0 . 6 6 6 4 E - 0 5 0 . 2 1 7 6 E - 04 - 0 . 5 0 0 6 E - 05 0 2 2 1 8 E - 04 - 0 4 5 9 4 E - 0 5 - 8 2 . 7 9 0 . 2 6 7 7 E - 04 1 8 8 2 5 1 2 . 5 0 0 0 - 7 0 0 0 . 0 0 0 0 0 . 3 3 4 3 E - 03 - 0 . 6 3 9 8 E - 0 3 0 . 4 5 3 8 E - 02 0 2 1 2 4 E - 03 0 4 6 3 4 E - 02 0 2 3 9 1 E - 03 - 8 1 54 0 . 2 1 9 7 E - 0 2

- 0 4 0 6 4 E - 0 5 - 0 7 6 1 6 E - 0 5 0 2 0 9 6 E - 04 - 0 4 7 9 0 E - 0 5 0 2 1 5 3 E - 04 - 0 4 6 3 1 E - 0 5 - 8 1 . 5 4 0 . 2 6 1 6 E - 04 1 8 9 2 6 3 7 . 5 0 0 0 - 7 0 0 0 . 0 0 0 0 0 4 0 3 0 E - 03 - 0 7 5 9 6 E - 0 3 0 4 3 8 5 E - 0 2 0 2 3 1 1 E - 03 0 4 5 2 5 E - 02 0 2 6 3 0 E - 0 3 - 7 9 5 6 0 . 2 1 3 1 E - 02

- 0 3 5 7 6 E - 05 - 0 9 0 4 3 E - 0 5 0 2 0 1 3 E - 04 - 0 4 5 9 9 E - 05 0 2 0 9 6 E - 04 - 0 4 4 0 9 E - 0 5 - 7 9 5 6 0 2 5 3 7 E - 04 1 9 0 2 8 2 5 . 0 0 0 0 - 7 0 0 0 0 0 0 0 0 5 7 9 0 E - 03 - 0 9 1 2 4 E - 03 0 4 1 0 6 E - 02 0 2 8 9 2 E - 03 0 4 3 2 8 E - 02 0 3 5 7 0 E - 03 - 7 6 3 2 0 . 1 9 8 5 E - 0 2

- 0 2 4 7 5 E - 0 5 - 0 1 0 8 6 E - 04 0 1 8 5 2 E - 04 - 0 4 2 0 0 E - 0 5 0 1 9 8 4 E - 04 - 0 3 7 9 6 E - 0 5 - 7 6 3 2 0 2 3 6 4 E - 04 1 9 1 2 1 0 7 5 0 0 0 0 - 7 0 0 0 0 0 0 0 0 7 6 9 5 E - 03 - 0 9 8 5 4 E - 0 3 0 3 6 8 0 E - 02 0 3 4 7 5 E - 03 0 3 9 8 2 E - 02 0 4 6 7 3 E - 03 - 7 2 9 5 0 1 7 5 8 E - 02

- 0 1 1 3 0 E - 05 - 0 1 1 7 3 E - 04 0 1 6 1 9 E - 04 - 0 3 6 4 2 E - 05 0 1 7 9 9 E - 04 - 0 2 9 2 9 E - 0 5 - 7 2 9 5 0 2 0 9 2 E - 04 1 9 2 2 1 3 2 5 0 0 0 0 - 7 0 0 0 0 0 0 0 0 8 9 6 4 E - 03 - 0 9 5 5 0 E - 03 0 3 2 6 5 E - 0 2 0 3 9 5 6 E - 03 0 3 6 0 2 E - 02 0 5 5 9 3 E - 0 3 - 7 0 5 6 0 1 5 2 1 E - 02

- 0 8 9 4 5 E - 07 - 0 1 1 3 7 E - 04 0 1 4 0 1 E - 04 - 0 3 0 7 0 E - 05 0 1 6 0 2 E - 04 - 0 2 0 9 6 E - 0 5 - 7 0 56 0 1 8 1 1 E - 04 1 9 3 2 1 7 0 0 0 0 0 0 - 7 0 0 0 0 0 0 0 0 9 8 9 2 E - 03 - 0 8 1 9 8 E - 0 3 0 2 7 9 5 E - 02 0 4 6 7 7 E - 03 0 3 1 1 2 E - 02 0 6 7 2 6 E - 03 - 6 8 88 0 1 2 2 0 E - 02

0 8 2 5 7 E - 06 - 0 9 7 6 0 E - 0 5 0 1 1 5 8 E - 04 - 0 2 2 7 8 E - 05 0 1 3 4 6 E - 04 - 0 1 0 5 9 E - 0 5 - 6 8 8 8 0 1 4 5 2 E - 04 1 9 4 2 2 2 0 0 0 0 0 0 - 7 0 0 0 0 0 0 0 0 1 0 2 5 E - 02 - 0 6 1 7 4 E - 03 0 2 3 3 8 E - 0 2 0 5 2 6 0 E - 03 0 2 5 8 3 E - 0 2 0 7 8 0 4 E - 03 - 6 8 3 8 0 9 0 1 4 E - 0 3

0 1 4 7 1 E - 0 5 - 0 7 3 5 0 E - 0 5 0 9 2 8 9 E - 0 5 - 0 1 4 9 9 E - 05 0 1 0 7 5 E - 04 0 1 4 8 1 E - 0 7 - 6 8 3 8 0 1 0 7 3 E - 04 1 9 5 2 2 8 2 5 0 0 0 0 - 7 0 0 0 0 0 0 0 0 1 0 1 3 E - 02 - 0 3 8 4 4 E - 03 0 2 0 2 6 E - 02 0 5 8 9 3 E - 03 0 2 1 5 5 E - 02 0 8 8 3 2 E - 03 - 7 1 4 0 0 6 3 6 0 E - 0 3

0 1 7 0 8 E - 05 - 0 4 5 7 7 E - 0 5 0 7 7 4 0 E - 0 5 - 0 8 1 0 7 E - 06 0 8 5 1 0 E - 0 5 0 9 3 8 5 E - 06 - 7 1 4 0 0 7 5 7 1 E - 0 5 1 9 6 2 3 7 0 0 0 0 0 0 - 7 0 0 0 0 0 0 0 0 9 6 7 8 E - 03 - 0 1 2 2 4 E - 0 3 0 1 8 3 2 E - 02 0 6 5 3 3 E - 03 0 1 8 4 9 E - 02 0 9 5 0 9 E - 03 - 8 2 1 0 0 4 4 9 3 E - 0 3

0 . 1 6 5 0 E - 05 - 0 1 4 5 7 E - 05 0 6 7 9 6 E - 0 5 - 0 2 2 2 9 E - 06 0 6 8 9 7 E - 0 5 0 1 5 4 8 E - 05 - 8 2 10 0 5 3 4 9 E - 0 5 1 9 7 2 5 0 . 0 0 0 0 - 8 2 5 0 0 0 0 0 0 . 4 6 7 9 E - 03 - 0 2 7 4 3 E - 04 0 3 0 4 7 E - 02 0 4 6 7 9 E - 03 0 3 0 4 7 E - 02 0 4 6 7 6 E - 03 - 8 9 3 9 0 1 2 9 0 E - 02

- 0 . 1 9 5 6 E - 0 5 - 0 . 3 2 6 5 E - 06 0 1 3 3 9 E - 04 - 0 1 9 5 6 E - 05 0 . 1 3 4 0 E - 04 - 0 1 9 5 8 E - 0 5 - 8 9 3 9 0 1 5 3 5 E - 04 1 9 8 2 1 5 0 . 0 0 0 0 - 8 2 5 0 . 0 0 0 0 0 . 5 3 1 7 E - 03 - 0 . 3 5 5 1 E - 04 0 . 3 0 6 9 E - 02 0 5 0 5 7 E - 03 0 3 0 7 0 E - 02 0 5 3 1 2 E - 0 3 - 8 9 2 0 0 1 2 6 9 E - 02

- 0 . 1 7 2 4 E - 05 - 0 . 4 2 2 8 E - 0 6 0 . 1 3 3 8 E - 04 - 0 . 1 8 7 9 E - 05 0 . 1 3 3 8 E - 04 - 0 . 1 7 2 7 E - 05 - 8 9 2 0 0 1 5 1 1 E - 04 OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 *

INTERFACE STRESSES AT GAUSS POINTS (TIME = 0) ELEMENT TYPE 1-COORD 2-C00RD TANGT-STRESS NORML-STRESS

1 9 9 5 2 0 0 . 0 0 0 0 - 8 6 8 3 . 0 1 2 7 - 0 . 6 7 8 7 E - 0 4 - 0 . 7 7 5 3 E - 0 3 1 9 9 5 2 0 0 . 0 0 0 0 - 7 8 1 6 . 9 8 7 3 - 0 . 4 9 1 4 E - 0 3 - 0 . 4 9 7 8 E - 0 3

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

ELEMENT MAT 1-COORD 2-COORD S - l l E - l l

S - 1 2 E - 1 2

S - 2 2 E - 2 2

S - 3 3 E - 3 3

1 - S T R E S S 1-STRAIN

2 - S T R E S S 2 - S T R A I N

ANGLE ANGLE

SHEAR SHEAR

2 0 0

2 0 1

2 6 2 . 5 0 0 0

3 8 7 . 5 0 0 0

- 8 2 5 0 , 0 0 0 0

- 8 2 5 0 \ 0 0 0 0

0 . 5 1 8 8 E - 0 3 - 0 . 1 7 7 8 E - 0 5 0 . 5 1 1 4 E - 0 3

- 0 . 9 3 6 1 E - 0 4 - 0 . 1 1 1 4 E - 0 5 - 0 . 1 2 5 7 E - 0 3

0 . 3 0 5 8 E - 0 2 0 . 1 3 3 3 E - 0 4 0 . 3 0 3 4 E - 0 2

0'. 5 1 0 9 E - 0 3 - 0 . 1 8 2 5 E - 0 5 0 . 5 0 6 2 E - 0 3

0 . 3 0 6 1 E - 0 2 0 . 1 3 3 6 E - 0 4 0 . 3 0 4 0 E - 0 2

0 . 5 1 5 4 E - 0 3 - 0 . 1 7 9 8 E - 0 5 0 . 5 0 5 1 E - 0 3

- 8 7 . 8 9 - 8 7 . 8 9 - 8 7 . 1 5

0 . 1 2 7 3 E - 0 2 0 . 1 5 1 5 E - 0 4 0 . 1 2 6 8 E - 0 2

University of Moratuwa D-35

Page 57: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

- 0 . 1 7 8 0 E - 05 - 0 . 1 4 9 7 E - 0 5 0 . 1 3 2 4 E - 04 - 0 . 1 8 1 0 E - .05 0 1 3 2 7 E - 04 - 0 . 1 8 1 7 E - 0 5 - 8 7 . 1 5 0 . 1 5 0 9 E - 04 2 0 2 2 5 1 2 . 5 0 0 0 - 8 2 5 0 . 0 0 0 0 0 . 5 4 7 7 E - 03 - 0 . 1 7 6 5 E - 03 0 . 3 0 1 7 E - 0 2 0 . 5 1 7 2 E - 03 0 3 0 2 9 E - 02 0 . 5 3 5 2 E - 03 - 8 5 . 9 3 0 . 1 2 4 7 E - 0 2

- 0 . 1 5 9 9 E - 05 - 0 . 2 1 0 2 E - 0 5 0 . 1 3 1 0 E - 04 - 0 . 1 7 8 1 E - 05 0 1 3 1 7 E - 04 - 0 1 6 7 3 E - 0 5 - 8 5 9 3 0 1 4 8 5 E - 04 2 0 3 2 6 3 7 . 5 0 0 0 - 8 2 5 0 . 0 0 0 0 0 . 5 6 8 1 E - 03 - 0 . 2 1 0 3 E - 03 0 . 2 9 8 4 E - 0 2 0 . 5 2 4 2 E - 03 0 3 0 0 2 E - 02 0 5 5 0 0 E - 0 3 - 8 5 . 0 6 0 1 2 2 6 E - 02

- 0 1 4 7 1 E - 0 5 - 0 2 5 0 4 E - 05 0 1 2 9 1 E - 04 - 0 . 1 7 3 2 E - 05 0 1 3 0 2 E - 04 - 0 1 5 7 9 E - 0 5 - 8 5 0 6 0 1 4 6 0 E - 04 2 0 4 2 8 2 5 0 0 0 0 - 8 2 5 0 . 0 0 0 0 0 6 0 1 6 E - 03 - 0 2 5 3 7 E - 03 0 2 9 2 6 E - 02 0 . 5 3 7 3 E - 03 0 2 9 5 3 E - 02 0 5 7 4 2 E - 03 - 8 3 84 0 1 1 9 0 E - 02

- 0 1 2 5 8 E - 05 - 0 3 0 2 0 E - 0 5 0 1 2 5 8 E - 04 - 0 1 6 4 1 E - 05 0 1 2 7 4 E - 04 - 0 1 4 2 1 E - 0 5 - 8 3 84 0 1 4 1 6 E - 04 2 0 5 2 1 0 7 5 0 0 0 0 - 8 2 5 0 0 0 0 0 0 6 5 3 4 E - 03 - 0 3 0 3 1 E - 0 3 0 2 8 3 7 E - 0 2 0 5 5 4 8 E - 03 0 2 8 7 8 E - 02 0 6 1 2 1 E - 03 - 8 2 24 0 1 1 3 3 E - 0 2

- 0 9 2 6 3 E - 06 - 0 3 6 0 B E - 0 5 0 1 2 0 7 E - 04 - 0 1 5 1 3 E - 05 0 1 2 3 2 E - 04 - 0 1 1 7 2 E - 05 - 8 2 24 0 1 3 4 9 E - 04 2 0 6 2 1 3 2 5 0 0 0 0 - 8 2 5 0 0 0 0 0 0 7 1 0 6 E - 03 - 0 3 3 5 5 E - 0 3 0 2 7 3 5 E - 02 0 5 7 4 1 E - 03 0 2 7 8 9 E - 02 0 6 5 6 4 E - 03 - 8 0 8 3 0 1 0 6 6 E - 02

- 0 5 5 5 1 E - 06 - 0 3 9 9 4 E - 0 5 0 1 1 4 9 E - 04 - 0 1 3 6 7 E - 05 0 1 1 8 1 E - 04 - 0 8 7 7 5 E - 06 - 8 0 8 3 0 1 2 6 9 E - 04 2 0 7 2 1 7 0 0 0 0 0 0 - 8 2 5 0 0 0 0 0 0 7 8 8 2 E - 03 - 0 3 4 6 2 E - 03 0 2 5 7 2 E - 02 0 6 0 6 8 E - 03 0 2 6 3 7 E - 02 0 7 2 3 4 E - 0 3 - 7 9 3 9 0 9 5 6 9 E - 0 3

- 0 3 1 2 7 E - 07 - 0 4 1 2 1 E - 0 5 0 1 0 5 9 E - 04 - 0 1 1 1 1 E - 05 0 1 0 9 7 E - 04 - 0 4 1 7 1 E - 0 6 - 7 9 3 9 0 1 1 3 9 E - 04 2 0 8 2 2 2 0 0 0 0 0 0 - 8 2 5 0 0 0 0 0 0 8 5 6 0 E - 03 - 0 3 0 8 0 E - 0 3 0 2 3 6 7 E - 0 2 0 6 3 6 6 E - 03 0 2 4 2 7 E - 02 0 7 9 5 6 E - 0 3 - 7 8 9 1 0 8 1 5 9 E - 0 3

0 5 0 0 3 E - 06 - 0 3 6 6 6 E - 0 5 0 9 4 9 5 E - 0 5 - 0 8 0 5 4 E - 06 0 9 8 5 4 E - 0 5 0 1 4 1 0 E - 06 - 7 8 9 1 0 9 7 1 3 E - 0 5 2 0 9 2 2 8 2 5 0 0 0 0 - 8 2 5 0 0 0 0 0 0 8 9 6 8 E - 03 - 0 2 1 6 9 E - 0 3 0 2 1 8 4 E - 02 0 6 7 2 1 E - 03 0 2 2 2 0 E - 02 0 8 6 1 2 E - 03 - 8 0 6 9 0 6 7 9 3 E - 03

0 8 6 9 8 E - 06 - 0 2 5 8 2 E - 0 5 0 8 5 3 4 E - 0 5 - 0 4 6 7 5 E - 06 0 8 7 4 5 E - 05 0 6 5 8 2 E - 0 6 - 8 0 6 9 0 8 0 8 7 E - 0 5 2 1 0 2 3 7 0 0 0 0 0 0 - 8 2 5 0 0 0 0 0 0 9 0 0 3 E - 03 - 0 7 4 2 3 E - 04 0 2 0 5 5 E - 0 2 0 7 1 0 6 E - 03 0 2 0 6 0 E - 02 0 8 9 5 5 E - 03 - 8 6 34 0 5 8 2 2 E - 03

0 9 9 4 4 E - 06 - 0 8 8 3 7 E - 06 0 7 8 6 9 E - 0 5 - 0 1 3 4 4 E - 06 0 7 8 9 7 E - 0 5 0 9 6 6 1 E - 06 - 8 6 34 0 6 9 3 1 E - 0 5 2 1 1 2 50 . 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 . 7 1 4 1 E - 03 - 0 1 6 5 9 E - 0 5 0 2 4 7 0 E - 02 0 7 1 4 1 E - 03 0 2 4 7 0 E - 02 0 7 1 4 1 E - 03 - 8 9 9 5 0 8 7 8 0 E - 0 3

- 0 3 9 0 1 E - 06 - 0 1 9 7 5 E - 0 7 0 1 0 0 6 E - 04 - 0 3 9 0 1 E - 06 0 1 0 0 6 E - 04 - 0 3 9 0 1 E - 0 6 - 8 9 9 5 0 1 0 4 5 E - 04 2 1 2 2 1 5 0 . 0 0 0 0 - 1 0 0 0 0 . 0 0 0 0 0 . 6 9 7 4 E - 03 - 0 . 1 5 0 2 E - 04 0 2 4 6 2 E - 02 0 7 0 3 9 E - 03 0 2 4 6 2 E - 02 0 6 9 7 3 E - 03 - 8 9 5 1 0 8 8 2 5 E - 03

- 0 . 4 4 8 0 E - 06 - 0 . 1 7 8 9 E - 0 6 0 1 0 0 6 E - 04 - 0 4 0 9 4 E - 06 0 1 0 0 6 E - 04 - 0 4 4 8 8 E - 06 - 8 9 5 1 0 1 0 5 1 E - 04 OFEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0 3 *

INTERFACE STRESSES AT GAUSS POINTS (TIME = 0) ELEMENT TYPE 1-COORD 2-COORD TANGT-STRESS NORML-STRESS

2 1 3 5 2 0 0 . 0 0 0 0 - 1 0 5 7 7 . 3 5 0 3 0 . 1 8 4 2 E - 0 4 - 0 . 1 8 5 3 E - 0 3 2 1 3 5 2 0 0 . 0 0 0 0 - 9 4 2 2 . 6 4 9 7 0 . 6 8 7 3 E - 0 4 - 0 . 6 9 1 6 E - 0 3

0 FEAP * f i n i t e m o d e l l i n g o f p i l e s * A x i - s y m m e t r i c a n a l y s i s o f p i l e * 0 7 / 0 8 / 0

AXISYMMETRIC STRESSES

ELEMENT MAT 1-COORD 2-COORD S - l l S - 1 2 E - l l E - 1 2

3 * 2 1 4 2 2 6 2 . 5 0 0 0 - 1 0 0 0 0 . 0 0 0 0 0 . 7 0 3 8 E - 0 3 - 0 . 1 8 1 0 E - 0 4

- 0 . 4 1 5 6 E - 0 6 - 0 . 2 1 5 5 E - 0 6 2 1 5 2 3 8 7 . 5 0 0 0 - 1 0 0 0 0 . 0 0 0 0 0 . 7 1 0 5 E - 0 3 - 0 . 2 8 8 0 E - 0 4

- 0 . 3 8 4 7 E - 0 6 - 0 . 3 4 2 9 E - 0 6 2 1 6 2 5 1 2 . 5 0 0 0 - 1 0 0 0 0 . 0 0 0 0 0 . 7 0 7 4 E - 0 3 - 0 . 3 3 8 5 E - 0 4

S - 2 2 S - 3 3 1 - S T R E S S 2 - S T R E S S ANGLE SHEAR E - 2 2 E - 3 3 1 - S T R A I N 2 -STRAIN ANGLE SHEAR

0 2 4 6 1 E - 0 2 0 7 0 3 3 E - 03 0 2 4 6 1 E - 02 0 7 0 3 6 E - 03 - 8 9 4 1 0 8 7 8 7 E - 03 0 1 0 0 4 E - 0 4 - 0 4 1 8 2 E - 06 0 1 0 0 4 E - 04 - 0 4 1 6 7 E - 06 - 8 9 4 1 0 1 0 4 6 E - 04 0 2 4 5 9 E - 0 2 0 7 0 5 9 E - 03 0 2 4 6 0 E - 0 2 0 7 1 0 1 E - 03 - 8 9 0 6 0 8 7 4 9 E - 03 0 1 0 0 3 E - 04 - 0 4 1 2 4 E - 06 0 1 0 0 3 E - 04 - 0 3 8 7 5 E - 0 6 - 8 9 0 6 0 1 0 4 2 E - 04 0 2 4 5 3 E - 0 2 0 7 0 4 8 E - 03 0 2 4 5 4 E - 02 0 7 0 6 7 E - 0 3 - 8 8 8 9 0 8 7 3 7 E - 03

University of Moratuwa D-36

Page 58: 6. SUMMARY AND CONCLUSION 6.1. Summary

Appendix D

- 0 3 9 1 4 E - 06 - 0 4 0 3 0 E - 0 6 0

2 1 7 2 6 3 7 5 0 0 0 - 1 0 0 0 0 0 0 0 0 0 7 1 0 5 E - 03 - 0 4 2 7 3 E - 04 0 - 0 3 7 1 3 E - 06 - 0 5 0 8 7 E - 06 0

2 1 8 2 8 2 5 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 7 1 7 5 E - 03 - 0 5 5 5 0 E - 04 0 - 0 3 2 8 5 E - 06 - 0 6 6 0 8 E - 0 6 0

2 1 9 2 1 0 7 5 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 7 2 6 0 E - 03 - 0 6 8 5 4 E - 04 0 - 0 2 6 9 9 E - 06 - 0 8 1 5 9 E - 06 0

2 2 0 2 1 3 2 5 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 7 3 5 5 E - 03 - 0 7 8 9 1 E - 04 0 - 0 2 0 2 6 E - 06 - 0 9 3 9 4 E - 06 0

2 2 1 2 1 7 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 7 5 4 1 E - 03 - 0 8 9 4 0 E - 04 0 - 0 7 8 0 5 E - 07 - 0 1 0 6 4 E - 0 5 0

2 2 2 2 2 2 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 7 7 5 8 E - 03 - 0 9 0 3 7 E - 04 0 0 8 0 9 0 E - 07 - 0 1 0 7 6 E - 05 0

2 2 3 2 2 8 2 5 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 7 9 4 0 E - 03 - 0 7 1 8 9 E - 04 0 0 2 2 9 9 E - 06 - 0 8 5 5 9 E - 06 0

2 2 4 2 3 7 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 7 9 9 6 E - 03 - 0 2 6 8 6 E - 04 0 0 3 0 5 6 E - 06 - 0 3 1 9 8 E - 0 6 0

1 0 0 0 E - 04 - 0 4 0 6 5 E - 06 0 1 0 0 1 E - 04 - 0 3 9 5 3 E - 0 6 - 8 8 8 9 0 1 0 4 0 E - 04

2 4 4 8 E - 02 0 7 0 5 4 E - 03 0 2 4 5 0 E - 0 2 0 7 0 9 5 E - 0 3 - 8 8 5 9 0 8 7 0 0 E - 03

9 9 7 4 E - 0 5 - 0 4 0 1 5 E - 06 0 9 9 8 0 E - 0 5 - 0 3 7 7 5 E - 0 6 - 8 8 5 9 0 1 0 3 6 E - 04

2 4 3 8 E - 0 2 0 7 0 7 5 E - 03 0 2 4 4 0 E - 02 0 7 1 5 7 E - 0 3 - 8 8 1 5 0 8 6 2 3 E - 0 3

9 9 1 5 E - 0 5 - 0 3 8 8 2 E - 06 0 9 9 2 6 E - 0 5 - 0 3 3 9 2 E - 06 - 8 8 1 5 0 1 0 2 7 E - 04

2 4 2 1 E - 0 2 0 7 0 9 6 E - 03 0 2 4 2 4 E - 0 2 0 7 2 3 3 E - 0 3 - 8 7 6 9 0 8 5 0 3 E - 0 3

9 8 2 0 E - 0 5 - 0 3 6 7 5 E - 06 0 9 8 3 7 E - 0 5 - 0 2 8 6 3 E - 0 6 - 8 7 6,9 0 1 0 1 2 E - 04

2 4 0 0 E - 0 2 0 7 1 2 0 E - 03 0 2 4 0 4 E - 0 2 0 7 3 1 8 E - 0 3 - 8 7 2 9 0 8 3 6 1 E - 03

9 7 0 7 E - 0 5 - 0 3 4 2 7 E - 06 0 9 7 2 9 E - 0 5 - 0 2 2 4 9 E - 0 6 - 8 7 2 9 0 9 9 5 4 E - 0 5

2 3 6 4 E - 02 0 7 1 7 9 E - 03 0 2 3 6 9 E - 02 0 7 4 9 1 E - 0 3 - 8 6 83 0 8 0 9 9 E - 0 3

9 5 0 5 E - 0 5 - 0 2 9 3 5 E - 06 0 9 5 3 4 E - 0 5 - 0 1 0 7 5 E - 0 6 - 8 6 83 0 9 6 4 2 E - 0 5

2 3 1 1 E - 02 0 7 2 4 1 E - 03 0 2 3 1 6 E - 02 0 7 7 0 5 E - 03 - 8 6 64 0 7 7 2 9 E - 03 9 2 1 9 E - 0 5 - 0 2 2 6 5 E - 06 0 9 2 5 1 E - 0 5 0 4 9 3 4 E - 07 - 8 6 64 0 9 2 0 1 E - 0 5 2 2 5 1 E - 0 2 0 7 3 2 0 E - 03 0 2 2 5 4 E - 02 0 7 9 0 4 E - 03 - 8 7 1 8 0 7 3 1 9 E - 03

8 9 0 1 E - 0 5 - 0 1 3 8 7 E - 06 0 8 9 2 2 E - 0 5 0 2 0 8 8 E - 0 6 - 8 7 18 0 8 7 1 3 E - 0 5 2 2 0 0 E - 02 0 7 4 1 3 E - 03 0 2 2 0 1 E - 02 0 7 9 9 1 E - 0 3 - 8 8 90 0 7 0 0 9 E - 0 3

8 6 4 3 E - 0 5 - 0 4 1 3 0 E - 07 0 8 6 4 6 E - 0 5 0 3 0 2 5 E - 0 6 - 8 8 9 0 0 8 3 4 4 E - 0 5

* * * * * * * END OF MACRO EXECUTION * * * * * * *

END OF JOB

University of Moratuwa D-37