6240-15-1e itt intermetall - Ремонт Мониторовrv6llh.ru/transist.pdf2 itt intermetall...

205
Transistors 6240-15-1E ITT INTERMETALL

Upload: hoangduong

Post on 20-Apr-2018

232 views

Category:

Documents


9 download

TRANSCRIPT

Transistors

6240-15-1E ITT INTERMETALL

2 ITT INTERMETALL

All information and data contained in this data book are with-out any commitment, are not to be considered as an offerfor conclusion of a contract nor shall they be construed asto create any liability. Any new issue of this data book, orindividual product data sheets, invalidate previous issues.Product availability and delivery dates are exclusively sub-ject to our respective order confirmation form; the sameapplies to orders based on development samples delivered.By this publication, INTERMETALL does not assume respon-sibility for patent infringements or other rights of third partieswhich may result from its use.Reprinting is generally permitted, indicating the source.However, our prior consent must be obtained in all cases.

Printed in GermanyImprimé dans la République Fédérale d’Allemagne byRombach GmbH Druck- und Verlagshaus, 79115 Freiburg

Edition September 1996 • Order No. 6240-15-1E

ITT INTERMETALL 3

Page Contents

195 to 199 Bias Resistor Transistors

201 to 204 Addresses

Alphanumerical List of Types

4 List of Types

189 to 193 Darlington Transistors

5 to 17 Technical Information

19 to 65 Small-Signal Transistors (NPN)

67 to 113 Small-Signal Transistors (PNP)

115 to 157 DMOS Transistors (N-Channel)

159 to 187 DMOS Transistors (P-Channel)

4 ITT INTERMETALL

Type Page

Small-Signal Transistors(NPN)

2N3904 202N4124 24BC337-16, -25, -40 30BC338-16, -25, -40 30BC546-A, -B 36BC547-A, -B, -C 36BC548-A, -B, -C 36BC549-B, -C 36BC817-16, -25, -40 42BC818-16, -25, -40 42BC846-A, -B 48BC847-A, -B, -C 48BC848-A, -B, -C 48BC849-B, -C 48BF420 54BF422 54BF820 56BF822 56MMBT3904 58MMBTA42 62MMBTA43 62MPSA42 64MPSA43 64

DMOS Transistors(N-Channel)

2N7000 1162N7002 122BS108 128BS109 134BS123 136BS170 138BS623 136BS809 144BS828 146BS870 152

Darlington Transistors

BCV27 190BCV26 192

Type Page

Small-Signal Transistors(PNP)

2N3906 682N4126 72BC327-16, -25, -40 78BC328-16, -25, -40 78BC556-A, -B 84BC557-A, -B, -C 84BC558-A, -B, -C 84BC559-A, -B, -C 84BC807-16, -25, -40 90BC808-16, -25, -40 90BC856-A, -B 96BC857-A, -B, -C 96BC858-A, -B, -C 96BC859-A, -B, -C 96BF421 102BF423 102BF821 104BF823 104MMBT3906 106MMBTA92 110MMBTA93 110MPSA92 112MPSA93 112

DMOS Transistors(P-Channel)

BS208 160BS209 166BS223 168BS250 170BS723 176BS808 178BS829 180BS850 182

Bias Resistor Transistors

DTC114EK 196DTC124XK 198

List of Types

ITT INTERMETALL 5

Technical Information

6 ITT INTERMETALL

Technical Information

Index of Symbols

b Imaginary part of y-Parametersbf Imaginary part of forward

transconductance yfbi Imaginary part of input admittance yibo Imaginary part of output admittance yobr Imaginary part of reverse

transconductance yrB Base connectionBG Imaginary part of generator (source)

impedanceC Capacitance; junction capacitance;

collector connectionCi Input capacitance (bi/2 π f)Co Output capacitance (bo/2 π f)CCBO Collector-Base capacitance (open emitter)CEBO Emitter-base capacitance (open collector)Ciss Input capacitanceCr Feedback capacitance (br/2 π f)E Emitter connectionf FrequencyfT Gain-bandwidth productF Noise figureFc Noise figure in mixer stagesg Real part of y-parametersgf Real part of forward transconductance yfgi Real part of input admittance yigm Forward transconductancego Real part of output admittance yogr Real part of reverse transconductance yrgs Generator conductanceGC Current gainGP Power gainGP av Available power gainGP max Max. available power gainGV Voltage gainh Parameters of h- (hybrid) matrixhf Small-signal current gainhi Input impedanceho Output admittancehr Reverse voltage transfer ratiohFE DC current gain, common emitterIB Base currentIBM Peak base currentIB1 Turn-on currentIB2 Turn-off currentIC Collector currentICAV Average collector currentICBO Collector-base cutoff current (open emitter)ICEO Collector-emitter cutoff current (open base)ICER Collector-emitter cutoff current (specified

resistance between base and emitter)

ICES Collector-emitter cutoff current (base short-circuited to emitter)

ICEV Collector-emitter cutoff current (specified voltage between base and emitter)

ICM Peak collector currentID Drain currentIDSS Drain cutoff currentIE Emitter currentIEBO Emitter-base cutoff current (open collector)IGSS Gate-body leakage currentKV Thermal resistance correction factorPtot Power dissipationPD Continuous power dissipationPI Pulse power dissipationrb’ · CC Collector-base time constantrDS (ON) Drain-source-on resistancerthA Pulse thermal resistance junction

to ambient airrthC Pulse thermal resistance junction to caseR Resistance; resistorRBE Resistance between base and emitterRG Generator impedance; source impedanceRG opt Optimum (matched) generator resistanceRL Load resistanceRL opt Optimum (matched) load resistanceRS Series resistanceRth Thermal resistanceRthA Thermal resistance junction to ambient airRthC Thermal resistance junction to case

resp. mounting baseRthC/S Thermal resistance case or mounting base

to heat sinkRthS Thermal resistance heat sink to ambient airt Timetd Delay timetf Fall Timetoff Turn-off time (ts + tf)ton Turn-on time (td + tr)tp Pulse durationtpd Propagation delay timetr Rise timets Storage timettotal Total switching time (ton + toff)T Temperature; duration of one periodTamb Ambient temperatureTj Junction temperatureTC Case temperatureTS Storage temperatureTSB Temperature of substrate backsideV VoltageVBB Base supply voltageVBE Base-emitter voltageVBE sat Base-emitter saturation voltage

ITT INTERMETALL 7

Technical Information

V(BR)CBO Collector-base breakdown voltage(open emitter)

V(BR)CEO Collector-emitter breakdown voltage(open base)

V(BR)CER Collector-emitter breakdown voltage(specified resistance between base and emitter)

V(BR)CES Collector-emitter breakdown voltage(emitter short-circuited to base)

VDGS Drain-gate voltageVDSS Drain-source voltageV(BR)DSS Drain-source breakdown voltageV(BR)EBO Emitter-base breakdown voltage

(open collector)VCB Collector-base voltageVCBO Collector-base voltage (open emitter)VCC Collector supply voltageVCE Collector-emitter voltageVCEO Collector-emitter voltage (open base)VCER Collector-emitter voltage (specified

resistance between base and emitter)VCES Collector-emitter voltage (emitter short-

circuited to base)VCE sat Collector-emitter saturation voltageVCEV Collector-emitter voltage (specified voltage

between base and emitter)VEBO Emitter-base voltage (open collector)VEE Emitter supply voltageVGS(TO) Gate threshold voltageVi Input voltageVo Output voltagey Parameters of y- (admittance) matrixyf Forward transconductanceyi Input admittanceyo Output admittanceyr Reverse transconductanceys Generator admittanceZ1 Input impedanceZ2 Output impedanceϕ Phase angle of y-parametersτs Storage time constantν Duty cycle (tp/T)

8 ITT INTERMETALL

Technical Information

Characteristics and Maximum Ratings

The electrical performance of a semiconductor deviceis usually expressed in terms of its characteristics andmaximum ratings.

Characteristics are those which can be measured byuse of suitable measuring instruments and circuits,and provide information on the performance of thedevice under specified operating conditions (at a givenbias, for example). Depending on requirements, theyare quoted either as typical (Typ.) values or guaranteed(Min., Max.) values.

Typical values are expressed as figures or as one ormore curves, and are subject to spreads. Occasionallya typical curve is accompanied by another curve, thisbeing a 95%, or, in a few cases, a maximum spreadlimit curve.

Maximum Ratings give the values which cannot beexceeded without risk of damage to the device.Changes in supply voltage and in the tolerances ofother components in the circuit must also be taken intoconsideration. No single maximum rating should everbe exceeded, even when the device is operated wellwithin the other maximum ratings. The inclusion of theword “admissible” in a title means that the associatedcurve defines the maximum ratings.

An exception to this rule are data on collector current.The collector current, quoted as one of the criticaltransistor values, is a maximum value recommendedby the manufacturer which should be noted in connec-tion with the other characteristics valid for this collec-tor current (e.g. collector and saturation voltages,current gain etc.) when selecting a transistor. In certaincases, the quoted collector current may be exceededwithout the transistor being destroyed. The absolutelimit for the collector current is determined by themaximum admissible power dissipation of the tran-sistor.

Assembly and Soldering Instructions

To prevent transistors from being damaged duringmounting, observe the following points:

All semiconductor devices are extremely sensitive totheir maximum admissible junction temperature beingexceeded. When planning the layout of the equipment,the distance between heat sources and semiconduc-tor elements should be sufficiently large.

Semiconductor elements may be mounted in anydesired position.

From the experience gained in soldering semiconduc-tor elements the following rules have emerged:

For transistors in plastic case TO-92 the maximum sol-dering time is 8 s, at soldering temperatures between230 and 260 °C. Here, the distance between solderedjoint and case should be at least 4 mm. During solder-ing, the leads should not be subjected to mechanicalstress.

For transistors in plastic case SOT-23 the maximumsoldering time is 8 s, at maximum soldering tempera-tures between 230 and 260 °C.

Technical Information

Admissible Power Dissipation

The indicated maximum admissible junction temper-ature must not be exceeded because this coulddamage or cause the destruction of the transistorcrystal. Since the user cannot measure this temper-ature, data sheets also reveal the maximum admissiblepower dissipation Ptot usually in the form of a deratingcurve (see diagram).

If power dissipation is kept within these limits themaximum junction temperature will not be exceeded.This can easily be checked by using the equation

Tj = Tamb + Ptot · Rth

ITT INTERMETALL

Admissible power dissipation versus ambient temperature

mW500

Ptot

300

200

10000

100

Tamb

200 °C

400

For the thermal resistance Rth the junction to ambientthermal resistance RthA is usually substituted in thecase of small transistors (in the TO-18 or TO-92 pack-age). In the case of power transistors (in the TO-202 orsimilar packages) which are usually mounted on a cool-ing fin or heat sink for the purpose of heat dissipation,the sum of the junction to case thermal resistance RthCplus the heat sink to ambient thermal resistance RthSplus – for more accurate calculations – the mountingsurface to heat sink thermal resistance, is substitutedfor the thermal resistance in this equation. In order tokeep the mounting surface to heat sink thermal resis-tance low, a heat conducting compound (siliconegrease) is to be applied to the mounting surface beforethe transistor is screwed on. If a mica insulation isused, the thermal resistance of the mica washer mustbe added, which amounts to about 0.5 K/W.

Directions for determining the thermal resistance RthSfor cooling fins can be found on page 11.

Since the distribution of heat in the transistor crystal isnot uniform and depends on voltage and current,some transistors are accompanied by derating curvesshowing Ptot as a function of TC and Tamb with the col-lector voltage VCE as parameter (see diagram below).

VCE

8 V

Admissible power dissipation versus temperature

W5

Ptot

3

2

10000

1

Tamb,

200 °C

4

TC

thAR = 200 K/W

40 V

20 V

10 V

= 0...7 V

RthC = 35 K/W

9

10 ITT INTERMETALL

Technical Information

For some power transistors the data sheets also con-tain a diagram giving “admissible collector current” or“permissible operating range” which gives furtherinformation on admissible power dissipation. Oneexample is illustrated in the diagram left.

These diagrams are based on continuous power dissi-pation. However, pulse power dissipation may usuallyexceed continuous power dissipation. To ascertainmaximum admissible pulse power dissipation PI, refer-ence is made to the pulse junction to case thermalresistance rthC or the pulse junction to ambient thermalresistance rthA whose value can be derived from therth = f(tp) diagram below.

Use the equation

Tj = Tamb + PI · rthA

or, if the continuous power dissipation PD is to betaken into consideration:

Tj = Tamb + PD · RthA + PI · rthA

If the transistor is mounted on a cooling fin then theequation becomes:

Tj = Tamb + Ptot · RthS + PI · rthC

wherein Ptot is the mean value of the pulse power dis-sipation PI. Where continuous power dissipation mustbe considered in addition, the equation is expandedaccordingly:

Tj = Tamb + Ptot · RthS + PD · RthC + PI · rthC

wherein Ptot is the mean value of the total power dissi-pation.

The thermal resistance and pulse thermal resistancevalues derived from the data sheets apply without limi-tation only to small collector-emitter voltages VCE,between about 5 and 10 V. For higher voltages thesethermal resistance values have to be multiplied by acorrection factor KV which has to be calculated fromthe previously mentioned derating curves. The admis-sible power dissipation Ptot max, applicable to low col-lector voltages, must be divided by the admissiblepower dissipation Ptot V for the higher collector voltageV:

The complete equation for Tj then reads:

Tj = Tamb + Ptot · RthS + PD · KV · RthC + PI · KV · rthC

KvPtot max

Ptot V

-----------------=

Pulse thermal resistance versus pulse duration

K/W

rthC

1

tp

2

103

5

102

5

2

10

5

2

5

2

10-1

10-6 10-4 10-2 1 10 s2

0.5

0.1

0.05

0.02

0.01

tpν = tp

T PI

T

ν = 0

10-5 10-3 10-1 10

0.2

0.005

10

5

5

1011

2

V10 V

2

2

10

2 5 2 52

* for single nonrepetitive pulse

TC = 25 °C

ICmax (continuous)

50 µs100 µs

1 ms= 100 mstp

DC Operation

Admissible collector current versus collector emitter voltage

A

IC

CE

Pulse Operation* 30 µs

ITT INTERMETALL 11

Technical Information

Heat Removal from Transistors

The operation of any semiconductor device involvesthe dissipation of power with a consequent rise injunction temperature. Because the maximum admis-sible junction temperature must not be exceeded,careful circuit design with due regard not only to theelectrical, but also the thermal performance of a semi-conductor circuit, is essential.

If the dissipated power is low, then sufficient heat isradiated from the surface of the case; if the dissipationis high, however, additional steps may have to betaken to promote this process by reducing the thermalresistance between the junction and the ambient air.This can be achieved either by pushing a star- or flag-shaped heat dissipator over the case, or by bolting thesemiconductor device to a heat sink.

P, the power to be dissipated, Tj the junction tempera-ture, and Tamb, the ambient temperature are related bythe formula

where RthA is the total thermal resistance betweenjunction and ambient air. The total thermal resistancein turn comprises an internal thermal resistance RthCbetween the junction and the mounting base, and anouter thermal resistance RthS between the case andthe surrounding air (or any other cooling medium). Itshould be noted that only the outer thermal resistanceis affected by the design of the heat sink. To determinethe size of the heat sink required to meet given operat-ing conditions, proceed as follows: First calculate theouter thermal resistance by use of the formula

and then, by use of the diagrams, determine the size ofthe heat sink which provides the calculated RthS-value.To determine the maximum admissible device dissipa-tion and ambient temperature limit for a given heatsink, proceed in the reverse order to that describedabove.

The calculations are based on the following assump-tions: Use of a squareshaped heat sink without anyfinish, mounted in a vertical position; semiconductordevice located in the centre of the sink; heat sinkoperated in still air and not subjected to any additionalheat radiation. The calculated area should be in-creased by a factor of 1.3 if the sink is mounted hori-zontally, and can be reduced by a factor of approxi-mately 0.7 if a black finish is used.

The curves give the thermal to ambient resistance ofsquare vertical heat sinks as a function of side length.It is assumed that the heat is applied at the center ofthe square.

PTj Tamb–

RthA

--------------------Tj Tamb–

RthC RthS+--------------------------= =

RthS

Tj Tamb–

P-------------------- RthC–<

Aluminium Cooling Fin

K/W100

RthS

7

1001

Length of edge S20 cm

Al

70

504030

20

10

54

3

2

2 4 6 8 12 14 16 18

1

52

0.5

Thickness mm

Steel Cooling Fin

K/W100

RthS

7

1001

Length of edge S20 cm

Fe

70

504030

20

10

54

3

2

2 4 6 8 12 14 16 18

1

5

2

0.5

Thickness mm

12 ITT INTERMETALL

Technical Information

Basic Circuits

There are three basic transistor circuits. They arecalled according to that electrode (emitter, base, col-lector) which is common to both input and output cir-cuit.

Common Emitter

Common Base

Common Collector

Properties of the three basic circuits:

CommonEmitter

CommonBase

CommonCollector

Inputimpedance medium small high

Outputimpedance medium high small

Current gain high less than 1 high

Upperfrequency limit low high low

Four-Pole-Symbols of h-Matrix

A transistor can be considered as an active four-polenetwork. When driven with small low-frequency signalsits properties can be described by the four character-istic values of the h- (hybrid) matrix, which are as-sumed to be real.

v1 = hi · i1 + hr · v2

i2 = hf · i1 + ho · v2

If expressed this in matrix form we obtain:

Explanation of h-Parameters

Input impedance (shorted output, v2 = 0):

Reverse voltage transfer ratio (open input, i1 = 0):

Small-signal current gain (shorted output, v2 = 0):

Output admittance (open input, i1 = 0):

A frequently used abbreviation is the determinant:

∆h = hi · ho – hr · hf

For all three basic circuit configurations the circuitillustrated below represents the equivalent four-polecircuit using h-parameters.

In the transistor data sheets the h-parameters areusually quoted for the common emitter configurationand for a given operating point (bias). The latter isdetermined by the collector voltage, the emitter or col-lector current and by the ambient temperature. For dif-ferent operating points, correction factors are neededwhich can be gathered from the relevant curves. Forcommon base or common collector transistor stagecalculations, the appropriate h-parameters are ascer-tained from those of the common emitter configurationby using the following conversion formulas.

v1i2

h( )i1v2

""dfoisdufoifus h( )hiahrhfaho

= =

hiv1

i1----=

hrv1

v2----=

hf

i2i1---=

ho

i2v2----=

v1

i1

i2

v2

v1

i1 i2

v2

v1

i1

i2

v2

v1

i1 i2

v2Transistor

four pole

v1

i1 i2

v2

hf · i1hr · v2

hohi

13 ITT INTERMETALL

CommonEmitter

CommonBase

CommonCollector

Input impedance hie –hic = hie

Reverse voltage transfer ratio hre –hrc = 1 – hre

Small-signal current gain hfe –hfc = 1 + hfe

Output admittance hoe –hoc = hoe

hib

hie

1 hfe+---------------=

hrb

hie hoe⋅

1 hfe+------------------ hre–=

hfb

hfe

1 hfe+---------------–=

hob

hoe

1 hfe+---------------=

Technical Information

Calculation of a Transistor Stage

Input impedance

Output impedance

Current gain

Voltage gain

Power gain

Max. available power gain, input and output matchedwith RG opt resp. RL opt

Z1v1

i1----

hi RL hD⋅+

1 ho RL⋅+-------------------------= =

Z2v2

i2----

hi RG+

hD ho RG⋅+---------------------------= =

Gc

i2i1---

hf

1 ho RL⋅+-----------------------= =

Gv

v2

v1

----hf– RL⋅

hi RL hD⋅+-------------------------= =

Gpv2 i2⋅

v1 i1⋅------------

hf2 RL⋅

1 ho RL⋅+( ) hi RL hD⋅+( )---------------------------------------------------------= =

Gp max

hf

hD hi ho⋅+--------------------------------

2

=

RG opthi hD⋅

ho

--------------= RL opthi

ho hD⋅---------------=

Four-Pole Symbols of y-Matrix

Whereas the network behaviour of of low-frequencytransistors could be described by using the h- (hybrid)matrix, the y- (admittance) matrix is usually employedfor high frequency transistors.

i1 = yi · v1 + yr · v2

i2 = yf · v1 + yo · v2

In matrix form we obtain:

The y-parameters are complex values which can beexpressed as

yik = gik + jbik with bik = ωCik or with bik =

Often, the following notation is expedient:

yik = l yik l exp jϕik

By adding the suffix e, b, or c it is possible to indicateto which of the three basic circuit configurations theparameters are valid.

Explanation of y-Parameters

Input admittance (shorted output, v2 = 0)

Reverse transconductance (shorted input, v1 = 0)

i1

i2

y( )=V1

V2

y( )yi yryf yo

=

1

ωLik

---------–

yi

i1v1

----=

yr

i1v2

----=

v1 v2Transistor

four poleZ1

RG

Z2RL

i1 i2

v1

i1 i2

v2Transistorfour pole

v1

i1 i2

v2

y r· v

2y f

· v1

yoyi

14 ITT INTERMETALL

Technical Information

Forward transconductance (shorted output, v2 = 0)

Output admittance (shorted input, v1 = 0)

The determinant reads Dy = yi · yo – yr · yf

Conversion from y-Parameters to h-Parameters

Calculation of a Transistor Stage

Input impedance

Output impedance

Current gain

Voltage gain

Power gain

Available power gain, input matched with RG opt

Max. available power gain, input and output matchedwith RG opt resp. RL opt

Max. available power gain will be attained if input andoutput are matched, where:

and:

Dy = yi · yo – yr · yf

yf

i2v1

----=

yoi2v2

----=

hi1yi

---= hryr

yi----–= hD

yo

yi

-----=

hfyf

yi---= ho

yD

yi------=

Z1v1

i1----

1 yo RL⋅+

yi yD RL⋅+-------------------------= =

Z2v2

i2----

1 yi RG⋅+

yo yD RG⋅+---------------------------= =

Gci2i1---

yf

yi yD RL⋅+-------------------------= =

Gvv2

v1

----yf– RL⋅

1 yo RL⋅+-----------------------= =

Gpv2 i2⋅

v1 i1⋅------------

yf2 RL⋅

1 yo RL⋅+( ) yi yD RL⋅+( )---------------------------------------------------------= =

Gp av4 yf

2 RG RL⋅ ⋅ ⋅

y1 yD RL) RG 1 yo RL⋅+ +⋅ ⋅+([ ]2--------------------------------------------------------------------------=

Gp max

yf

yD yi yo⋅+-------------------------------

2

=

RL optyo

yi

----- 1

yD------⋅=

RG optyi

yo

----- 1

yD------⋅=

v1

i1 i2

v2Transistor

four poleZ1

RGZ2 RL

ITT INTERMETALL 15

Technical Information

Switching Times

Definitions for the various times which make up thetotal switching time can be gathered from the diagrambelow in which the switching characteristic of a tran-sistor in common-emitter configuration is illustrated.

td Delay timetr Rise timets Storage timetf Fall timeton = td + tr Turn-on timetoff = ts + tf Turn-off time

The duration of the switching times depends upon thetransistor type and very much on the circuit arrange-ment.

With increasing saturation of the transistor the turn-ontime decreases and the turn-off time increases. An in-crease of the turn-off current lB2 shortens the turn-offtime.

The switching times depend on the duration of theturn-on pulse. It is only when the duration of this pulseis a multiple of the switching times that the latterremain constant. If the pulse is shorter, especially thestorage time decreases. With a pulse duration in theregion of the turn-on time the transistor is no longerfully saturated. The collector voltage then exhibits acharacteristic such as is qualitatively represented inthe diagram below.

)

IB1

Ic

IB2

RL

IB ≈≈

I B1

I B2

IC

t

≈≈

tstrtd tft

I C

0.1

I C

0.9 I

C

VCC

VCE

VCEmin

tp ts tf

0.1

V

V

0.9

V

16 ITT INTERMETALL

Quality

ITT INTERMETALL’ s Quality Assurance and Reliability System

Our View of Quality and Reliability

ITT INTERMETALL gives the highest priority to de-veloping, manufacturing, and delivering products thatsatisfy all our customers with respect to product per-formance, quality, reliability, on-time delivery, and com-petitive prices. Therefore, ITT INTERMETALL has im-plemented quality and reliability assurance activities inall phases of the product cycle from business devel-opment through product design, mass production, ship-ment, and marketing. Each department is responsiblefor the quality of its output and also each individual forthe quality of his/her work. The quality system is basedon the ISO 9000 concept. The system and the proces-ses are continuously improved so that a steady pro-gress in product quality can be achieved.

Quality Assurance during Product Development

The quality and reliability of a product are “built-in” dur-ing the product development and design phase. In ICdevelopment, functional simulations, design rule checks,and detailed resource planning are performed to getgood quality products to the market in time.Design reviews control the progress of developmentprojects by measuring performance data against thetargeted specification. The product release for produc-tion is determined by the results of extensive productperformance evaluation as well as quality and reliabilitytesting on prototypes.

Quality Assurance during Mass Production

In a manufacturing line, processes are controlled bymonitoring the relevant process parameters (SPC).Variations in processes are continuously reduced toincrease yield, product performance, quality, and relia-bility. State-of-the-art production equipment and stableprocesses are essential for good quality products atcompetitive prices. In order to achieve these goals, a wide variety of de-sign and process changes are made after productionrelease. Detailed qualification procedures ensure thatthese changes maintain or improve the quality andreliability of the products.

Quality Control of Outgoing Products

Although the quality and reliability is “built into” the pro-ducts during products development and production, it isalso verified by inspections.Outgoing inspection of samples generates quality datathat is fed back to previous processes for correctiveactions.A reliability monitoring program is installed to verify pro-duct reliability. Failure analysis is performed to find theroot cause. The documented information is fed back todevelopment and production departments for furtherproduct improvements. Reliability data is also used topredict product lifetime under specific environmentalconditions.

Quality Control in the Market

Close contacts with key customers enable ITT INTER-METALL to collect quality information from the market.If a customer returns a failing product, it is subjected todetailed failure analysis until root causes are found.The history of the product, the results of the failure ana-lysis, and the root causes are entered into a QualityData Base (QDB). The evaluation of the data base isused to prioritize corrective action programs in alldepartments.

Quality

ITT Semiconductors 17

Product Quality and Assurance System

Planning

Design

PilotProduction

VolumeProduction

Market

Marketing Development Engineering Quality Manufacturing

Market Research

Decision on Project Start

Definition of Pro-duct Specifications

(Pflichtenheft)

Quality Standard

Design of Product and Process

Design Review

Evaluation of Partsand Material

Prototype Production / Performance Evaluation

Quality and Reliability Evaluation on Prototype

Design Approval

Qualification Testing / Quality and Reliability

Standardization of Material and Process

Production Release

ContinuousImprovement ofTechnology and

Performance

• Supplier Ranking• Incoming Inspection• Reliability Monitoring• Q-Training and Education• Internal Audits

• Process Control• Facility Control• Assurance of

Quality, Cost andDelivery

Delivery and Shipment

Corrective Actions

CustomerService

QualityInformation andFailure Analysis

Process

18 ITT INTERMETALL

ITT INTERMETALL 19

Small-Signal Transistors (NPN)

20 ITT INTERMETALL

2N3904

NPN Silicon Epitaxial Planar Transistorfor switching and amplifier applications.

As complementary type, the PNP transistor 2N3906 isrecommended.

On special request, this transistor is also manufacturedin the pin configuration TO-18.

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage VCBO 60 V

Collector-Emitter Voltage VCEO 40 V

Emitter-Base Voltage VEBO 6 V

Collector Current IC 100 mA

Peak Collector Current ICM 200 mA

Power Dissipation at Tamb = 25 °C Ptot 5001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

0.55∅ max.

2.5

B

CE

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

ITT INTERMETALL 21

Symbol Min. Typ. Max. Unit

DC Current Gainat VCE = 1 V, IC = 0.1 mAat VCE = 1 V, IC = 1 mAat VCE = 1 V, IC = 10 mAat VCE = 1 V, IC = 50 mAat VCE = 1 V, IC = 100 mA

hFEhFEhFEhFEhFE

40701006030

–––––

––300––

–––––

Thermal Resistance Junction to Ambient Air RthA – – 2501) K/W

Collector Saturation Voltageat IC = 10 mA, IB = 1 mAat IC = 50 mA, IB = 5 mA

VCEsatVCEsat

––

––

0.20.3

VV

Base Saturation Voltageat IC = 10 mA, IB = 1 mAat IC = 50 mA, IB = 5 mA

VBEsatVBEsat

––

––

0.850.95

VV

Collector-Emitter Cutoff CurrentVEB = 3 V, VCE = 30 V

ICEV – – 50 nA

Emitter-Base Cutoff CurrentVEB = 3 V, VCE = 30 V

IEBV – – 50 nA

Collector-Base Breakdown Voltageat IC = 10 µA, IE = 0

V(BR)CBO 60 – – V

Collector-Emitter Breakdown Voltageat IC = 1 mA, IB = 0

V(BR)CEO 40 – – V

Emitter-Base Breakdown Voltageat IE = 10 µA, IC = 0

V(BR)EBO 6 – – V

Gain-Bandwidth Productat VCE = 20 V, IC = 10 mA, f = 100 MHz

fT 300 – – MHz

Collector-Base Capacitanceat VCB = 5 V, f = 100 kHz

CCBO – – 4 pF

Emitter-Base Capacitanceat VEB = 0.5 V, f = 100 kHz

CEBO – – 8 pF

Input Impedanceat VCE = 10 V, IC = 1 mA, f = 1 kHz

hie 1 – 10 kΩ

Voltage Feedback Ratioat VCE = 10 V, IC = 1 mA, f = 1 kHz

hre 0.5 · 10–4 – 8 · 10–4 –

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

2N3904

Characteristics at Tamb = 25 °C

22 ITT INTERMETALL

2N3904

Characteristics, continuation

Fig. 1: Test circuit for delay and rise time Fig. 2: Test circuit for storage and fall time

* total shunt capacitance of test jig and connectors * total shunt capacitance of test jig and connectors

Symbol Min. Typ. Max. Unit

Small-Signal Current Gainat VCE = 10 V, IC = 1 mA, f = 1 kHz

hfe 100 – 400 –

Output Admittanceat VCE = 1 V, IC = 1 mA, f = 1 kHz

hoe 1 – 40 µS

Noise Figureat VCE = 5 V, IC = 100 µA, RG = 1 kΩ,f = 10…15000 Hz

– – – 5 dB

Delay Time (see Fig. 1)at IB1 = 1 mA, IC = 10 mA

td – – 35 ns

Rise Time (see Fig. 1)at IB1 = 1 mA, IC = 10 mA

tr – – 35 ns

Storage Time (see Fig. 2)at –IB1 = IB2 = 1 mA, IC = 10 mA

ts – – 200 ns

Fall Time (see Fig. 2)at –IB1 = IB2 = 1 mA, IC = 10 mA

tf – – 50 ns

10 < t < 500 msDUTY CYCLE = 2%

0

+ 10.9 V

- 9.1V

+ 3.0 V275

10 K

C < 4.0 pF*3

t11

< 1.0 ns

300 nsDUTY CYCLE = 2%

- 0.5 V

+ 10.9 V

< 1.0 ns

+ 3.0 V275

10 K

C < 4.0 pF*3

ITT INTERMETALL 23

2N3094

24 ITT INTERMETALL

2N4124

NPN Silicon Epitaxial Transistorfor switching and amplifier applications.Especially suitable for AF-driver andlow-power output stages.

As complementary type, the PNP transistor 2N4126 isrecommended.

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage VCEO 25 V

Collector-Base Voltage VCBO 30 V

Emitter-Base Voltage VEBO 5 V

Collector Current IC 200 mA

Peak Collector Current ICM 800 mA

Base Current IB 50 mA

Power Dissipation at Tamb = 25 °C Ptot 6251) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

0.55∅ max.

2.5

B

CE

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

ITT INTERMETALL 25

2N4124

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

DC Current Gainat VCE = 1 V, IC = 2.0 mAat VCE = 1 V, IC = 50 mA

hFEhFE

120–

–60

360–

––

Collector-Base Cutoff Currentat VCB = 20 V

ICBO – – 50 nA

Emitter-Base Cutoff Currentat VEB = 3 V

IEBO – – 50 nA

Collector Saturation Voltageat IC = 50 mA, IB = 5 mA

VCESAT – – 0.3 V

Base Saturation Voltageat IC = 50 mA, IB = 5 mA

VBESAT – – 0.95 V

Collector-Emitter Breakdown Voltageat IC = 1 mA

V(BR)CEO 25 – – V

Collector-Base Breakdown Voltageat IC = 10 µA

V(BR)CBO 30 – – V

Emitter-Base Breakdown Voltageat IE = 10 µA

V(BR)EBO 5 – – V

Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 50 MHz

fT – 200 – MHz

Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

CCBO – 12 – pF

Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

26 ITT INTERMETALL

Pulse thermal resistance versus pulse duration

K/W

rthA

1

tp

Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

2N4124

2

103

5

102

5

2

10

5

2

5

2

10-1

10-6 10-4 10-2 1 10 s2

0.5

0.2

0.1

0.05

tpν = tp

T PI

T

10-5

ν = 0

0.005

10-3 10-1 10

0.02

0.01

Gain-bandwidth product versus collector current

MHz10

10

IC

3

7

2

2

101

2N4124

5

4

3

7

2

5

4

3

2 5 10 2 5 1022 5 103 mA

Tamb= 25 °Cf = 20 MHz

VCE = 5 V

1 V

fT

Collector current versus base-emitter voltage

mA10

10IC

10

1

VBE

3

5

2

2

5

2

5

2

5

2

10-1

0 1 2 V

2N4124

-50 °C

25 °C

150 °C

typical

at T = 25 °Camb

limits

Admissible power dissipation versus ambient temperature

W1

Ptot

0.6

0.4

10000

0.2

Tamb

200 °C

Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

2N4124

0.8

2N4124

ITT INTERMETALL 27

Common emitter collector characteristics

500

400

IC

300

200

100

100

VCE

2 V

I = 0.2 mAB

2N4124

0.8

0.6

0.4

1.4

1.2

1

1.6

1.82

2.4

2.83.2

mA

Base saturation voltage versus collector current

V2

1

10100

I

2N4124

V

I

-1 1 102 310

typical

limitsat

BEsat

= 25 °CTamb

C

IB= 10

150 °C

25 °C

-50 °C

C

mA

-1

DC current gain versus collector current

1000

hFE

100

10

IC

700

500

400

300

200

70

50

40

30

20

10 1 10 102 10 3

2N4124

-50 °C

V = 1 VCE

150 °C

T = 25 °Camb

Collector saturation voltage versus collector current

V0.5

10100

I

2N4124

V

I

-1 1 102 310

typical

limitsat

CEsat

= 25 °CTamb

C

IB= 10

150 °C25 °C

-50 °C

C

mA

0.4

0.3

0.2

0.1

2N4124

28 ITT INTERMETALL

Common emitter collector characteristics

mA100

IC

1000

VCE

20 V

80

60

40

200.1

0.2

0.3

2N4124

I = 0.05 mAB

0.15

0.25

0.35

Common emitter collector characteristics

mA500

400

IC

300

200

100

100

VCE

2 V

0.8

2N4124

0.75

0.850.9

V = 0.7 VBE

2N4124

ITT INTERMETALL 29

2N4124

30 ITT INTERMETALL

BC337, BC338

NPN Silicon Epitaxial Planar Transistorsfor switching and amplifier applications. Especially suit-able for AF-driver stages and low power output stages.

These types are also available subdivided into threegroups -16, -25, and -40, according to their DC currentgain. As complementary types, the PNP transistorsBC327 and BC328 are recommended.

On special request, these transistors are also manu-factured in the pin configuration TO-18.

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage BC337BC338

VCESVCES

5030

VV

Collector-Emitter Voltage BC337BC338

VCEOVCEO

4525

VV

Emitter-Base Voltage VEBO 5 V

Collector Current IC 800 mA

Peak Collector Current ICM 1 A

Base Current IB 100 mA

Power Dissipation at Tamb = 25 °C Ptot 6251) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

0.55∅ max.

2.5

B

EC

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

ITT INTERMETALL 31

BC337, BC338

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

DC Current Gainat VCE = 1 V, IC = 100 mA

Current Gain Group -16-25-40

at VCE = 1 V, IC = 300 mACurrent Gain Group -16

-25-40

hFEhFEhFE

hFEhFEhFE

100160250

60100170

160250400

130200320

250400630

–––

–––

–––

Collector-Emitter Cutoff Currentat VCE = 45 V BC337at VCE = 25 V BC338at VCE = 45 V, Tamb = 125 °C BC337at VCE = 25 V, Tamb = 125 °C BC338

ICESICESICESICES

––––

22––

1001001010

nAnAµAµA

Collector-Emitter Breakdown Voltageat IC = 10 mA BC338

BC337V(BR)CEOV(BR)CEO

2045

––

––

VV

Collector-Emitter Breakdown Voltageat IC = 0.1 mA BC338

BC337V(BR)CESV(BR)CES

3050

––

––

VV

Emitter-Base Breakdown Voltageat IE = 0.1 mA

V(BR)EBO 5 – – V

Collector Saturation Voltageat IC = 500 mA, IB = 50 mA

VCEsat – – 0.7 V

Base-Emitter Voltageat VCE = 1 V, IC = 300 mA

VBE – – 1.2 V

Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 50 MHz

fT – 100 – MHz

Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

CCBO – 12 – pF

Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

ITT INTERMETALL 31

32 ITT INTERMETALL

BC337, BC338

Admissible power dissipation versus ambient temperature

W1

Ptot

0.6

0.4

10000

0.2

Tamb

200 °C

Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

BC337, BC338

0.8

Pulse thermal resistance versus pulse duration

K/W

rthA

1

tp

Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

BC337, BC338

2

103

5

102

5

2

10

5

2

5

2

10-1

10-6 10-4 10-2 1 10 s2

0.5

0.2

0.1

0.05

tpν = tp

T PI

T

10-5

ν = 0

0.005

10-3 10-1 10

0.02

0.01

Collector current versus base-emitter voltage

mA10

10IC

10

1

VBE

3

5

2

2

5

2

5

2

5

2

10-1

0 1 2 V

BC337, BC338

-50 °C

25 °C

150 °C

typical

at T = 25 °Camb

limits

Gain-bandwidth product versus collector current

MHz10

10

IC

3

7

2

2

101

BC337, BC338

5

4

3

7

2

5

4

3

2 5 10 2 5 1022 5 103 mA

Tamb= 25 °Cf = 20 MHz

VCE = 5 V

1 V

fT

ITT INTERMETALL 33

BC337, BC338

Collector saturation voltage versus collector current

V0.5

10100

I

BC337, BC338

V

I

-1 1 102 310

typical

limitsat

CEsat

= 25 °CTamb

C

IB= 10

150 °C25 °C

-50 °C

C

mA

0.4

0.3

0.2

0.1

Base saturation voltage versus collector current

V2

1

10100

I

BC337, BC338

V

I

-1 1 102 310

typical

limitsat

BEsat

= 25 °CTamb

C

IB= 10

150 °C

25 °C

-50 °C

C

mA

-1

DC current gain versus collector current

1000

hFE

100

10

IC

700

500

400

300

200

70

50

40

30

20

10 1 10 102 10 3

BC337, BC338

-50 °C

V = 1 VCE

150 °C

T = 25 °Camb

Common emitter collector characteristics

500

400

IC

300

200

100

100

VCE

2 V

I = 0.2 mAB

BC337, BC338

0.8

0.6

0.4

1.4

1.2

1

1.6

1.82

2.4

2.83.2

mA

34 ITT INTERMETALL

BC337, BC338

Common emitter collector characteristics

mA100

IC

1000

VCE

20 V

80

60

40

200.1

0.2

0.3

BC337, BC338

I = 0.05 mAB

0.15

0.25

0.35

Common emitter collector characteristics

mA500

400

IC

300

200

100

100

VCE

2 V

0.8

BC337, BC338

0.75

0.850.9

V = 0.7 VBE

ITT INTERMETALL 35

BC337, BC338

36 ITT INTERMETALL

BC546 … BC549

NPN Silicon Epitaxial Planar Transistors

These transistors are subdivided into three groups A, Band C according to their current gain. The type BC546is available in groups A and B, however, the typesBC547 and BC548 can be supplied in all three groups.The BC549 is a low-noise type and available in groupsB and C. As complementary types, the PNP transistorsBC556 … BC559 are recommended.

On special request, these transistors are also manu-factured in the pin configuration TO-18.

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage BC546BC547

BC548, BC549

VCBOVCBOVCBO

805030

VVV

Collector-Emitter Voltage BC546BC547

BC548, BC549

VCESVCESVCES

805030

VVV

Collector-Emitter Voltage BC546BC547

BC548, BC549

VCEOVCEOVCEO

654530

VVV

Emitter-Base Voltage BC546, BC547BC548, BC549

VEBOVEBO

65

VV

Collector Current IC 100 mA

Peak Collector Current ICM 200 mA

Peak Base Current IBM 200 mA

Peak Emitter Current –IEM 200 mA

Power Dissipation at Tamb = 25 °C Ptot 5001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

0.55∅ max.

2.5

B

EC

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

ITT INTERMETALL 37

BC546 … BC549

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

h-Parameters at VCE = 5 V, IC = 2 mA,f = 1 kHz,Small Signal Current Gain

Current Gain Group ABC

Input Impedance Current Gain Group ABC

Output Admittance Current Gain Group ABC

Reverse Voltage Transfer RatioCurrent Gain Group A

BC

hfehfehfehiehiehiehoehoehoe

hrehrehre

–––1.63.26–––

–––

2203306002.74.58.7183060

1.5 · 10–4

2 · 10–4

3 · 10–4

–––4.58.5153060110

–––

–––kΩkΩkΩµSµSµS

–––

DC Current Gainat VCE = 5 V, IC = 10µA

Current Gain Group ABC

at VCE = 5 V, IC = 2 mACurrent Gain Group A

BC

at VCE = 5 V, IC = 100 mACurrent Gain Group A

BC

hFEhFEhFE

hFEhFEhFE

hFEhFEhFE

–––

110200420

–––

90150270

180290500

120200400

–––

220450800

–––

–––

–––

–––

Thermal Resistance Junction to Ambient Air RthA – – 2501) K/W

Collector Saturation Voltageat IC = 10 mA, IB = 0.5 mAat IC = 100 mA, IB = 5 mA

VCEsatVCEsat

––

80200

200600

mVmV

Base Saturation Voltageat IC = 10 mA, IB = 0.5 mAat IC = 100 mA, IB = 5 mA

VBEsatVBEsat

––

700900

––

mVmV

Base-Emitter Voltageat VCE = 5 V, IC = 2 mAat VCE = 5 V, IC = 10 mA

VBEVBE

580–

660–

700720

mVmV

Collector-Emitter Cutoff Currentat VCE = 80 V BC546at VCE = 50 V BC547

at VCE = 30 V BC548, BC549

at VCE = 80 V, Tj = 125 °C BC546at VCE = 50 V, Tj = 125 °C BC547

ICESICES

ICES

ICESICES

––

––

0.20.2

0.2

––

1515

15

44

nAnA

nA

µAµA

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

38 ITT INTERMETALL

Symbol Min. Typ. Max. Unit

at VCE = 30 V, Tj = 125 °C BC548, BC549 ICES – – 44

µAµA

Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 100 MHz

fT – 300 – MHz

Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

CCBO – 3.5 6 pF

Emitter-Base Capacitanceat VEB = 0.5 V, f = 1 MHz

CEBO – 9 – pF

Noise Figureat VCE = 5 V, IC = 200 µA, RG = 2 kΩ,f = 1 kHz, ∆f = 200 Hz BC546, BC547

BC548BC549

at VCE = 5 V, IC = 200 µA, RG = 2 kΩ,f = 30…15000 Hz BC549

F

F

F

2

1.2

1.4

10

4

4

dB

dB

dB

BC546 … BC549

Admissible power dissipation versus temperature

mW500

Ptot

300

200

10000

100

Tamb

200 °C

Valid provided that leads are kept at ambienttemperature at a distance of 2 mm from case

BC546...BC549

400

Pulse thermal resistance versus pulse duration

K/W

rthA

1

tp

Valid provided that leads are kept at ambienttemperature at a distance of 2 mm from case

BC546...BC549

2

103

5

102

5

2

10

5

2

5

2

10-1

10-6 10-4 10-2 1 10 s2

0.2

0.1

0.05

0.02

0.01

0.005

tpν = tp

T PI

T

ν = 0

Characteristics, continuation

ITT INTERMETALL 39

BC546 … BC549

DC current gain versus collector current

10

5

hFE

101

IC

3BC546...BC549

4

3

2

102

5

4

3

2

10

54

3

2

-2 10-1 101 102 mA

-50 °C

VCE = 5 V

100 °C

Tamb = 25 °C

Collector current versus base-emitter voltage

mA10

5

IC

10

1

010

VBE

BC546...BC5492

4

3

2

5

4

3

2

5

4

3

2

-1

0.5 1 V

Tamb = 100 °C -50 °C

25 °C

VCE = 5 V

Collector-base cutoff current versus ambient temperature

nA

ICBO

10

1000

1

Tamb

200 °C

BC546...BC549

103

104

102

10-1

Test voltage V :equal to the givenmaximum value

typicalmaximum

VCES

CBO

Collector saturation voltage versus collector current

V0.5

0.4

VCEsat

0.3

0.2

10

0.1

IC

BC546...BC549

102 5 2 5 2 510-1 10 mA2

-50 °C

25 °C

Tamb= 100 °C

I C = 20I B

40 ITT INTERMETALL

Noise figure versus collector current

dB20

F

12

8

100

6

IC10 mA

BC549

18

16

14

10

4

2

-3 10-2 10-1 1

V = 5 VCE

f = 120 Hz

amb

G

500 V

1kV

T = 25 °C

R = 1 MV 100 kV 10 kV 1 kV

BC546 … BC549

Collector-base capacitance, Emitter-base capacitance versus reverse bias voltage

pF10

6

4

10.10

2

VCBO,

10 V

BC546...BC549

8

VEBO

0.2 0.5 2 5

CCBOCEBO

CCBO

CEBO

T = 25 °Camb

Gain-bandwidth product versus collector current

MHz10

fT

0.1IC

100 mA

BC546...BC5493

7

5

4

3

2

102

7

5

4

3

2

102 5 1 2 5 10 2 5

T = 25 °Camb

V = 10 VCE

5 V

2 V

Relative h-parameters versus collector current

10

110

1

IC10 mA

BC546...BC549102

6

4

2

6

4

2

6

4

2

-1

10-12 4 2 4

h (I = 2 mA)e C

h (I )e C

hie

hoe

hre

hfe

V = 5 VCET = 25 °Camb

ITT INTERMETALL 41

BC546 … BC549

Noise figure versus collector current

dB20

F

12

8

100

6

IC10 mA

BC549

18

16

14

10

4

2

-3 10-2 10-1 1

V = 5 VCE

f = 1 kHz

amb

500 V

1kV

500 V

T = 25 °C

GR = 1 MV 100kV 10 kV

Noise figure versus collector emitter voltage

dB20

F

12

8

100

6

VCE

10 V

BC549

18

16

14

10

4

2

-12 1 2

I = 0.2 mAC

f = 1 kHz

ambT = 25 °C

R = 2 kVG

Df = 200 Hz

5 5 10 2 52

42 ITT INTERMETALL

BC817, BC818

NPN Silicon Epitaxial Planar Transistorsfor switching, AF driver and amplifier applications.

Especially suited for automatic insertion in thick- andthin-film circuits.

These transistors are subdivided into three groups -16,-25 and -40 according to their current gain.As complementary types, the PNP transistors BC807and BC808 are recommended.

Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

Marking code

Type Marking

BC817-16-25-40

BC818-16-25-40

6A6B6C

6E6F6G

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage BC817BC818

VCESVCES

5030

VV

Collector-Emitter Voltage BC817BC818

VCEOVCEO

4525

VV

Emitter-Base Voltage VEBO 5 V

Collector Current IC 800 mA

Peak Collector Current ICM 1000 mA

Peak Base Current IBM 200 mA

Peak Emitter Current –IEM 1000 mA

Power Dissipation at TSB = 50 °C Ptot 3101) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

ITT INTERMETALL 43

BC817, BC818

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

DC Current Gainat VCE = 1 V, IC = 100 mA

Current Gain Group-16-25-40

at VCE = 1 V, IC = 300 mA -16-25-40

hFEhFEhFEhFEhFEhFE

10016025060100170

––––––

250400600–––

––––––

Thermal Resistance Junction SubstrateBackside

RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Collector Saturation Voltageat IC = 500 mA, IB = 50 mA

VCEsat – – 0.7 V

Base-Emitter Voltageat VCE = 1 V, IC = 300 mA

VBE – – 1.2 V

Collector-Emitter Cutoff Currentat VCE = 45 V BC817at VCE = 25 V BC818at VCE = 25 V, Tj = 150 °C

ICESICESICES

–––

–––

1001005

nAnAµA

Emitter-Base Cutoff Currentat VEB = 4 V

IEBO – – 100 nA

Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 50 MHz

fT – 100 – MHz

Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

CCBO – 12 pF

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

44 ITT INTERMETALL

BC817, BC818

Admissible power dissipation versus temperature of substrate backside

mW500

Ptot

300

200

10000

100

TSB

200 °C

Device on fiberglass substrate, see layout

BC817, BC818

400

Pulse thermal resistance versus pulse duration (normalized)

10

10

RthSB

tp

Device on fiberglass substrate, see layout

0

5

3

-1

5

2

4

2

10-3

10-7 10-6 10-5 10-4 10-3 10-2 1 s

BC817, BC818

tptpT

ν =PI

T

0.1

0.05

0.02

0.01

ν = 0

4

2

4

3

5

3

10-1

5 -3

0.2

0.5

rthSB

10-2

Collector current versus base-emitter voltage

mA10

10IC

10

1

VBE

3

5

2

2

5

2

5

2

5

2

10-1

0 1 2 V

BC817, BC818

-50 °C

25 °C

typical

at T =25 °Camblimits

150 °C

Gain-bandwidth product versus collector current

MHz10

10

IC

3

7

2

2

101

BC817, BC818

5

4

3

7

2

5

4

3

2 5 10 2 5 1022 5 103 mA

Tamb = 25 °Cf = 20 MHz

VCE = 5 V

1 V

fT

ITT INTERMETALL 45

BC817, BC818

Collector saturation voltage versus collector current

V0.5

10100

I

BC817, BC818

V

I

-1 1 102 310

typical

limitsat

CEsat

= 25 °CTamb

C

IB= 10

150 °C25 °C

-50 °C

C

mA

0.4

0.3

0.2

0.1

Base saturation voltage versus collector current

V2

1

10100

I

BC817, BC818

V

I

-1 1 102 310

typical

limitsat

BEsat

= 25 °CTamb

CIB

= 10

150 °C

25 °C

-50 °C

C

mA

-1

DC current gain versus collector current

1000

hFE

100

10

IC

700

500

400

300

200

70

50

40

30

20

10 1 10 102 10 mA3

BC817, BC818

-50 °C

V =1 VCE

150 °C

T = 25 °Camb

Common emitter collector characteristics

500

400

IC

300

200

100

100

VCE

2 V

I = 0.2 mAB

BC817, BC818

0.8

0.6

0.4

1.4

1.2

1

1.6

1.82

2.4

2.83.2

mA

46 ITT INTERMETALL

BC817, BC818

Common emitter collector characteristics

mA100

IC

1000

VCE

20 V

80

60

40

200.1

0.2

0.3

BC817, BC818

I = 0.05 mAB

0.15

0.25

0.35

Common emitter collector characteristics

mA500

400

IC

300

200

100

100

VCE

2 V

0.8

BC817, BC818

0.75

0.850.9

V = 0.7 VBE

ITT INTERMETALL 47

BC817, BC818

48 ITT INTERMETALL

BC846 … BC849

NPN Silicon Epitaxial Planar Transistorsfor switching and AF amplifier applications.

Especially suited for automatic insertion in thick- andthin-film circuits.

These transistors are subdivided into three groups A, Band C according to their current gain. The type BC846is available in groups A and B, however, the typesBC847 and BC848 can be supplied in all three groups.The BC849 is a low noise type available in groups Band C. As complementary types, the PNP transistorsBC856…BC859 are recommended.

Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

Marking code

Type Marking

BC846AB

BC847ABC

1A1B

1E1F1G

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage BC846BC847

BC848, BC849

VCBOVCBOVCBO

805030

VVV

Collector-Emitter Voltage BC846BC847

BC848, BC849

VCESVCESVCES

805030

VVV

Collector-Emitter Voltage BC846BC847

BC848, BC849

VCEOVCEOVCEO

654530

VVV

Emitter-Base Voltage BC846, BC847BC848, BC849

VEBOVEBO

65

VV

Collector Current IC 100 mA

Peak Collector Current ICM 200 mA

Peak Base Current IBM 200 mA

Peak Emitter Current –IEM 200 mA

Power Dissipation at TSB = 50 °C Ptot 3101) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

Type Marking

BC848ABC

BC849BC

1J1K1L

2B2C

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

ITT INTERMETALL 49

BC846 … BC849

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

h-Parameters at VCE = 5 V, IC = 2 mA,f = 1 kHz, Small-Signal Current Gain

Current Gain Group ABC

Input Impedance Current Gain Group ABC

Output Admittance Current Gain Group ABC

Reverse Voltage Transfer RatioCurrent Gain Group A

BC

hfehfehfehiehiehiehoehoehoe

hrehrehre

–––1.63.26–––

–––

2203306002.74.58.7183060

1.5 · 10–4

2 · 10–4

3 · 10–4

–––4.58.5153060110

–––

–––kΩkΩkΩµSµSµS

–––

DC Current Gainat VCE = 5 V, IC = 10 µA

Current Gain Group ABC

at VCE = 5 V, IC = 2 mACurrent Gain Group A

BC

hFEhFEhFE

hFEhFEhFE

–––

110200420

90150270

180290520

–––

220450800

–––

–––

Thermal Resistance Junction to SubstrateBackside

RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Collector Saturation Voltageat IC = 10 mA, IB = 0.5 mAat IC = 100 mA, IB = 5 mA

VCEsatVCEsat

––

90200

250600

mVmV

Base Saturation Voltageat IC = 10 mA, IB = 0.5 mAat IC = 100 mA, IB = 5 mA

VBEsatVBEsat

––

700900

––

mVmV

Base-Emitter Voltageat VCE = 5 V, IC = 2 mAat VCE = 5 V, IC = 10 mA

VBEVBE

580–

660–

700720

mVmV

Collector-Emitter Cutoff Currentat VCE = 80 V BC846at VCE = 50 V BC847at VCE = 30 V BC848, BC849at VCE = 80 V, Tj = 125 °C BC846at VCE = 50 V, Tj = 125 °C BC847at VCE = 30 V, Tj = 125 °C BC848, BC849

ICESICESICESICESICESICES

––––––

0.20.20.2–––

151515444

nAnAnAµAµAµA

Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 100 MHz

fT – 300 – MHz

1) Device on fiberglass substrate, see layout

50 ITT INTERMETALL

BC846 … BC849

Symbol Min. Typ. Max. Unit

Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

CCBO – 3.5 6 pF

Emitter-Base Capacitanceat VEB = 0.5 V, f = 1 MHz

CEBO – 9 – pF

Noise Figureat VCE = 5 V, IC = 200 µA, RG = 2 kΩ,f = 1 kHz, ∆f = 200 Hz BC846, BC847, BC848

BC849

at VCE = 5 V, IC = 200 µA, RG = 2 kΩ,f = 30…15000 Hz BC849

FF

F

––

21.2

1.4

104

4

dBdB

dB

Characteristics, continuation

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 51

Admissible power dissipationversus temperature of substrate backside

mW500

Ptot

300

200

10000

100

TSB

200 °C

Device on fiberglass substrate, see layout

BC846...BC849

400

Pulse thermal resistanceversus pulse duration (normalized)

10

10

RthSB

tp

Device on fiberglass substrate, see layout

0

5

3

-1

5

2

4

2

10-3

10-7 10-6 10-5 10-4 10-3 10-2 1 s

BC846...BC849

tptpT

ν =PI

T

0.1

0.05

0.02

0.01

ν = 0

4

2

4

3

5

3

10-1

5 -3

0.2

0.5

rthSB

10-2

DC current gainversus collector current

10

5

hFE

101

IC

3BC846...BC849

4

3

2

102

5

4

3

2

10

54

3

2

-2 10-1 101 102 mA

-50 °C

VCE = 5 V

100 °C

Tamb = 25 °C

Collector-Base cutoff currentversus ambient temperature

nA

ICBO

10

1000

1

Tamb

200 °C

BC846...BC849

103

104

102

10-1

Test voltage V :equal to the givenmaximum value

typicalmaximum

VCES

CBO

BC846 … BC849

52 ITT INTERMETALL

Collector current versusbase-emitter voltage

mA10

5

IC

10

1

010

VBE

BC846...BC8492

4

3

2

5

4

3

2

5

4

3

2

-1

0.5 1 V

Tamb = 100 °C -50 °C

25 °C

VCE = 5 V

Collector saturation voltageversus collector current

V0.5

0.4

VCEsat

0.3

0.2

10

0.1

IC

BC846...BC849

102 5 2 5 2 510-1 10 mA2

-50 °C

25 °C

Tamb= 100 °C

I C = 20I B

BC846 … BC849

Collector base capacitance,Emitter base capacitanceversus reverse bias voltage

pF10

6

4

10.10

2

VCBO,

10 V

BC846...BC849

8

VEBO

0.2 0.5 2 5

CCBOCEBO

CCBO

CEBO

T = 25 °Camb

Relative h-parametersversus collector current

10

110

1

IC

10 mA

BC846...BC849102

6

4

2

6

4

2

6

4

2

-1

10-12 4 2 4

h (I = 2 mA)e C

h (I )e C

hie

hoe

hre

hfe

V = 5 VCET = 25 °Camb

ITT INTERMETALL 53

Noise figureversus collector current

dB20

F

12

8

100

6

IC

10 mA

BC846...BC849

18

16

14

10

4

2

-3 10-2 10-1 1

V = 5 VCE

f = 120 Hz

amb

G

500 V

1 kV

T = 25 °C

R = 1 MV 100 kV 10 kV 1 kV

Noise figureversus collector emitter voltage

dB20

F

12

8

100

6

VCE

10 V

BC846, BC849

18

16

14

10

4

2

-12 1 2

I = 0.2 mAC

f = 1 kHz

ambT = 25 °C

R = 2 kVG

Df = 200 Hz

5 5 10 2 52

Noise figureversus collector current

dB20

F

12

8

100

6

IC

10 mA

BC846, BC849

18

16

14

10

4

2

-3 10-2 10-1 1

V = 5 VCE

f = 1 kHz

amb

500 V

1kV

500 V

T = 25 °C

GR = 1 MV 100kV 10 kV

BC846 … BC849

Gain-bandwidth productversus collector current

MHz10

fT

0.1IC

100 mA

BC846...BC8493

7

5

4

3

2

102

7

5

4

3

2

102 5 1 2 5 10 2 5

T = 25 °Camb

V = 10 VCE

5 V

2 V

BF420, BF422

NPN Silicon Epitaxial Planar Transistorsespecially suited for application in class-Bvideo output stages of TV receivers and monitors.

As complementary types, the PNP transistorsBF421 and BF423 are recommended

0.55∅ max.

2.5

C

BE

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage BF420BF422

VCBOVCBO

300250

VV

Collector-Emitter Voltage BF422 VCEO 250 V

Collector-Emitter Voltage BF420 VCER 300 V

Emitter-Base Voltage VEBO 5 V

Collector Current IC 50 mA

Peak Collector Current ICM 100 mA

Power Dissipation at Tamb = 25 °C Ptot 8301) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

54 ITT INTERMETALL

BF420, BF422

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Base Breakdown Voltage BF420at IC = 100 µA, IB = 0 BF422

V(BR)CBOV(BR)CBO

300250

––

––

VV

Collector-Emitter Breakdown Voltage BF422at IC = 10 mA, IE = 0

V(BR)CEO 250 – – V

Collector-Emitter Breakdown Voltage BF420at RBE = 2.7 kΩ, IC = 10 mA

V(BR)CER 300 – – V

Emitter-Base Breakdown Voltageat IE = 100 µA, IB = 0

V(BR)EBO 5 – – V

Collector-Base Cutoff Currentat VCB = 200 V, IE = 0

ICBO – – 10 nA

Collector-Emitter Cutoff Currentat RBE = 2.7 kΩ, VCE = 250 Vat RBE = 2.7 kΩ, VCE = 200 V, Tj = 150 °C

ICERICER

5010

nAµA

Collector Saturation Voltageat IC = 30 mA, IB = 5 mA

VCEsat – – 0.6 V

DC Current Gainat VCE = 20 V, IC = 25 mA

hFE 50 – – –

Gain-Bandwidth Productat VCE = 10 V, IC = 10 mA

fT 60 – – MHz

Feedback Capacitanceat VCE = 30 V, IC = 0, f = 1 MHz

Cre – – 1.6 pF

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

ITT INTERMETALL 55

BF820, BF822

NPN Silicon Epitaxial Planar Transistorsespecially suited for application in class-Bvideo output stages of TV receivers and monitors.

As complementary types, the PNP transistors BF821 and BF823 are recommended.

Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

Marking codeBF820 = 1VBF822 = 1X

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage BF820BF822

VCBOVCBO

300250

VV

Collector-Emitter Voltage BF822 VCEO 250 V

Collector-Emitter Voltage BF820 VCER 300 V

Emitter-Base Voltage VEBO 5 V

Collector Current IC 50 mA

Peak Collector Current ICM 100 mA

Power Dissipation at TSB = 50 °C Ptot 3001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

56 ITT INTERMETALL

BF820, BF822

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Base Breakdown Voltage BF820at IC = 100 µA, IB = 0 BF822

V(BR)CBOV(BR)CBO

300250

––

––

VV

Collector-Emitter Breakdown Voltage BF822at IC = 10 mA, IE = 0

V(BR)CEO 250 – – V

Collector-Emitter Breakdown Voltage BF820at RBE = 2.7 kΩ, IC = 10 mA

V(BR)CER 300 – – V

Emitter-Base Breakdown Voltageat IE = 100 µA, IB = 0

V(BR)EBO 5 – – V

Collector-Base Cutoff Currentat VCB = 200 V, IE = 0

ICBO – – 10 nA

Collector-Emitter Cutoff Currentat RBE = 2.7 kΩ, VCE = 250 Vat RBE = 2.7 kΩ, VCE = 200 V, Tj = 150 °C

ICERICER

5010

nAµA

Collector Saturation Voltageat IC = 30 mA, IB = 5 mA

VCEsat – – 0.6 V

DC Current Gainat VCE = 20 V, IC = 25 mA

hFE 50 – – –

Gain-Bandwidth Productat VCE = 10 V, IC = 10 mA

fT 60 – – MHz

Feedback Capacitanceat VCE = 30 V, IC = 0, f = 1 MHz

Cre – – 1.6 pF

Thermal Resistance Junction to Ambient Air RthA – – 4301) K/W

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 57

MMBT3904

NPN Silicon Epitaxial Planar Transistorfor switching and amplifier applications.

As complementary type, the PNP transistor MMBT3906 is recommended.

Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

Marking code1N

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage VCBO 60 V

Collector-Emitter Voltage VCEO 40 V

Emitter-Base Voltage VEBO 6 V

Collector Current IC 100 mA

Peak Collector Current ICM 200 mA

Power Dissipation at TSB = 50 °C Ptot 3101) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

58 ITT INTERMETALL

MMBT3904

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

DC Current Gainat VCE = 1 V, IC = 0.1 mAat VCE = 1 V, IC = 1 mAat VCE = 1 V, IC = 10 mAat VCE = 1 V, IC = 50 mAat VCE = 1 V, IC = 100 mA

hFEhFEhFEhFEhFE

40701006030

–––––

––300––

–––––

Thermal Resistance Junction to SubstrateBackside

RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Collector Saturation Voltageat IC = 10 mA, IB = 1 mAat IC = 50 mA, IB = 5 mA

VCEsatVCEsat

––

––

0.20.3

VV

Base Saturation Voltageat IC = 10 mA, IB = 1 mAat IC = 50 mA, IB = 5 mA

VBEsatVBEsat

––

––

0.850.95

VV

Collector-Emitter Cutoff CurrentVEB = 3 V, VCE = 30 V

ICEV – – 50 nA

Emitter-Base Cutoff CurrentVEB = 3 V, VCE = 30 V

IEBV – – 50 nA

Collector-Base Breakdown Voltageat IC = 10 µA, IE = 0

V(BR)CBO 60 – – V

Collector-Emitter Breakdown Voltageat IC = 1 mA, IB = 0

V(BR)CEO 40 – – V

Emitter-Base Breakdown Voltageat IE = 10 µA, IC = 0

V(BR)EBO 6 – – V

Gain-Bandwidth Productat VCE = 20 V, IC = 10 mA, f = 100 MHz

fT 300 – – MHz

Collector-Base Capacitanceat VCB = 5 V, f = 100 kHz

CCBO – – 4 pF

Emitter-Base Capacitanceat VEB = 0.5 V, f = 100 kHz

CEBO – – 8 pF

Input Impedanceat VCE = 10 V, IC = 1 mA, f = 1 kHz

hie 1 – 10 kΩ

1) Device on fiberglass substrate, see layout

ITT INTERMETALL 59

Characteristics, continuation

MMBT3904

Symbol Min. Typ. Max. Unit

Voltage Feedback Ratioat VCE = 10 V, IC = 1 mA, f = 1 kHz

hre 0.5 · 10–4 – 8 · 10–4 –

Small-Signal Current Gainat VCE = 10 V, IC = 1 mA, f = 1 kHz

hfe 100 – 400 –

Output Admittanceat VCE = 1 V, IC = 1 mA, f = 1 kHz

hoe 1 – 40 µS

Noise Figureat VCE = 5 V, IC = 100 µA, RG = 1 kΩ,f = 10…15000 Hz – – – 5 dB

Delay Time (see Fig. 1)at IB1 = 1 mA, IC = 10 mA

td – – 35 ns

Rise Time (see Fig. 1)at IB1 = 1 mA, IC = 10 mA

tr – – 35 ns

Storage Time (see Fig. 2)at –IB1 = IB2 = 1 mA, IC = 10 mA

ts – – 200 ns

Fall Time (see Fig. 2)at –IB1 = IB2 = 1 mA, IC = 10 mA

tf – – 50 ns

10 < t < 500 msDUTY CYCLE = 2%

0

+ 10.9 V

- 9.1V

+ 3.0 V275

10 K

C < 4.0 pF*3

t11

< 1.0 ns

300 nsDUTY CYCLE = 2%

- 0.5 V

+ 10.9 V

< 1.0 ns

+ 3.0 V275

10 K

C < 4.0 pF*3

Fig. 1: Test circuit for delay and rise time Fig. 2: Test circuit for storage and fall time

* total shunt capacitance of test jig and connectors * total shunt capacitance of test jig and connectors

60 ITT INTERMETALL

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 61

MMBT3904

MMBTA42, MMBTA43

NPN Silicon Epitaxial Planar Transistorsespecially suited as line switch in telephone subsetsand in video output stages of TV receivers and moni-tors.

As complementary types, the PNP transistors MMBTA92and MMBTA93 are recommended.

Pin Configuration1 = Collector, 2 = Base, 3 = Emitter

Marking CodeMMBTA42 = 1DMMBTA43 = 1E

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage MMBTA42MMBTA43

VCEOVCEO

300200

VV

Collector-Base Voltage MMBTA42MMBTA43

VCBOVCBO

300200

VV

Emitter-Base Voltage VEBO 6 V

Collector Current IC 500 mA

Power Dissipation1) at TSB = 50 °C Ptot 3001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

62 ITT INTERMETALL

MMBTA42, MMBTA43

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Emitter Breakdown Voltage MMBTA42IC = 10 mA, IB = 0 MMBTA43

V(BR)CEOV(BR)CEO

300200

––

––

VV

Collector-Base Breakdown Voltage MMBTA42IC = 100 µA, IE = 0 MMBTA43

V(BR)CBOV(BR)CBO

300200

––

––

VV

Emitter-Base Breakdown VoltageIE = 100 µA, IC = 0

V(BR)EBO 6 – – V

Collector-Base Cutoff CurrentVCB = 200 V, IE = 0 MMBTA42VCB = 160 V, IE = 0 MMBTA43

ICBOICBO

––

––

100100

nAnA

Emitter-Base Cutoff CurrentVEB = 6 V, IC = 0 MMBTA42VEB = 4 V, IC = 0 MMBTA43

IEBOIEBO

––

––

100100

nAnA

DC Current GainIC = 1 mA, VCE = 10 VIC = 10 mA, VCE = 10 VIC = 30 mA, VCE = 10 V

hFEhFEhFE

254040

–––

–––

–––

Collector-Emitter Saturation VoltageIC = 20 mA, IB = 2 mA

VCEsat – – 500 mV

Base-Emitter Saturation VoltageIC = 20 mA, IB = 2 mA

VBEsat – – 900 mV

Gain-Bandwidth ProductIE = 10 mA, VCE = 20 V, f = 100 MHz

fT 50 – – MHz

Collector-Base Capacitance MMBTA42VCB = 20 V, IE = 0, f = 1 MHz MMBTA43

CCBOCCBO

––

––

34

pFpF

Thermal Resistance Junction to Ambient Air RthA – – 4301) K/W

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 63

MPSA42, MPSA43

NPN Silicon Epitaxial Planar Transistorsespecially suited as line switch in telephone subsetsand in video output stages of TV receivers and moni-tors.

As complementary types, the PNP transistors MPSA92and MPSA93 are recommended.

0.55∅ max.

2.5

B

CE

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage MPSA42MPSA43

VCEOVCEO

300200

VV

Collector-Base Voltage MPSA42MPSA43

VCBOVCBO

300200

VV

Emitter-Base Voltage VEBO 6 V

Collector Current IC 500 mA

Power Dissipation at Tamb = 25 °C Ptot 6251) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

64 ITT INTERMETALL

MPSA42, MPSA43

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Emitter Breakdown Voltage MPSA42IC = 10 mA, IB = 0 MPSA43

V(BR)CEOV(BR)CEO

300200

––

––

VV

Collector-Base Breakdown Voltage MPSA42IC = 100 µA, IE = 0 MPSA43

V(BR)CBOV(BR)CBO

300200

––

––

VV

Emitter-Base Breakdown VoltageIE = 100 µA, IC = 0

V(BR)EBO 6 – – V

Collector-Base Cutoff CurrentVCB = 200 V, IE = 0 MPSA42VCB = 160 V, IE = 0 MPSA43

ICBOICBO

––

––

100100

nAnA

Emitter-Base Cutoff CurrentVEB = 6 V, IC = 0 MPSA42VEB = 4 V, IC = 0 MPSA43

IEBOIEBO

––

––

100100

nAnA

DC Current GainIC = 1 mA, VCE = 10 VIC = 10 mA, VCE = 10 VIC = 30 mA, VCE = 10 V

hFEhFEhFE

254040

–––

–––

–––

Collector-Emitter Saturation VoltageIC = 20 mA, IB = 2 mA

VCEsat – – 500 mV

Base-Emitter Saturation VoltageIC = 20 mA, IB = 2 mA

VBEsat – – 900 mV

Gain-Bandwidth ProductIE = 10 mA, VCE = 20 V, f = 100 MHz

fT 50 – – MHz

Collector-Base Capacitance MPSA42VCB = 20 V, IE = 0, f = 1 MHz MPSA43

CCBOCCBO

––

––

34

pFpF

Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

1) Valid provided that lead are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 65

66 ITT INTERMETALL

ITT INTERMETALL 67

Small-Signal Transistors (PNP)

2N3906

PNP Silicon Epitaxial Planar Transistorfor switching and amplifier applications.

As complementary type, the NPN transistor 2N3904 isrecommended.

On special request, this transistor is also manufacturedin the pin configuration TO-18.

0.55∅ max.

2.5

B

CE

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage –VCBO 40 V

Collector-Emitter Voltage –VCEO 40 V

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 100 mA

Peak Collector Current –ICM 200 mA

Power Dissipation at Tamb = 25 °C Ptot 5001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

68 ITT INTERMETALL

2N3906

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

DC Current Gainat –VCE = 1 V, –IC = 0.1 mAat –VCE = 1 V, –IC = 1 mAat –VCE = 1 V, –IC = 10 mAat –VCE = 1 V, –IC = 50 mAat –VCE = 1 V, –IC = 100 mA

hFEhFEhFEhFEhFE

60801006030

–––––

––300––

–––––

Thermal Resistance Junction to Ambient Air RthA – – 2501) K/W

Collector Saturation Voltageat –IC = 10 mA, –IB = 1 mAat –IC = 50 mA, –IB = 5 mA

–VCEsat–VCEsat

––

––

0.250.4

VV

Base Saturation Voltageat –IC = 10 mA, –IB = 1 mAat –IC = 50 mA, –IB = 5 mA

–VBEsat–VBEsat

––

––

0.850.95

VV

Collector-Emitter Cutoff Currentat –VEB = 3 V, –VCE = 30 V

–ICEV – – 50 nA

Emitter-Base Cutoff Currentat –VEB = 3 V, –VCE = 30 V

–IEBV – – 50 nA

Collector-Base Breakdown Voltageat –IC = 10 µA, IE = 0

–V(BR)CBO 40 – – V

Collector-Emitter Breakdown Voltageat –IC = 1 mA, IB = 0

–V(BR)CEO 40 – – V

Emitter-Base Breakdown Voltageat –IE = 10 µA, IC = 0

–V(BR)EBO 5 – – V

Gain-Bandwidth Product at –VCE = 20 V, –IC = 10 mA, f = 100 MHz

fT 250 – – MHz

Collector-Base Capacitanceat –VCB = 5 V, f = 100 kHz

CCBO – – 4.5 pF

Emitter-Base Capacitanceat –VEB = 0.5 V, f = 100 kHz

CEBO – – 10 pF

Input Impedanceat –VCE = 10 V, –IC = 1 mA, f = 1 kHz

hie 1 – 10 kΩ

Voltage Feedback Ratioat –VCE = 10 V, –IC = 1 mA, f = 1 kHz

hre 0.5 · 10–4 – 8 · 10–4 –

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 69

2N3906

Characteristics, continuation

Fig. 1: Test circuit for delay and rise time Fig. 2: Test circuit for storage and fall time

* total shunt capacitance of test jig and connectors * total shunt capacitance of test jig and connectors

Symbol Min. Typ. Max. Unit

Small-Signal Current Gainat –VCE = 10 V, –IC = 1 mA, f = 1 kHz

hfe 100 – 400 –

Output Admittanceat –VCE = 1 V, –IC = 1 mA, f = 1 kHz

hoe 1 – 40 µS

Noise Figureat –VCE = 5 V, –IC = 100 µA, RG = 1 kΩ,f = 10 … 15000 Hz

F – – 4 dB

Delay Time (see Fig. 1)at –IB1 = 1 mA, –IC = 10 mA

td – – 35 ns

Rise Time (see Fig. 1)at –IB1 = 1 mA, –IC = 10 mA

tr – – 35 ns

Storage Time (see Fig. 2)at IB1 = –IB2 = 1 mA, –IC = 10 mA

ts – – 225 ns

Fall Time (see Fig. 2)at IB1 = –IB2 = 1 mA, –IC = 10 mA

tf – – 75 ns

300 nsDUTY CYCLE = 2%

- 0.5 V

- 10.6 V

< 10 ns- 3.0 V

27510 K

C < 4.0 pF*3

0

+ 9.1V - 3.0 V275

10 K

C < 4.0 pF*3

10 < t < 500 msDUTY CYCLE = 2%

- 10.9 Vt11

< 1.0 ns

70 ITT INTERMETALL

ITT INTERMETALL 71

2N3906

2N4126

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage –VCEO 25 V

Collector-Base Voltage –VCBO 25 V

Emitter-Base Voltage –VEBO 4 V

Collector Current –IC 200 mA

Peak Collector Current –ICM 800 mA

Base Current –IB 50 mA

Power Dissipation at Tamb = 25 °C Ptot 6251) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

PNP Silicon Epitaxial Transistorfor switching and amplifier applications. Especially suit-able for AF-driver and low-power output stages.

As complementary type, the NPN transistor 2N4124 isrecommended.

72

0.55∅ max.

2.5

B

CE

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

ITT INTERMETALL

2N4126

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

DC Current Gainat VCE = –1 V, IC = –2.0 mAat VCE = –1 V, IC = –50 mA

hFEhFE

120–

–60

360–

––

Collector Cutoff Currentat VCB = –20 V

–ICBO – – 50 nA

Emitter Cutoff Currentat VEB = –3 V

–IEBO – – 50 nA

Collector Saturation Voltageat IC = –50 mA, IB = –5 mA

–VCESAT – – 0.4 V

Base Saturation Voltageat IC = –50 mA, IB = –5 mA

–VBESAT – – 0.95 V

Collector-Emitter Breakdown Voltageat IC = –1 mA

–V(BR)CEO 25 – – V

Collector-Base Breakdown Voltageat IC = –10 µA

–V(BR)CBO 25 – – V

Emitter-Base Breakdown Voltageat IE = –10 µA

–V(BR)EBO 4 – – V

Gain-Bandwidth Productat VCE = –5 V, IC = –10 mA, f = 50 MHz

fT – 200 – MHz

Collector-Base Capacitanceat VCB = –10 V, f = 1 MHz

CCBO – 12 – pF

Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 73

74 ITT INTERMETALL

Collector-emitter cutoff current versus ambient temperature

nA

-ICES

Tamb

2N4126

2

104

5

103

5

2

10

5

2

5

2

10 100 200 °C

10

2

-V = 25 VCE

typicalmaximum

Pulse thermal resistance versus pulse duration

K/W

rthA

1

tp

Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

2N4126

2

103

5

102

5

2

10

5

2

5

2

10-1

10-6 10-4 10-2 1 10 s2

0.5

0.2

0.1

0.05

tpν = tp

T PI

T

10-5

ν = 0

0.005

10-3 10-1 10

0.02

0.01

Collector current versus base-emitter voltage

mA10

10-IC

10

1

-VBE

3

5

2

2

5

2

5

2

5

2

10-1

0 1 2 V

2N4126

-50 °C

25 °C

150 °C

typical

at T = 25 °Camb

limits

Admissible power dissipation versus ambient temperature

W1

Ptot

0.6

0.4

10000

0.2

Tamb

200 °C

Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

2N4126

0.8

2N4126

ITT INTERMETALL 75

Common emitter collector characteristics

mA100

-IC

1000

-VCE

20 V

80

60

40

200.1

0.2

0.3

2N4126

-I = 0.05 mAB

0.15

0.25

0.35

Common emitter collector characteristics

500

400

-IC

300

200

100

100

-VCE

2 V

-I = 0.2 mAB

2N4126

0.8

0.6

0.4

1.4

1.2

1

1.6

1.82

2.4

2.83.2

mA

Common emitter collector characteristics

mA500

400

-IC

300

200

100

100

-VCE

2 V

0.8

2N4126

0.75

0.850.9

-V = 0.7 VBE

-1

DC current gain versus collector current

1000

hFE

100

10

-IC

700

500

400

300

200

70

50

40

30

20

10 1 10 102 10 mA3

2N4126

-50 °C

-V = 1VCE

150 °C

T = 25 °Camb

2N4126

76 ITT INTERMETALL

Base saturation voltage versus collector current

V2

1

10100

-I

2N4126

-V

-I

-1 1 102 310

typical

limitsat

BEsat

= 25 °CTamb

C

-IB= 10

150 °C

25 °C

-50 °C

C

mA

Gain-bandwidth product versus collector current

MHz10

10

-IC

3

7

2

2

101

2N4126

5

4

3

7

2

5

4

3

2 5 10 2 5 1022 5 10 mA3

Tamb = 25 °Cf = 20 MHz

-VCE = 5 V

1 V

fT

Collector saturation voltage versus collector current

V0.5

10100

-I

2N4126

-V

-I

-1 1 102 310

typical

limitsat

CEsat

= 25 °CTamb

C

-IB= 10

150 °C25 °C

-50 °C

C

mA

0.4

0.3

0.2

0.1

2N4126

ITT INTERMETALL 77

2N4126

BC327, BC328

PNP Silicon Epitaxial Planar Transistorsfor switching and amplifier applications. Especially suit-able for AF-driver stages and low-power output stages.

These types are also available subdivided into threegroups -16, -25, and -40, according to their DC currentgain. As complementary types, the NPN transistorsBC337 and BC338 are recommended.

On special request, these transistors are also manu-factured in the pin configuration TO-18. 0.55∅ max.

2.5

B

EC

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage BC327BC328

–VCES–VCES

5030

VV

Collector-Emitter Voltage BC327BC328

–VCEO–VCEO

4525

VV

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 800 mA

Peak Collector Current –ICM 1 A

Base Current –IB 100 mA

Power Dissipation at Tamb = 25 °C Ptot 6251) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

78 ITT INTERMETALL

BC327, BC328

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

DC Current Gainat –VCE = 1 V, –IC = 100 mA

Current Gain Group-16-25-40

at –VCE = 1 V, –IC = 300 mACurrent Gain Group-16

-25-40

hFEhFEhFE

hFEhFEhFE

100160250

60100170

160250400

130200320

250400630

–––

–––

–––

Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

Collector-Emitter Cutoff Currentat –VCE = 45 V BC327at –VCE = 25 V BC328at –VCE = 45 V, Tamb = 125 °C BC327at –VCE = 25 V, Tamb = 125 °C BC328

–ICES–ICES–ICES–ICES

––––

22––

1001001010

nAnAµAµA

Collector-Emitter Breakdown Voltageat –IC = 10 mA BC327

BC328–V(BR)CEO–V(BR)CEO

4525

––

––

VV

Collector-Emitter Breakdown Voltageat –IC = 0.1 mA BC327

BC328–V(BR)CES–V(BR)CES

5030

––

––

VV

Emitter-Base Breakdown Voltageat –IE = 0.1 mA

–V(BR)EBO 5 – – V

Collector Saturation Voltageat –IC = 500 mA, –IB = 50 mA

–VCEsat – – 0.7 V

Base-Emitter Voltageat –VCE = 1 V, –IC = 300 mA

–VBE – – 1.2 V

Gain-Bandwidth Productat –VCE = 5 V, –IC = 10 mA, f = 50 MHz

fT – 100 – MHz

Collector-Base Capacitanceat –VCB = 10 V, f = 1 MHz

CCBO – 12 – pF

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 79

80 ITT INTERMETALL

BC327, BC328

Admissible power dissipation versus ambient temperature

W1

Ptot

0.6

0.4

10000

0.2

Tamb

200 °C

Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

BC327, BC328

0.8

Pulse thermal resistance versus pulse duration

K/W

rthA

1

tp

Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

BC327, BC328

2

103

5

102

5

2

10

5

2

5

2

10-1

10-6 10-4 10-2 1 10 s2

0.5

0.2

0.1

0.05

tpν = tp

T PI

T

10-5

ν = 0

0.005

10-3 10-1 10

0.02

0.01

Collector current versus base-emitter voltage

mA10

10-IC

10

1

-VBE

3

5

2

2

5

2

5

2

5

2

10-1

0 1 2 V

BC327, BC328

-50 °C

25 °C

150 °C

typical

at T = 25 °Camb

limits

Collector-emitter cutoff current versus ambient temperature

nA

-ICES

Tamb

BC327, BC328

2

104

5

103

5

2

10

5

2

5

2

10 100 200 °C

10

2

BC 327: -V = 45 VCE

BC 328: -V = 25 VCE

typicalmaximum

ITT INTERMETALL 81

BC327, BC328

-1

DC current gain versus collector current

1000

hFE

100

10

-IC

700

500

400

300

200

70

50

40

30

20

10 1 10 102 10 mA3

BC327, BC328

-50 °C

-V = 1VCE

150 °C

T = 25 °Camb

Common emitter collector characteristics

500

400

-IC

300

200

100

100

-VCE

2 V

-I = 0.2 mAB

BC327, BC328

0.8

0.6

0.4

1.4

1.2

1

1.6

1.82

2.4

2.83.2

mA

Common emitter collector characteristics

mA500

400

-IC

300

200

100

100

-VCE

2 V

0.8

BC327, BC328

0.75

0.850.9

-V = 0.7 VBE

Common emitter collector characteristics

mA100

-IC

1000

-VCE

20 V

80

60

40

200.1

0.2

0.3

BC327, BC328

-I = 0.05 mAB

0.15

0.25

0.35

82 ITT INTERMETALL

BC327, BC328

Collector saturation voltage versus collector current

V0.5

10100

-I

BC327, BC328

-V

-I

-1 1 102 310

typical

limitsat

CEsat

= 25 °CTamb

C

-IB= 10

150 °C25 °C

-50 °C

C

mA

0.4

0.3

0.2

0.1

Base saturation voltage versus collector current

V2

1

10100

-I

BC327, BC328

-V

-I

-1 1 102 310

typical

limitsat

BEsat

= 25 °CTamb

C

-IB= 10

150 °C

25 °C

-50 °C

C

mA

Gain-bandwidth product versus collector current

MHz10

10

-IC

3

7

2

2

101

BC327, BC328

5

4

3

7

2

5

4

3

2 5 10 2 5 1022 5 10 mA3

Tamb = 25 °Cf = 20 MHz

-VCE = 5 V

1 V

fT

ITT INTERMETALL 83

BC327, BC328

BC556 … BC559

PNP Silicon Epitaxial Planar Transistorsfor switching and AF amplifier applications.

These transistors are subdivided into three groups A, Band C according to their current gain. The type BC556is available in groups A and B, however, the typesBC557 and BC558 can be supplied in all three groups.The BC559 is a low-noise type available in all threegroups. As complementary types, the NPN transistorsBC546 … BC549 are recommended.

On special request, these transistors are also manu-factured in the pin configuration TO-18.

0.55∅ max.

2.5

B

EC

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage BC556BC557

BC558, BC559

–VCBO–VCBO–VCBO

805030

VVV

Collector-Emitter Voltage BC556BC557

BC558, BC559

–VCES–VCES–VCES

805030

VVV

Collector-Emitter Voltage BC556BC557

BC558, BC559

–VCEO–VCEO–VCEO

654530

VVV

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 100 mA

Peak Collector Current –ICM 200 mA

Peak Base Current –IBM 200 mA

Peak Emitter Current IEM 200 mA

Power Dissipation at Tamb = 25 °C Ptot 5001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

84 ITT INTERMETALL

BC556 … BC559

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

h-Parametersat –VCE = 5 V, –IC = 2 mA, f = 1 kHzCurrent Gain Current Gain Group A

BC

Input Impedance Current Gain Group ABC

Output Admittance Current Gain Group ABC

Reverse Voltage Transfer RatioCurrent Gain Group A

BC

hfehfehfehiehiehiehoehoehoe

hrehrehre

–––1.63.26–––

–––

2203306002.74.58.7183060

1.5 · 10–4

2 · 10–4

3 · 10–4

–––4.58.5153060110

–––

–––kΩkΩkΩµSµSµS

–––

DC Current Gainat –VCE = 5 V, –IC = 10 µA

Current Gain Group ABC

at –VCE = 5 V, –IC = 2 mACurrent Gain Group A

BC

at –VCE = 5 V, –IC = 100 mACurrent Gain Group A

BC

hFEhFEhFE

hFEhFEhFE

hFEhFEhFE

–––

110200420

–––

90150270

180290500

120200400

–––

220450800

–––

–––

–––

–––

Thermal Resistance Junction to Ambient Air RthA – – 2501) K/W

Collector Saturation Voltageat –IC = 10 mA, –IB = 0.5 mAat –IC = 100 mA, –IB = 5 mA

–VCEsat–VCEsat

––

80250

300650

mVmV

Base Saturation Voltageat –IC = 10 mA, –IB = 0.5 mAat –IC = 100 mA, –IB = 5 mA

–VBEsat–VBEsat

––

700900

––

mVmV

Base-Emitter Voltageat –VCE = 5 V, –IC = 2 mAat –VCE = 5 V, –IC = 10 mA

–VBE–VBE

600–

660–

750800

mVmV

Collector-Emitter Cutoff Currentat –VCE = 80 V BC556at –VCE = 50 V BC557at –VCE = 30 V BC558at –VCE = 80 V, Tj = 125 °C BC556at –VCE = 50 V, Tj = 125 °C BC557at –VCE = 30 V, Tj = 125 °C BC558, BC559

–ICES–ICES–ICES–ICES–ICES–ICES

––––––

0.20.20.2–––

151515444

nAnAnAµAµAµA

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 85

BC556 … BC559

Characteristics, continuation

Symbol Min. Typ. Max. Unit

Gain-Bandwidth Productat –VCE = 5 V, –IC = 10 mA, f = 100 MHz

fT – 150 – MHz

Collector-Base Capacitanceat –VCB = 10V, f = 1 MHz

CCBO – – 6 pF

Noise Figureat –VCE = 5 V, –IC = 200 µA, RG = 2 kΩ,f = 1 kHz, ∆f = 200 Hz BC556, BC557, BC558

BC559FF

––

21

104

dBdB

Noise Figureat –VCE = 5 V, –IC = 200 µA, RG = 2 kΩ,f = 30…15000 Hz BC559 F – 1.2 4 dB

86 ITT INTERMETALL

Pulse thermal resistance versus pulse duration

K/W

rthA

1

tp

Valid provided that leads are kept at ambienttemperature at a distance of 2 mm from case

BC556...BC559

2

103

5

102

5

2

10

5

2

5

2

10-1

10-6 10-4 10-2 1 10 s2

0.2

0.1

0.05

0.02

0.01

0.005

tpν = tp

T PI

T

ν = 0

Admissible power dissipation versus temperature

mW500

Ptot

300

200

10000

100

Tamb

200 °C

Valid provided that leads are kept at ambienttemperature at a distance of 2 mm from case

BC556...BC559

400

ITT INTERMETALL 87

BC556 … BC559

DC current gain versus collector current

10

5

hFE

101

-IC

3BC556...BC559

4

3

2

102

5

4

3

2

10

54

3

2

-2 10-1 101 102 mA

-50 °C

-VCE = 5 V

100 °C

Tamb = 25 °C

Collector current versus base-emitter voltage

mA10

5

-IC

10

1

010

-VBE

BC556...BC5592

4

3

2

5

4

3

2

5

4

3

2

-1

0.5 1 V

TA = 100 °C -50 °C

25 °C

-VCE = 5 V

Collector-base cutoff current versus junction temperature

nA

-ICBO

10

1000

1

Tj

200 °C

BC556, BC559

103

104

102

10-1

Test voltage -V :equal to the givenmaximum value

typicalmaximum

-VCEO

CBO

Collector saturation voltage versus collector current

V0.5

0.4

-VCEsat

0.3

0.2

10

0.1

-IC

BC556...BC559

102 5 2 5 2 510-1 10 mA2

-50 °C

-I C = 20-I B

Tamb = 100 °C25 °C

88 ITT INTERMETALL

BC556 … BC559

Collector-base capacitance, Emitter-base capacitance versus reverse bias voltage

pF20

12

8

10.10

4

-VCBO,

10 V

BC556...BC559

16

-VEBO

2

CCBOCEBO

CCBO

CEBO

T = 25 °Camb

18

14

10

6

2

5 2 5

Gain-bandwidth product versus collector current

MHz10

fT

0.1-IC

100 mA

BC556...BC5593

7

5

4

3

2

102

7

5

4

3

2

102 5 1 2 5 10 2 5

5 V

2 V

-V = 10 VCE

T = 25 °Camb

Relative h-parameters versus collector current

10

110

1

-IC

10 mA

BC556...BC559102

6

4

2

6

4

2

6

4

2

-1

10-12 4 2 4

h (-I = 2 mA)e C

h (-I )e C

hie

hoe

hre

hfe

-V = 5 VCET = 25 °Camb

Noise figure versus collector current

dB20

F

12

8

100

6

-IC

10 mA

BC559

18

16

14

10

4

2

-3 10-2 10-1 1

-V = 5 VCE

f = 120 Hz

amb

G

500 V

T = 25 °C

R = 1 MV 100 kV 10 kV 1kV

ITT INTERMETALL 89

BC556 … BC559

Noise figure versus collector current

dB20

F

12

8

100

6

-IC

10 mA

BC559

18

16

14

10

4

2

-3 10-2 10-1 1

-V = 5 VCE

f = 1 kHz

amb

500 V

1kV

500 V

T = 25 °C

GR = 1 MV 100 kV 10 kV

Noise figure versus collector-emitter voltage

dB20

F

12

8

0.10

6

-VCE

100 V

BC559

18

16

14

10

4

2

2 1 2

-I = 0.2 mAC

f = 1 kHz

ambT = 25 °C

R = 2 kVG

5 5 10 2 5

BC807, BC808

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage BC807BC808

–VCES–VCES

5030

VV

Collector-Emitter Voltage BC807BC808

–VCEO–VCEO

4525

VV

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 500 mA

Peak Collector Current –ICM 1000 mA

Peak Base Current –IBM 200 mA

Peak Emitter Current IEM 1000 mA

Power Dissipation at TSB = 50 °C Ptot 3101) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

PNP Silicon Epitaxial Planar Transistorsfor switching, AF driver and amplifier applications.

Especially suited for automatic insertion in thick- andthin-film circuits.

These transistors are subdivided into three groups -16,-25 and -40 according to their current gain.As complementary types, the NPN transistors BC817and BC818 are recommended.

Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

Marking code

Type Marking

BC807-16-25-40

BC808-16-25-40

5A5B5C

5E5F5G

90

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

ITT INTERMETALL

BC807, BC808

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

DC Current Gainat –VCE = 1 V, –IC = 100 mA

Current Gain Group-16-25-40

at –VCE = 1 V, –IC = 300 mA -16-25-40

hFEhFEhFEhFEhFEhFE

10016025060100170

––––––

250400600–––

––––––

Thermal Resistance Junction SubstrateBackside

RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Collector Saturation Voltageat –IC = 500 mA, –IB = 50 mA

–VCEsat – – 0.7 V

Base-Emitter Voltageat –VCE = 1 V, –IC = 300 mA

–VBE – – 1.2 V

Collector-Emitter Cutoff Currentat –VCE = 45 V BC807at –VCE = 25 V BC808at –VCE = 25 V, Tj = 150 °C

–ICES–ICES–ICES

–––

–––

1001005

nAnAµA

Emitter-Base Cutoff Currentat –VEB = 4 V

–IEBO – – 100 nA

Gain-Bandwidth Productat –VCE = 5 V, –IC = 10 mA, f = 50 MHz

fT – 100 – MHz

Collector-Base Capacitanceat –VCB = 10 V, f = 1 MHz

CCBO 12 pF

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 91

92 ITT INTERMETALL

BC807, BC808

Admissible power dissipation versus temperature of substrate backside

mW500

Ptot

300

200

10000

100

TSR

200 °C

Device on fiberglass substrate, see layout

BC807, BC808

400

Pulse thermal resistance versus pulse duration (normalized)

10

10

RthSB

tp

Device on fiberglass substrate, see layout

0

5

3

-1

5

2

4

2

10-3

10-7 10-6 10-5 10-4 10-3 10-2 1 s

BC807, BC808

tptpT

ν =PI

T

0.1

0.05

0.02

0.01

ν = 0

4

2

4

3

5

3

10-1

5 -3

0.2

0.5

rthSB

10-2

Collector current versus base-emitter voltage

mA10

10-IC

10

1

-VBE

3

5

2

2

5

2

5

2

5

2

10-1

0 1 2 V

BC807, BC808

-50 °C

25 °C

typical

at T =25 °Camblimits

150 °C

Gain-bandwidth product versus collector current

MHz10

10

-IC

3

7

2

2

101

BC807, BC808

5

4

3

7

2

5

4

3

2 5 10 2 5 1022 5 103 mA

Tamb = 25 °Cf = 20 MHz

-VCE = 5 V

1 V

fT

ITT INTERMETALL 93

BC807, BC808

Collector saturation voltage versus collector current

V0.5

10100

-I

BC807, BC808

-V

-I

-1 1 102 310

typical

limitsat

CEsat

= 25 °CTamb

C

-IB= 10

150 °C25 °C

-50 °C

C

mA

0.4

0.3

0.2

0.1

Base saturation voltage versus collector current

V2

1

10100

-I

BC807, BC808

-V

-I

-1 1 102 310

typical

limitsat

BEsat

= 25 °CTamb

C-IB

= 10

150 °C

25 °C

-50 °C

C

mA

-1

DC current gain versus collector current

1000

hFE

100

10

-IC

700

500

400

300

200

70

50

40

30

20

10 1 10 102 10 mA3

BC807, BC808

-50 °C

-V = 1 VCE

150 °C

= 25 °C

Common emitter collector characteristics

500

400

-IC

300

200

100

100

-VCE

2 V

-I = 0.2 mAB

BC807, BC808

0.8

0.6

0.4

1.4

1.2

1

1.6

1.82

2.4

2.83.2

mA

94 ITT INTERMETALL

BC807, BC808

Common emitter collector characteristics

mA100

-IC

1000

-VCE

20 V

80

60

40

200.1

0.2

0.3

BC807, BC808

-I = 0.05 mAB

0.15

0.25

0.35

Common emitter collector characteristics

mA500

400

-IC

300

200

100

100

-VCE

2 V

0.8

BC807, BC808

0.75

0.9

BE-V = 0.7 V

0.85

ITT INTERMETALL 95

BC807, BC808

BC856 … BC859

PNP Silicon Epitaxial Planar Transistorsfor switching and AF amplifier applications.

Especially suited for automatic insertion in thick- andthin-film circuits.

These transistors are subdivided into three groups A, Band C according to their current gain. The type BC856is available in groups A and B, however, the typesBC857, BC858 and BC859 can be supplied in all threegroups. The BC859 is a low noise type. As comple-mentary types, the NPN transistors BC846 … BC849are recommended.

Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

Marking code

Type Marking

BC856AB

BC857ABC

BC858ABC

3A3B3E3F3G3J3K3L

Type Marking

BC859ABC

4A4B4C

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage BC856BC857

BC858, BC859

–VCBO–VCBO–VCBO

805030

VVV

Collector-Emitter Voltage BC856BC857

BC858, BC859

–VCES–VCES–VCES

805030

VVV

Collector-Emitter Voltage BC856BC857

BC858, BC859

–VCEO–VCEO–VCEO

654530

VVV

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 100 mA

Peak Collector Current –ICM 200 mA

Peak Base Current –IBM 200 mA

Peak Emitter Current IEM 200 mA

Power Dissipation at TSB = 50 °C Ptot 3101) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

96 ITT INTERMETALL

BC856 … BC859

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

h-Parametersat –VCE = 5 V, –IC = 2 mA, f = 1 kHzCurrent Gain Current Gain Group A

BC

Input Impedance Current Gain Group ABC

Output Admittance Current Gain Group ABC

Reverse Voltage Transfer RatioCurrent Gain Group A

BC

hfehfehfehiehiehiehoehoehoe

hrehrehre

–––1.63.26–––

–––

2203306002.74.58.7183060

1.5 · 10–4

2 · 10–4

3 · 10–4

–––4.58.5153060110

–––

–––kΩkΩkΩµSµSµS

–––

DC Current Gainat –VCE = 5 V, –IC = 10 µA

Current Gain Group ABC

at –VCE = 5 V, –IC = 2 mACurrent Gain Group A

BC

hFEhFEhFE

hFEhFEhFE

–––

110200420

90150270

180290520

–––

220450800

–––

–––

Thermal Resistance Junction to SubstrateBackside

RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Collector Saturation Voltageat –IC = 10 mA, –IB = 0.5 mAat –IC = 100 mA, –IB = 5 mA

–VCEsat–VCEsat

––

90250

300650

mVmV

Base Saturation Voltageat –IC = 10 mA, –IB = 0.5 mAat –IC = 100 mA, –IB = 5 mA

–VBEsat–VBEsat

––

700900

––

mVmV

Base-Emitter Voltageat –VCE = 5 V, –IC = 2 mAat –VCE = 5 V, –IC = 10 mA

–VBE–VBE

600–

660–

750800

mVmV

Collector-Emitter Cutoff Currentat –VCE = 80 V BC856at –VCE = 50 V BC857at –VCE = 30 V BC858, BC859at –VCE = 80 V, Tj = 125 °C BC856at –VCE = 50 V, Tj = 125 °C BC857at –VCE = 30 V, Tj = 125 °C BC858, BC859at –VCB = 30 Vat –VCB = 30 V, Tj = 150 °C

–ICES–ICES–ICES–ICES–ICES–ICES–ICBO–ICBO

––––––––

0.20.20.2–––––

151515444155

nAnAnAµAµAµAnAµA

Gain-Bandwidth Productat –VCE = 5 V, –IC = 10 mA, f = 100 MHz

fT – 150 – MHz

1) Device on fiberglass substrate, see layout

ITT INTERMETALL 97

BC856 … BC859

Characteristics, continuation

Symbol Min. Typ. Max. Unit

Collector-Base Capacitanceat –VCB = 10 V, f = 1 MHz

CCBO – – 6 pF

Noise Figureat –VCE = 5 V, –IC = 200 µA, RG = 2 kΩ,f = 1 kHz, ∆f = 200 Hz BC856, BC857, BC858

BC859FF

––

21

104

dBdB

Noise Figureat –VCE = 5 V, –IC = 200 µA, RG = 2 kΩ,f = 30…15000 Hz BC859 F – 1.2 4 dB

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

98 ITT INTERMETALL

ITT INTERMETALL 99

Admissible power dissipation versus temperature of substrate backside

mW500

Ptot

300

200

10000

100

TSB

200 °C

Device on fiberglass substrate, see layout

BC856...BC859

400

Pulse thermal resistance versus pulse duration (normalized)

10

10

RthSB

tp

Device on fiberglass substrate, see layout

0

5

3

-1

5

2

4

2

10-3

10-7 10-6 10-5 10-4 10-3 10-2 1 s

BC856...BC859

tptpT

ν =PI

T

0.1

0.05

0.02

0.01

ν= 0

4

2

4

3

5

3

10-1

5 -3

0.2

0.5

rthSB

10-2

BC856 … BC859

DC current gain versus collector current

10

5

hFE

101

-IC

3BC856...BC859

4

3

2

102

5

4

3

2

10

54

3

2

-2 10-1 101 102 mA

-50 °C

-VCE = 5 V

100 °C

Tamb = 25 °C

Collector-base cutoff current versus junction temperature

nA

-ICBO

10

1000

1

Tj

200 °C

BC856...BC859

103

104

102

10-1

Test voltage -V :equal to the givenmaximum value

typicalmaximum

-VCEO

CBO

100 ITT INTERMETALL

BC856 … BC859

Collector-base capacitance, Emitter-base capacitance versus reverse bias voltage

pF20

12

8

10.10

4

-VCBO,

10 V

BC856...BC859

16

-VEBO

2

CCBOCEBO

CCBO

CEBO

T = 25 °Camb

18

14

10

6

2

5 2 5

Relative h-parameters versus collector current

10

110

1

-IC

10 mA

BC856...BC859102

6

4

2

6

4

2

6

4

2

-1

10-12 4 2 4

h (-I = 2 mA)e C

h (-I )e C

hie

hoe

hre

hfe

-V = 5 VCET = 25 °Camb

Collector current versus base-emitter voltage

mA10

5

-IC

10

1

010

-VBE

BC856...BC8592

4

3

2

5

4

3

2

5

4

3

2

-1

0.5 1 V

-VCE = 5 VTamb = 25 °C

Collector saturation voltage versus collector current

V0.5

0.4

-VCEsat

0.3

0.2

10

0.1

-IC

BC856...BC859

102 5 2 5 2 510-1 10 mA2

-50 °C

-I C = 20-I B

Tamb = 100 °C25 °C

ITT INTERMETALL 101

BC856 … BC859

Noise figure versus collector current

dB20

F

12

8

100

6

-IC

10 mA

BC859, BC859

18

16

14

10

4

2

-3 10-2 10-1 1

-V = 5 VCE

f = 1 kHz

amb

1kV

500 V

T = 25 °C

GR = 1 MV 100 kV 10 kV

Noise figure versus collector-emitter voltage

dB20

F

12

8

0.10

6

-VCE

100 V

BC859, BC859

18

16

14

10

4

2

2 1 2

-I = 0.2 mAC

f = 1 kHz

ambT = 25 °C

R = 2 kVG

5 5 10 2 5

Gain-bandwidth product versus collector current

MHz10

fT

0.1-IC

100 mA

BC856...BC8593

7

5

4

3

2

102

7

5

4

3

2

102 5 1 2 5 10 2 5

5 V

2 V

-V = 10 VCE

T = 25 °Camb

Noise figure versus collector current

dB20

F

12

8

100

6

-IC

10 mA

BC859...BC859

18

16

14

10

4

2

-3 10-2 10-1 1

-V = 5 VCE

f = 120 Hz

amb

G

500 V

T = 25 °C

R = 1 MV 100 kV 10 kV 1kV

BF421, BF423

PNP Silicon Epitaxial Transistorsespecially suited for application in class-Bvideo output stages of TV receivers and monitors.

As complementary types, the NPN transistors BF420and BF422 are recommended.

0.55∅ max.

2.5

C

BE

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage BF421BF423

–VCBO–VCBO

300250

VV

Collector-Emitter Voltage BF423 –VCEO 250 V

Collector-Emitter Voltage BF421 –VCER 300 V

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 50 mA

Peak Collector Current –ICM 100 mA

Power Dissipation at Tamb = 25 °C Ptot 8301) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

102 ITT INTERMETALL

BF421, BF423

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Base Breakdown Voltage BF421at –IC = 100 µA, IE = 0 BF423

–V(BR)CBO–V(BR)CBO

300250

––

––

VV

Collector-Emitter Breakdown Voltage BF423at –IC = 10 mA, IB = 0

–V(BR)CEO 250 – – V

Collector-Emitter Breakdown Voltage BF421at RBE = 2.7 kΩ, at –IC = 10 mA

–V(BR)CER 300 – – V

Emitter-Base Breakdown Voltageat –IE = 100 µA, IC = 0

–V(BR)EBO 5 – – V

Collector-Base Cutoff Currentat –VCB = 200 V, IE = 0

–ICBO – – 10 nA

Collector-Emitter Cutoff Currentat RBE = 2.7 kΩ, –VCE = 250 Vat RBE = 2.7 kΩ, –VCE = 200 V, Tj = 150 °C

–ICER–ICER

5010

nAµA

Collector Saturation Voltageat –IC = 30 mA, –IB = 5 mA

–VCEsat – – 0.8 V

DC Current Gainat –VCE = 20 V, –IC = 25 mA

hFE 50 – – –

Gain-Bandwidth Productat –VCE = 10 V, –IC = 10 mA

fT 60 – – MHz

Feedback Capacitanceat –VCE = 30 V, –IC = 0, f = 1 MHz

Cre – – 1.6 pF

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 103

BF821, BF823

PNP Silicon Epitaxial Planar Transistorsespecially suited for application in class-Bvideo output stages of TV receivers and monitors.

As complementary types, the NPN transistors BF820and BF822 are recommended.

Pin Configuration1 = Collector, 2 = Base, 3 = Emitter.

Marking codeBF821 = 1WBF823 = 1Y

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage BF821BF823

–VCBO–VCBO

300250

VV

Collector-Emitter Voltage BF823 –VCEO 250 V

Collector-Emitter Voltage BF821 –VCER 300 V

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 50 mA

Peak Collector Current –ICM 100 mA

Power Dissipation at TSB = 50 °C Ptot 3001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

104 ITT INTERMETALL

BF821, BF823

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Base Breakdown Voltage BF821at –IC = 100 µA, IE = 0 BF823

–V(BR)CBO–V(BR)CBO

300250

––

––

VV

Collector-Emitter Breakdown Voltage BF823at –IC = 10 mA, IB = 0

–V(BR)CEO 250 – – V

Collector-Emitter Breakdown Voltage BF821at RBE = 2.7 kΩ, –IC = 10 mA

–V(BR)CER 300 – – V

Emitter-Base Breakdown Voltageat –IE = 100 µA, IC = 0

–V(BR)EBO 5 – – V

Collector-Base Cutoff Currentat –VCB = 200 V, IE = 0

–ICBO – – 10 nA

Collector-Emitter Cutoff Currentat RBE = 2.7 kΩ, –VCE = 250 Vat RBE = 2.7 kΩ, –VCE = 200 V, Tj = 150 °C

–ICER–ICER

5010

nAµA

Collector Saturation Voltageat –IC = 30 mA, –IB = 5 mA

–VCEsat – – 0.8 V

DC Current Gainat –VCE = 20 V, –IC = 25 mA

hFE 50 – – –

Gain-Bandwidth Productat –VCE = 10 V, –IC = 10 mA

fT 60 – – MHz

Feedback Capacitanceat –VCE = 30 V, –IC = 0, f = 1 MHz

Cre – – 1.6 pF

Thermal Resistance Junction to Ambient Air RthA – – 4301) K/W

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 105

MMBT3906

PNP Silicon Epitaxial Planar Transistorfor switching and amplifier applications.

As complementary type, the NPN transistor MMBT3904 is recommended.

Pin Configuration1 = Collector, 2 = Base, 3 = Emitter.

Marking code3N

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Symbol Value Unit

Collector-Base Voltage –VCBO 40 V

Collector-Emitter Voltage –VCEO 40 V

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 100 mA

Peak Collector Current –ICM 200 mA

Power Dissipation at TSB = 50 °C Ptot 3101) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –55…+150 °C

1) Device on fiberglass subtrate, see layout

106 ITT INTERMETALL

MMBT3906

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

DC Current Gainat –VCE = 1 V, –IC = 0.1 mAat –VCE = 1 V, –IC = 1 mAat –VCE = 1 V, –IC = 10 mAat –VCE = 1 V, –IC = 50 mAat –VCE = 1 V, –IC = 100 mA

hFEhFEhFEhFEhFE

60801006030

–––––

––300––

––––

Thermal Resistance Junction to SubstrateBackside

RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Collector Saturation Voltageat –IC = 10 mA, –IB = 1 mAat –IC = 50 mA, –IB = 5 mA

–VCEsat–VCEsat

––

––

0.250.4

VV

Base Saturation Voltageat –IC = 10 mA, –IB = 1 mAat –IC = 50 mA, –IB = 5 mA

–VBEsat–VBEsat

––

––

0.850.95

VV

Collector-Emitter Cutoff Currentat –VEB = 3 V, –VCE = 30 V

–ICEV – – 50 nA

Emitter-Base Cutoff Currentat –VEB = 3 V, –VCE = 30 V

–IEBV – – 50 nA

Collector-Base Breakdown Voltageat –IC = 10 µA, IE = 0

–V(BR)CBO 40 – – V

Collector-Emitter Breakdown Voltageat –IC = 1 mA, IB = 0

–V(BR)CEO 40 – – V

Emitter-Base Breakdown Voltageat –IE = 10 µA, IC = 0

–V(BR)EBO 5 – – V

Gain-Bandwidth Productat –VCE = 20 V, –IC = 10 mA, f = 100 MHz

fT 250 – – MHz

Collector-Base Capacitanceat –VCB = 5 V, f = 100 kHz

CCBO – – 4.5 pF

Emitter-Base Capacitanceat –VEB = 0.5 V, f = 100 kHz

CEBO – – 10 pF

Input Impedance at –VCE = 10 V, –IC = 1 mA, f = 1 kHz

hie 1 – 10 kΩ

1) Device on fiberglass substrate, see layout

ITT INTERMETALL 107

MMBT3906

Characteristics, continuation

Fig. 1: Test circuit for delay and rise time Fig. 2: Test circuit for storage and fall time

* total shunt capacitance of test jig and connectors * total shunt capacitance of test jig and connectors

Symbol Min. Typ. Max. Unit

Voltage Feedback Ratio at –VCE = 10 V, –IC = 1 mA, f = 1 kHz

hre 0.5 · 10–4 – 8 · 10–4 –

Small-Signal Current Gain at –VCE = 10 V, –IC = 1 mA, f = 1 kHz

hfe 100 – 400 –

Output Admittanceat –VCE = 1 V, –IC = 1 mA, f = 1 kHz

hoe 1 – 40 µS

Noise Figureat –VCE = 5 V, –IC = 100 µA, RG = 1 kΩ,f = 10…15 000 Hz

F – – 4 dB

Delay Time (see Fig. 1)at –IB1 = 1 mA, –IC = 10 mA

td – – 35 ns

Rise Time (see Fig. 1)at –IB1 = 1 mA, –IC = 10 mA

tr – – 35 ns

Storage Time (see Fig. 2)at IB1 = –IB2 = 1 mA, –IC = 10 mA

ts – – 225 ns

Fall Time (see Fig. 2)at IB1 = –IB2 = 1 mA, –IC = 10 mA

tf – – 75 ns

300 nsDUTY CYCLE = 2%

- 0.5 V

- 10.6 V

< 10 ns- 3.0 V

27510 K

C < 4.0 pF*3

0

+ 9.1V - 3.0 V275

10 K

C < 4.0 pF*3

10 < t < 500 msDUTY CYCLE = 2%

- 10.9 Vt11

< 1.0 ns

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

108 ITT INTERMETALL

MMBT3906

ITT INTERMETALL 109

MMBTA92, MMBTA93

PNP Silicon Epitaxial Planar Transistorsespecially suited as line switch in telephone subsetsand in video output stages of TV receivers and moni-tors.

As complementary types, the PNP transistors MMBTA42and MMBTA43 are recommended.

Pin Configuration1 = Collector, 2 = Base, 3 = Emitter

Marking CodeMMBTA92 = 2DMMBTA93 = 2E

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage MMBTA92MMBTA93

–VCEO–VCEO

300200

VV

Collector-Base Voltage MMBTA92MMBTA93

–VCBO–VCBO

300200

VV

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 500 mA

Power Dissipation1) at TSB = 50 °C Ptot 3001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

110 ITT INTERMETALL

MMBTA92, MMBTA93

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Emitter Breakdown Voltage MMBTA92–IC = 10 mA, IB = 0 MMBTA93

–V(BR)CEO–V(BR)CEO

300200

––

––

VV

Collector-Base Breakdown Voltage MMBTA92–IC = 100 µA, IE = 0 MMBTA93

–V(BR)CBO–V(BR)CBO

300200

––

––

VV

Emitter-Base Breakdown Voltage–IE = 100 µA, IC = 0

–V(BR)EBO 5 – – V

Collector-Base Cutoff Current–VCB = 200 V, IE = 0 MMBTA92–VCB = 160 V, IE = 0 MMBTA93

–ICBO–ICBO

––

––

250250

nAnA

Emitter-Base Cutoff Current–VEB = 3 V, IC = 0

–IEBO – – 100 nA

DC Current Gain–IC = 1 mA, –VCE = 10 V–IC = 10 mA, –VCE = 10 V–IC = 30 mA, –VCE = 10 V

hFEhFEhFE

254025

–––

–––

–––

Collector-Emitter Saturation Voltage–IC = 20 mA, –IB = 2 mA

–VCEsat – – 500 mV

Base-Emitter Saturation Voltage–IC = 20 mA, –IB = 2 mA

–VBEsat – – 900 mV

Gain-Bandwidth Product–IC = 10 mA, –VCE = 20 V, f = 100 MHz

fT 50 – – MHz

Collector-Base Capacitance–VCB = 20 V, IE = 0, f = 1 MHz MMBTA92

MMBTA93CCBOCCBO

––

––

68

pFpF

Thermal Resistance Junction to Ambient Air RthA – – 4301) K/W

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 111

MPSA92, MPSA93

PNP Silicon Epitaxial Planar Transistorsespecially suited as line switch in telephone subsetsand in video output stages of TV receivers and moni-tors.

As complementary types, the PNP transistors MPSA42and MPSA43 are recommended.

0.55∅ max.

2.5

B

CE

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage MPSA92MPSA93

–VCEO–VCEO

300200

VV

Collector-Base Voltage MPSA92MPSA93

–VCBO–VCBO

300200

VV

Emitter-Base Voltage –VEBO 5 V

Collector Current –IC 500 mA

Power Dissipation at Tamb = 25 °C Ptot 6251) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that lead are kept at ambient temperature at a distance of 2 mm from case.

112 ITT INTERMETALL

MPSA92, MPSA93

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Emitter Breakdown Voltage MPSA92–IC = 10 mA, IB = 0 MPSA93

–V(BR)CEO–V(BR)CEO

300200

––

––

VV

Collector-Base Breakdown Voltage MPSA92–IC = 100 µA, IE = 0 MPSA93

–V(BR)CBO–V(BR)CBO

300200

––

––

VV

Emitter-Base Breakdown Voltage–IE = 100 µA, IC = 0

–V(BR)EBO 5 – – V

Collector-Base Cutoff Current–VCB = 200 V, IE = 0 MPSA92–VCB = 160 V, IE = 0 MPSA93

–ICBO–ICBO

––

––

250250

nAnA

Emitter-Base Cutoff Current–VEB = 3 V, IC = 0

–IEBO – – 100 nA

DC Current Gain–IC = 1 mA, –VCE = 10 V–IC = 10 mA, –VCE = 10 V–IC = 30 mA, –VCE = 10 V

hFEhFEhFE

254025

–––

–––

–––

Collector-Emitter Saturation Voltage–IC = 20 mA, –IB = 2 mA

–VCEsat – – 500 mV

Base-Emitter Saturation Voltage–IC = 20 mA, –IB = 2 mA

–VBEsat – – 900 mV

Gain-Bandwidth Product–IC = 10 mA, –VCE = 20 V, f = 100 MHz

fT 50 – – MHz

Collector-Base Capacitance–VCB = 20 V, IE = 0, f = 1 MHz MPSA92

MPSA93CCBOCCBO

––

––

68

pFpF

Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

1) Valid provided that lead are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 113

114 ITT INTERMETALL

DMOS Transistors (N-Channel)

ITT INTERMETALL 115

2N7000

N-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

0.55∅ max.

2.5

G

DS

4.6 3.6

Absolute Maximum Ratings

Inverse Diode

Symbol Value Unit

Drain-Source Voltage VDSS 60 V

Drain-Gate Voltage VDGS 60 V

Gate-Source Voltage (pulsed) VGS ± 20 V

Drain Current (continuous) ID 300 mA

Power Dissipation at Tamb = 25 °C Ptot 8301) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 500 mA

Forward Voltage Drop (typ.)at VGS = 0, IF = 0.5 A, Tj = 25 °C

VF 850 mV

116 ITT INTERMETALL

2N7000

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat ID = 100 µA, VGS = 0 V

V(BR)DSS 60 90 – V

Gate-Body Leakage Current, Forwardat VGSF = 20 V, VDS = 0 V

IGSSF – – 10 nA

Gate-Body Leakage Current, Reverseat VGSR = –20 V, VDS = 0 V

IGSSR – – –10 nA

Drain Cutoff Current at VDS = 48 V, VGS = 0 V

IDSS – – 1 µA

Gate-Source Threshold Voltageat VGS = VDS, ID = 1.0 mA

VGS(th) 0.8 1.5 3 V

Drain-Source ON Resistanceat VGS = 10 V, ID = 500 mA

RDS(ON) – 3.5 5.0 Ω

Capacitanceat VDS = 25 V, VGS = 0 V, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrSS

–––

60255

–––

pFpFpF

Switching Timesat VGS = 10 V, VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

1010

––

nsns

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 117

118 ITT INTERMETALL

2N7000

Output characteristics

A1

0.6

0.4

4000

0.2

VDS

100 V

Pulse test width 80 ms; pulse duty factor 1%.

2N7000

0.8

20 60 80

ID(ON)

T = 25 °CA

V = 6 VGS

5 V

4 V

3 V

7 V

Admissible power dissipation versus temperature

W1

Ptot

0.6

0.4

10000

0.2

TA

200 °C

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

2N7000

0.8

Saturation characteristics

mA500

ID(ON)

300

200

600

100

VDS

10 V

Pulse test width 80 ms; pulse duty factor 1%.

2N7000

400

T = 25 °CA

V = 5 VGS

2 4 8

3 V

3.5 V

4 V

4.5 V

Drain-source current versus gate threshold voltage

mA

0VGS(TO)

5 V

2N7000

10

1

10-1

103

102

10-2

10-3

1 2 3 4

IDS

V = VDS GS

T = 25 °CA

ITT INTERMETALL 119

Normalized drain-source resistance versus temperature

10

1

-100TA

200 °C

2N7000

10-1

0

rDSn

7

5

4

3

2

7

5

4

3

2

100

rDS (T )A

(25 °C)r =DSn rDS

∆V = V – V GS

GS (TO)V at I = 1 mAD

>3 V2 V1 V

0.5 V

∆V

GS(TO)

2N7000

Normalized gate-source voltage versus temperature

VGS

-100TA

200 °C

2N70002.0

100

n

VGS (T )A

(25 °C)

I = 1 mAD

1.6

1.2

0.8

0.4

00

V =GSn VGS

V = DS VGS

Normalized drain-source current versus temperature

-100TA

200 °C

2N7000104

103

102

10

1

10-2

0 100

IDSn

IDS (T )A

IDS (25 °C)

V = 45 VDS

10-1

I =DSn

Drain current versus gate-source voltage

A1

ID

0.6

0.4

00

0.2

VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%.

2N7000

0.8

2 4 6 8

V = 10 VDS

T = 25 °CA

120 ITT INTERMETALL

2N7000

Transconductance versus gate-source voltage

mS500

gfs

00

VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

2N7000

400

300

200

100

2 4 6 8

V = 10 VDS

Transconductance versus drain current

mS500

gfs

00

ID

500 mA

Pulse test width 80 ms; pulse duty factor 1%

2N7000

400

300

200

100

100 200 300 400

V = 10 VDS

Capacitance versus drain-source voltage

pF100

C

1000

VDS

20 V

2N7000

80

60

40

20

V = 0GSf = 1 MHzT = 25 °CA

Ciss

CossCrss

Drain-source resistance versus gate-source voltage

V

rDS(ON)

1001

VGS

20 V

2N7000102

7

5

4

3

2

10

7

5

4

3

2

V = 0.1 VDS

T = 25 °CA

ITT INTERMETALL 121

2N7000

2N7002

N-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

Pin configuration1 = Drain, 2 = Gate, 3 = Source.

Marking S72

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum RatingsAbsolute Maximum Ratings

Inverse Diode

Symbol Value Unit

Drain-Source Voltage VDSS 60 V

Drain-Gate Voltage VDGS 60 V

Gate-Source-Voltage (pulsed) VGS ±20 V

Drain Current (continuous) ID 250 mA

Power Dissipation at TC = 50 °C Ptot 0.3101) W

Junction Temperature Tj 150 °C

Storage Temperature Range TS –55 …+150 °C

1) Ceramic Substrate 0.7mm; 2.5 cm2 area.

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 0.3 A

Forward Voltage Drop (typ.)at VGS = 0, IF = 0.3 A, Tj = 25 °C

VF 0.85 V

Symbol Value Unit

Drain-Source Voltage VDSS 60 V

Drain-Gate Voltage VDGS 60 V

Gate-Source Voltage (pulsed) VGS ± 20 V

Drain Current (continuous) ID 250 mA

Power Dissipation at TSB = 50 °C Ptot 0.3101) W

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

122 ITT INTERMETALL

2N7002

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat ID = 100 µA, VGS = 0 V(BR)DSS 60 90 – V

Gate Threshold Voltageat VGS = VDS, ID = 1 mA VGS(TO) – 2 2.5 V

Gate-Body Leakage Currentat VGS = 15 V, VDS = 0 IGSS – – 10 nA

Drain Cutoff Current at VDS = 25 V, VGS = 0 IDSS – – 0.5 µA

Drain-Source ON Resistanceat VGS = 10 V, ID = 500 mA rDS(ON) – 5 7.5 Ω

Thermal Resistance Junction to SubstrateBackside RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Forward Transconductanceat VDS = 10 V, ID = 200 mA, f = 1 MHz gm – 200 – mS

Input Capacitanceat VDS = 10 V, VGS = 0, f = 1 MHz Ciss – 60 – pF

Switching Timesat VGS = 10 V, VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

525

––

nsns

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 123

124 ITT INTERMETALL

2N7002

Admissible power dissipation versus temperature of substrate backside

mW500

Ptot

300

200

10000

100

TSB

200 °C

Device on fiberglass substrate, see layout

2N7002

400

Saturation characteristics

mA500

ID(ON)

300

200

600

100

VDS

10 V

Pulse test width 80 ms; pulse duty factor 1%.

2N7002

400

T = 25 °CA

V = 5 VGS

2 4 8

3 V

3.5 V

4 V

4.5 V

Output characteristics

A1

0.6

0.4

4000

0.2

VDS

100 V

Pulse test width 80 ms; pulse duty factor 1%.

2N7002

0.8

20 60 80

ID(ON)

T = 25 °CA

V = 6 VGS

5 V

4 V

3 V

7 V

Drain-source current versus gate threshold voltage

mA

0VGS(TO)

5 V

2N7002

10

1

10-1

103

102

10-2

10-3

1 2 3 4

IDS

V = VDS GS

T = 25 °CA

ITT INTERMETALL 125

2N7002

Drain current versus gate-source voltage

A1

ID

0.6

0.4

00

0.2

VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%.

2N7002

0.8

2 4 6 8

V = 10 VDS

T = 25 °CA

Normalized drain-source current versus temperature

-100TA

200 °C

2N7002104

103

102

10

1

10-2

0 100

IDSn

IDS (T )A

IDS (25 °C)

V = 45 VDS

10-1

I =DSn

Normalized gate-source voltage versus temperature

VGS

-100TA

200 °C

2N70022.0

100

n VGS (T )A

(25 °C)

I = 1 mAD

1.6

1.2

0.8

0.4

00

V =GSnVGS

V = DS VGS

Normalized drain-source resistance versus temperature

10

1

-100TA

200 °C

2N7002

10-1

0

rDSn

7

5

4

3

2

7

5

4

3

2

100

rDS (T )A

(25 °C)r =DSn rDS

∆V = V – V GS

GS (TO)V at I = 1 mAD

3 V2 V1 V

0.5 V

∆V

GS(TO)

&

126 ITT INTERMETALL

2N7002

Drain-source resistance versus gate-source voltage

V

rDS(ON)

1001

VGS

20 V

2N7002102

7

5

4

3

2

10

7

5

4

3

2

V = 0.1 VDST = 25 °CA

Transconductance versus drain current

mS500

gfs

00

ID

500 mA

Pulse test width 80 ms; pulse duty factor 1%

2N7002

400

300

200

100

100 200 300 400

V = 10 VDS

Transconductance versus gate-source voltage

mS500

gfs

00

VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

2N7002

400

300

200

100

2 4 6 8

V = 10 VDS

Capacitance versus drain-source voltage

pF100

C

1000

VDS

20 V

2N7002

80

60

40

20

V = 0GSf = 1 MHzT = 25 °CA

Ciss

CossCrss

ITT INTERMETALL 127

2N7002

BS108

N-Channel Enhancement Mode DMOS Transistor

Features– high breakdown voltage– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown– specially suited for telephone subsets

On special request, this transistor is also manufacturedin the pin configuration TO-18.

0.55∅ max.

2.5

G

SD

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Drain-Source Voltage VDSS 240 V

Drain-Gate Voltage VDGS 240 V

Gate-Source Voltage (pulsed) VGS ±20 V

Drain Current (continuous) ID 230 mA

Power Dissipation at Tamb = 25 °C Ptot 0.831) W

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

Inverse Diode

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 0.75 A

Forward Voltage Drop (typ.)at VGS = 0, IF = 0.75 A, Tj = 25 °C

VF 0.85 V

128 ITT INTERMETALL

BS108

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat ID = 100 µA, VGS = 0

V(BR)DSS 240 250 – V

Gate-Body Leakage Currentat VGS = 15 V, VDS = 0

IGSS – – 10 nA

Drain Cutoff Currentat VDS = 130 V, VGS = 0at VDS = 70 V, VGS = 0.2 V

IDSSIDSX

––

––

125

µAµA

Gate-Source Threshold Voltageat VGS = VDS, ID = 1 mA

VGS(TO) 0.8 1.5 2.5 V

Drain-Source ON Resistanceat VGS = 2.8 V, ID = 100 mA

RDS(ON) – 5.5 8 Ω

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

Capacitanceat VDS = 20 V, VGS = 0, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrSS

–––

80205

–––

pFpFpF

Switching Timesat VGS = 10 V, VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

550

––

nsns

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

ITT INTERMETALL 129

130 ITT INTERMETALL

BS108

Admissible power dissipation versus temperature

W1

Ptot

0.6

0.4

10000

0.2

Tamb

200 °C

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

BS108

0.8

Output characteristics

A2.0

ID(ON)

1.2

0.8

6000

0.4

VDS

100 V

Pulse test width 80 ms; pulse duty factor 1%

BS108

1.6

T = 25 °CA

V = 4 VGS

20 40 80

3

3.5

2

4.5

2.5

1.5

Saturation characteristics

mA500

ID(ON)

300

200

600

100

VDS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS108

400

T = 25 °CA

V = 2.5 VGS

2 4 8

1.5 V

2 V

3 V

Drain-source current versus gate threshold voltage

mA

0VGS(TO)

5 V

BS108

10

1

10-1

103

102

10-2

10-3

1 2 3 4

IDS

V = VDS GS

T = 25 °CA

ITT INTERMETALL 131

BS108

Normalized gate-source voltage versus temperature

VGS

-100Tamb

200 °C

BS1082.0

100

n

VGS (T )amb

(25 °C)

I = 1 mAD

1.6

1.2

0.8

0.4

00

V =GSn VGS

V = DS VGS

Drain current versus gate-source voltage

A1

ID

0.6

0.4

00

0.2

VGS

5 V

Pulse test width 80 ms; pulse duty factor 1%

BS108

0.8

1 2 3 4

V = 25 VDS

T = 25 °CA

Normalized drain-source current versus temperature

-100Tamb

200 °C

BS108104

103

102

10

1

10-2

0 100

IDSn

IDS (T )amb

IDS (25 °C)

V = 130 VDS

10-1

I =DSn

Normalized drain-source resistance versus temperature

10

1

-100Tamb

200 °C

BS108

10-1

0

rDSn

7

5

4

3

2

7

5

4

3

2

100

rDS (T )amb

(25 °C)r =DSn rDS

∆V = V – V GS

GS (TO)V at I = 1 mAD2.5 V

1 V

= 0.5 V∆V

GS(TO)

132 ITT INTERMETALL

BS108

Transconductance versus gate-source voltage

mS1000

gfs

00

VGS

Pulse test width 80 ms; pulse duty factor 1%

BS108

800

600

400

200

V = 25 VDS

1 2 3 4 5 V

Drain-source resistance versus gate-source voltage

V

rDS(ON)

1001

VGS

20 V

BS108102

7

5

4

3

2

10

7

5

4

3

2

V = 0.1 VDS

T = 25 °CA

Transconductance versus drain current

mS1000

gfs

00

ID

1000 mA

Pulse test width 80 ms; pulse duty factor 1%

BS108

800

600

400

200

500

V = 25 VDS

ITT INTERMETALL 133

BS108

BS109

N-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown 0.55∅ max.

2.5

G

SD

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Drain-Source Voltage VDSS 400 V

Drain-Gate Voltage VDGS 400 V

Gate-Source Voltage (pulsed) VGS ±20 V

Drain Current (continuous) at Tamb = 25 °C ID 120 mA

Power Dissipation at Tamb = 25 °C Ptot 8301) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Inverse Diode

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 400 mA

Forward Voltage Drop (typ.)at VGS = 0 V, IF = 400 mA, Tj = 25 °C

VF 1.0 V

134 ITT INTERMETALL

BS109

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat ID = 100 µA, VGS = 0 V

V(BR)DSS 400 430 – V

Gate-Body Leakage Current, Forwardat VGSF = 20 V, VDS = 0 V

IGSSF – – 100 nA

Gate-Body Leakage Current, Reverseat VGSR = 20 V, VDS = 0 V

IGSSR – – 100 nA

Drain Cutoff Currentat VDS = 400 V, VGS = 0 V

IDSS – – 500 nA

Gate-Source Threshold Voltageat VGS = VDS, ID = 250 µA

VGS(th) 1 1.5 2.5 V

Drain-Source ON Resistanceat VGS = 10 V, ID = 120 mA

RDS(on) – 16 22 Ω

Capacitanceat VDS = 25 V, VGS = 0, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrSS

–––

802010

–––

pFpFpF

Switching Timesat VGS = 10 V, VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

1050

––

nsns

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 135

BS123, BS623

Thickness: Fiberglass 1.5 mmCopper leads 0.3 mm

Absolute Maximum Ratings

Symbol Value Unit

Drain-Source Voltage VDSS 60 V

Drain-Gate Voltage VDGS 60 V

Gate-Source Voltage (pulsed) VGS ±20 V

Drain Current (continuous) at Tamb1) = 25 °C, at TSB

2) = 50 °C ID 1.1 A

Power Dissipation at Tamb1) = 25 °C, at TSB

2) = 50 °C Ptot 8301), 6002) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case (for TO-92).2) Device on fiberglass substrate, see layout (for SOT-89A).

N-Channel Enhancement Mode DMOS Transistors

Features– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

Packages– TO-92 (BS123)– SOT-89A (BS623)

Pin configuration (BS623)1 = Source, 2 = Gate, 3 = Drain

Marking (BS623)S62

Layout for RthA test

2.51.5

11

2.5 2.5

24 20.5

10

4 3

0.8

1

4.5

2.5

136

0.55∅ max.

2.5

G

SD

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

SOT-89A Plastic PackageWeight approx. 0.04 gDimensions in mm

1.7

4.5

1.5 1.5

10°

0.40.4 0.4 4.0

3.1

±0.2

+0.1

10°+0.2

3

2 3 1

Top View

ITT INTERMETALL

BS123, BS623

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat ID = 100 µA, VGS = 0 V

V(BR)DSS 60 80 – V

Gate-Body Leakage Current, Forwardat VGSF = 20 V, VDS = 0 V

IGSSF – – 500 nA

Gate-Body Leakage Current, Reverseat VGSR = 20 V, VDS = 0 V

IGSSR – – 500 nA

Drain Cutoff Currentat VDS = 60 V, VGS = 0 V

IDSS – – 250 µA

Gate-Source Threshold Voltageat VGS = VDS, ID = 250 µA

VGS(th) 1 1.5 3 V

Drain-Source ON Resistanceat VGS = 10 V, ID = 600 mA

RDS(on) – 0.3 0.4 Ω

Capacitanceat VDS = 25 V, VGS = 0 V, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrSS

–––

35015035

–––

pFpFpF

Switching Timesat VGS = 10 V, VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

40100

––

nsns

Thermal Resistance Junction to Ambient Air RthARthA

––

––

1501)

2002)K/WK/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case (for TO-92).2) Device on fiberglass substrate, see layout (for SOT-89A).

Inverse Diode

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 1.1 A

Forward Voltage Drop (typ.)at VGS = 0 V, IF = 1.1 A, Tj = 25 °C

VF 1 V

ITT INTERMETALL 137

BS170

N-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

On special request, this transistor is also manufacturedin the pin configuration TO-18.

0.55∅ max.

2.5

G

SD

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Inverse Diode

Symbol Value Unit

Drain-Source Voltage VDSS 60 V

Drain-Gate Voltage VDGS 60 V

Gate-Source Voltage (pulsed) VGS ± 20 V

Drain Current (continuous) ID 300 mA

Power Dissipation at Tamb = 25 °C Ptot 0.831) W

Junction Temperature Tj 150 °C

Storage Temperature Range Ts –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 0.5 A

Forward Voltage Drop (typ.)at VGS = 0, IF = 0.5 A, Tj = 25 °C

VF 0.85 V

138 ITT INTERMETALL

BS170

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat ID = 100 µA, VGS = 0

V(BR)DSS 60 80 – V

Gate Threshold Voltage at VGS = VDS,ID = 1 mA

VGS(TO) 1.0 2 3.0 V

Gate-Body Leakage Currentat VGS = 15 V, VDS = 0

IGSS – – 10 nA

Drain Cutoff Current at VDS = 25 V, VGS = 0 IDSS – – 0.5 µA

Drain-Source ON Resistanceat VGS = 10 V, ID = 0.2 A

rDS(ON) – 3.5 5.0 Ω

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

Forward Transconductanceat VDS = 10 V, ID = 0.2 A, f = 1 MHz

gm – 200 – mS

Input Capacitanceat VDS = 10 V, VGS = 0, f = 1 MHz

Ciss – 30 – pF

Switching Timesat VGS = 10 V, VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

515

––

nsns

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 139

140 ITT INTERMETALL

Drain-source current versus gate threshold voltage

mA

0VGS(TO)

5 V

BS170

10

1

10-1

103

102

10-2

10-3

1 2 3 4

IDS

V = VDS GS

T = 25 °CA

Saturation characteristics

mA500

ID(ON)

300

200

600

100

VDS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS170

400

T = 25 °CA

V = 5 VGS

2 4 8

3 V

3.5 V

4 V

4.5 V

Output characteristics

A1

0.6

0.4

4000

0.2

VDS

100 V

Pulse test width 80 ms; pulse duty factor 1%

BS170

0.8

20 60 80

ID(ON)

T = 25 °CA

V = 6 VGS

5 V

4 V

3 V

7 V

Admissible power dissipation versus temperature

W1

Ptot

0.6

0.4

10000

0.2

TA

200 °C

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

BS170

0.8

BS170

ITT INTERMETALL 141

Normalized drain-source resistance versus temperature

10

1

-100TA

200 °C

BS170

10-1

0

rDSn

7

5

4

3

2

7

5

4

3

2

100

rDS (T )A

(25 °C)r =DSn rDS

∆V = V – V GS

GS (TO)V at I = 1 mAD

>3 V2 V1 V

0.5 V

∆V

GS(TO)

Normalized drain-source current versus temperature

-100TA

200 °C

BS170104

103

102

10

1

10-2

0 100

IDSn

IDS (T )A

IDS (25 °C)

V = 45 VDS

10-1

I =DSn

Normalized gate-source voltage versus temperature

VGS

-100TA

200 °C

BS1702.0

100

n

VGS (T )A

(25 °C)

I = 1 mAD

1.6

1.2

0.8

0.4

00

V =GSn VGS

V = DS VGS

Drain current versus gate-source voltage

A1

ID

0.6

0.4

00

0.2

VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS170

0.8

2 4 6 8

V = 10 VDS

T = 25 °CA

BS170

142 ITT INTERMETALL

Capacitance versus drain-source voltage

pF100

C

1000

VDS

20 V

BS170

80

60

40

20

V = 0GSf = 1 MHzT = 25 °CA

Ciss

CossCrss

Transconductance versus drain current

mS500

gfs

00

ID

500 mA

Pulse test width 80 ms; pulse duty factor 1%

BS170

400

300

200

100

100 200 300 400

V = 10 VDS

Drain-source resistance versus gate-source voltage

V

rDS(ON)

1001

VGS

20 V

BS170102

7

5

4

3

2

10

7

5

4

3

2

V = 0.1 VDS

T = 25 °CA

Transconductance versus gate-source voltage

mS500

gfs

00

VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS170

400

300

200

100

2 4 6 8

V = 10 VDS

BS170

ITT INTERMETALL 143

BS170

BS809

Absolute Maximum Ratings

Symbol Value Unit

Drain-Source Voltage VDSS 400 V

Drain-Gate Voltage VDGS 400 V

Gate-Source Voltage (pulsed) VGS ±20 V

Drain Current (continuous) at TSB = 50 °C ID 100 mA

Power Dissipation at TSB = 50 °C Ptot 3101) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Device on fiberglass substrate, see layout

Inverse Diode

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 300 mA

Forward Voltage Drop (typ.)at VGS = 0 V, IF = 300 mA, Tj = 25 °C

VF 1.0 V

N-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

Pin Configuration1 = Drain, 2 = Gate, 3 = Source

MarkingS09

144

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

ITT INTERMETALL

BS809

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat ID = 100 µA, VGS = 0 V

V(BR)DSS 400 430 – V

Gate-Body Leakage Current, Forwardat VGSF = 20 V, VDS = 0 V

IGSSF – – 100 nA

Gate-Body Leakage Current, Reverseat VGSR = 20 V, VDS = 0 V

IGSSR – – 100 nA

Drain Cutoff Currentat VDS = 400 V, VGS = 0 V

IDSS – – 500 nA

Gate-Source Threshold Voltageat VGS = VDS, ID = 250 µA

VGS(th) 1 1.5 2.5 V

Drain-Source ON Resistanceat VGS = 5 V, ID = 100 mA

RDS(on) – 18 22 Ω

Capacitancesat VDS = 25 V, VGS = 0 V, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrS

–––

802010

–––

pFpFpF

Switching Timesat VGS = 10 V, VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

1050

––

nsns

Thermal Resistance Junction to SubstrateBackside

RthSB 3201)

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 145

BS828

N-Channel Enhancement Mode DMOS Transistor

Features– high breakdown voltage– high input impedance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown– specially suited for telephone subsets

Pin configuration1 = Drain, 2 = Gate, 3 = Source.

MarkingS28

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Inverse Diode

Symbol Value Unit

Drain-Source Voltage VDSS 240 V

Drain-Gate Voltage VDGS 240 V

Gate-Source Voltage (pulsed) VGS ± 20 V

Drain Current (continuous) ID 230 mA

Power Dissipation at TSB = 50 °C Ptot 0.3101) W

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 0.3 A

Forward Voltage Drop (typ.)at VGS = 0, IF = 0.3 A, Tj = 25 °C

VF 0.85 V

146 ITT INTERMETALL

BS828

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat ID = 100 µA, VGS = 0

V(BR)DSS 240 250 – V

Gate-Body Leakage Currentat VGS = 15 V, VDS = 0

IGSS – – 10 nA

Drain Cutoff Currentat VDS = 130 V, VGS = 0at VDS = 70 V, VGS = 0.2 V

IDSSIDSX

––

––

125

µAµA

Gate-Source Threshold Voltageat VGS = VDS, ID = 1 mA

VGS(TO) – 1.5 2.5 V

Drain-Source ON Resistanceat VGS = 2.8 V, ID = 100 mA

rDS(ON) – 5.5 8 Ω

Thermal Resistance Junction to SubstrateBackside

RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Capacitancesat VDS = 20 V, VGS = 0, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CissCossCrss

–––

80205

–––

pFpFpF

Switching Timesat VGS = 10 V, VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

550

––

nsns

1) Device on fiberglass substrate, see layout

ITT INTERMETALL 147

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

148 ITT INTERMETALL

BS828

Admissible power dissipation versus temperature of substrate backside

mW500

Ptot

300

200

10000

100

TSB

200 °C

Device on fiberglass substrate, see layout

BS828

400

Saturation characteristics

mA500

ID(ON)

300

200

600

100

VDS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS828

400

T = 25 °CA

V = 2.5 VGS

2 4 8

1.5

2

3

Output characteristics

A2.0

ID(ON)

1.2

0.8

6000

0.4

VDS

100 V

Pulse test width 80 ms; pulse duty factor 1%

BS828

1.6

T = 25 °CA

V = 4 VGS

20 40 80

3

3.5

2

4.5

2.5

1.5

Drain-source current versus gate threshold voltage

mA

0VGS(TO)

5 V

BS828

10

1

10-1

103

102

10-2

10-3

1 2 3 4

IDS

V = VDS GS

T = 25 °CA

ITT INTERMETALL 149

BS828

Drain current versus gate-source voltage

A1

ID

0.6

0.4

00

0.2

VGS

5 V

Pulse test width 80 ms; pulse duty factor 1%

BS828

0.8

1 2 3 4

V = 25 VDS

T = 25 °CA

Normalized drain-source current versus temperature

-100Tamb

200 °C

BS828104

103

102

10

1

10-2

0 100

IDSn

IDS (T )amb

IDS (25 °C)

V = 130 VDS

10-1

I =DSn

Normalized gate-source voltage versus temperature

VGS

-100Tamb

200 °C

BS8282.0

100

n

VGS (T )amb

(25 °C)

I = 1 mAD

1.6

1.2

0.8

0.4

00

V =GSn VGS

V = DS VGS

Normalized drain-source resistance versus temperature

10

1

-100TA

200 °C

BS828

10-1

0

rDSn

7

5

4

3

2

7

5

4

3

2

100

rDS (T )A

(25 °C)r =DSn rDS

∆V = V – V GS

GS (TO)V at I = 1 mAD

>2 V1 V

0.5 V

∆V

GS(TO)

150 ITT INTERMETALL

BS828

Drain-source resistance versus gate-source voltage

V

rDS(ON)

1001

VGS

20 V

BS828102

7

5

4

3

2

10

7

5

4

3

2

V = 0.1 VDS

T = 25 °CA

Transconductance versus gate-source voltage

mS1000

gfs

00

VGS

Pulse test width 80 ms; pulse duty factor 1%

BS828

800

600

400

200

V = 25 VDS

1 2 3 4 5 V

Transconductance versus drain current

mS1000

gfs

00

ID

1000 mA

Pulse test width 80 ms; pulse duty factor 1%

BS828

800

600

400

200

500

V = 25 VDS

BS828

ITT INTERMETALL 151

BS870

N-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

Pin configuration1 = Drain, 2 = Gate, 3 = Source.

Marking S70

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Inverse Diode

Symbol Value Unit

Drain-Source Voltage VDSS 60 V

Drain-Gate Voltage VDGS 60 V

Gate-Source Voltage (pulsed) VGS ± 20 V

Drain Current (continuous) ID 250 mA

Power Dissipation at TSB = 50 °C Ptot 0.3101) W

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 0.3 A

Forward Voltage Drop (typ.)at VGS = 0, IF = 0.3 A, Tj = 25 °C

VF 0.85 V

152 ITT INTERMETALL

BS870

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat ID = 100 µA, VGS = 0

V(BR)DSS 60 80 – V

Gate Threshold Voltageat VGS = VDS , ID = 1 mA

VGS(TO) 1.0 2 3.0 V

Gate-Body Leakage Currentat VGS = 15 V, VDS = 0

IGSS – – 10 nA

Drain Cutoff Current at VDS = 25 V, VGS = 0

IDSS – – 0.5 µA

Drain-Source ON Resistanceat VGS = 10 V, ID = 200 mA

rDS(ON) – 3.5 5.0 Ω

Thermal Resistance Junction to SubstrateBackside

RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Forward Transconductanceat VDS = 10 V, ID = 200 mA, f = 1 MHz

gm – 200 – mS

Input Capacitanceat VDS = 10 V, VGS = 0, f = 1 MHz

Ciss – 30 – pF

Switching Timesat VGS = 10 V, VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

525

––

nsns

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 153

154 ITT INTERMETALL

BS870

Admissible power dissipation versus temperature of substrate backside

mW500

Ptot

300

200

10000

100

TSB

200 °C

Device on fiberglass substrate, see layout

BS870

400

Saturation characteristics

mA500

ID(ON)

300

200

600

100

VDS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS870

400

T = 25 °CA

V = 5 VGS

2 4 8

3 V

3.5 V

4 V

4.5 V

Output characteristics

A1

0.6

0.4

4000

0.2

VDS

100 V

Pulse test width 80 ms; pulse duty factor 1%

BS870

0.8

20 60 80

ID(ON)

T = 25 °CA

V = 6 VGS

5 V

4 V

3 V

7 V

Drain-source current versus gate threshold voltage

mA

0VGS(TO)

5 V

BS870

10

1

10-1

103

102

10-2

10-3

1 2 3 4

IDS

V = VDS GS

T = 25 °CA

ITT INTERMETALL 155

BS870

Drain current versus gate-source voltage

A1

ID

0.6

0.4

00

0.2

VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS870

0.8

2 4 6 8

V = 10 VDS

T = 25 °CA

Normalized drain-source current versus temperature

-100TA

200 °C

BS870104

103

102

10

1

10-2

0 100

IDSn

IDS (T )A

IDS (25 °C)

V = 45 VDS

10-1

I =DSn

Normalized gate-source voltage versus temperature

VGS

-100TA

200 °C

BS8702.0

100

n

VGS (T )A

(25 °C)

I = 1 mAD

1.6

1.2

0.8

0.4

00

V =GSn VGS

V = DS VGS

Normalized drain-source resistance versus temperature

10

1

-100TA

200 °C

BS870

10-1

0

rDSn

7

5

4

3

2

7

5

4

3

2

100

rDS (T )A

(25 °C)r =DSn rDS

∆V = V – V GS

GS (TO)V at I = 1 mAD

>3 V2 V1 V

0.5 V

∆V

GS(TO)

156 ITT INTERMETALL

BS870

Drain-source resistance versus gate-source voltage

V

rDS(ON)

1001

VGS

20 V

BS870102

7

5

4

3

2

10

7

5

4

3

2

V = 0.1 VDST = 25 °CA

Transconductance versus drain current

mS500

gfs

00

ID

500 mA

Pulse test width 80 ms; pulse duty factor 1%

BS870

400

300

200

100

100 200 300 400

V = 10 VDS

Transconductance versus drain current

mS500

gfs

00

VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS870

400

300

200

100

2 4 6 8

V = 10 VDS

Capacitance versus drain-source voltage

pF100

C

1000

VDS

20 V

BS 870

80

60

40

20

V = 0GSf = 1 MHzT = 25 °CA

Ciss

CossCrss

ITT INTERMETALL 157

BS870

158 ITT INTERMETALL

DMOS Transistors (P-Channel)

ITT INTERMETALL 159

BS208

P-Channel Enhancement Mode DMOS Transistor

Features– high breakdown voltage– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown– specially suited for telephone subsets

On special request, this transistor is also manufacturedin the pin configuration TO-18.

0.55∅ max.

2.5

G

SD

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Inverse Diode

Symbol Value Unit

Drain-Source Voltage –VDSS 240 V

Drain-Gate Voltage –VDGS 240 V

Gate-Source Voltage (pulsed) VGS ± 20 V

Drain Current (continuous) –ID 200 mA

Power Dissipation at Tamb = 25 °C Ptot 0.831) W

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 0.75 A

Forward Voltage Drop (typ.)at VGS = 0, IF = 0.75 A, Tj = 25 °C

VF 0.85 V

160 ITT INTERMETALL

BS208

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat –ID = 100 µA, VGS = 0

–V(BR)DSS 240 250 – V

Gate-Body Leakage Currentat –VGS = 15 V, VDS = 0

–IGSS – – 10 nA

Drain Cutoff Currentat –VDS = 130 V, VGS = 0at –VDS = 70 V, –VGS = 0.2 V

–IDSS–IDSX

––

––

125

µAµA

Gate-Source Threshold Voltageat VGS = VDS, –ID = 1 mA

–VGS(TO) 0.8 1.5 2.5 V

Drain-Source ON Resistanceat –VGS = 5 V, –ID = 100 mA

rDS(ON) – 7 14 Ω

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

Capacitancesat –VDS = 20 V, VGS = 0, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CissCossCrss

–––

2003010

–––

pFpFpF

Switching Times at –ID = 200 mA, –UGS = 10 VTurn-on TimeFall Time

tontf

––

515

––

nsns

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 161

162 ITT INTERMETALL

BS208

Output characteristics

A2.0

-ID(ON)

1.2

0.8

6000

0.4

-VDS

100 V

Pulse test width 80 ms; pulse duty factor 1%

BS208

1.6

T = 25 °CA

-V = 9 VGS

20 40 80

5

6

3.5

4

3

87

Admissible power dissipation versus temperature

W1

Ptot

0.6

0.4

10000

0.2

Tamb

200 °C

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

BS208

0.8

Saturation characteristics

mA500

-ID(ON)

300

200

600

100

-VDS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS208

400

T = 25 °CA

-V = 4.5 VGS

2 4 8

3.5

4.0

5.0

Drain-source current versus gate threshold voltage

mA

0-VGS(TO)

5 V

BS208

10

1

10-1

103

102

10-2

10-3

1 2 3 4

-IDS

V = VDS GS

T = 25 °CA

ITT INTERMETALL 163

BS208

Normalized gate-source voltage versus temperature

VGS

-100TA

200 °C

BS2082.0

100

n

VGS (T )A

(25 °C)

-I = 1 mAD

1.6

1.2

0.8

0.4

00

V =GSn VGS

V = DS VGS

Normalized drain-source current versus temperature

-100TA

200 °C

BS208104

103

102

10

1

10-2

0 100

IDSn

IDS (T )A

IDS (25 °C)

-V = 130 VDS

10-1

I =DSn

Drain current versus gate-source voltage

A1

-ID

0.6

0.4

00

0.2

-VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS208

0.8

2 4 6 8

-V = 25 VDS

T = 25 °CA

Normalized drain-source resistance versus temperature

10

1

-100TA

200 °C

BS208

10-1

0

rDSn

7

5

4

3

2

7

5

4

3

2

100

rDS (T )A

(25 °C)r =DSn rDS

∆V = V – V GS

GS (TO)V at -I = 1mAD >2 V

1 V

= 0.5 V-∆V

GS(TO)

164 ITT INTERMETALL

BS208

Transconductance versus gate-source voltage

mS500

gfs

00

-VGS

Pulse test width 80 ms; pulse duty factor 1%

BS208

400

300

200

100

-V = 25 VDS

2 4 6 8 10 V

Transconductance versus drain current

mS1000

gfs

00

-ID

1000 mA

Pulse test width 80 ms; pulse duty factor 1%

BS208

800

600

400

200

500

-V = 25 VDS

Capacitance versus drain-source voltage

pF500

C

1000

-VDS

20 V

BS208

400

300

200

100

-V = 0GSf = 1 MHzT = 25 °CA

CossCrss

Ciss

Drain-source resistance versus gate-source voltage

V

rDS(ON)

1001

-VGS

20 V

BS208102

7

5

4

3

2

10

7

5

4

3

2

-V = 0.1 VDS

T = 25 °CA

ITT INTERMETALL 165

BS208

BS209

P-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown 0.55∅ max.

2.5

G

SD

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Drain-Source Voltage –VDSS 400 V

Drain-Gate Voltage –VDGS 400 V

Gate-Source Voltage (pulsed) VGS ±20 V

Drain Current (continuous) at Tamb = 25 °C –ID 120 mA

Power Dissipation at Tamb = 25 °C Ptot 8301) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Inverse Diode

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 400 mA

Forward Voltage Drop (typ.)at VGS = 0 V, IF = 400 mA, Tj = 25 °C

VF 1.0 V

166 ITT INTERMETALL

BS209

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat –ID = 100 µA, VGS = 0 V

–V(BR)DSS 400 430 – V

Gate-Body Leakage Current, Forwardat –VGSF = 20 V, VDS = 0 V

–IGSSF – – 100 nA

Gate-Body Leakage Current, Reverseat –VGSR = 20 V, VDS = 0 V

–IGSSR – – 100 nA

Drain Cutoff Currentat –VDS = 400 V, VGS = 0 V

–IDSS – – 500 nA

Gate-Source Threshold Voltageat VGS = VDS, –ID = 250 µA

–VGS(th) 1 1.5 2.5 V

Drain-Source ON Resistanceat –VGS = 5 V, –ID = 120 mA

RDS(on) – 50 60 Ω

Capacitanceat –VDS = 25 V, VGS = 0, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrSS

–––

2003010

–––

pFpFpF

Switching Timesat –VGS = 10 V, –VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

1050

––

nsns

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 167

BS223

P-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown 0.55∅ max.

2.5

G

SD

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Symbol Value Unit

Drain-Source Voltage –VDSS 60 V

Drain-Gate Voltage –VDGS 60 V

Gate-Source Voltage (pulsed) VGS ±20 V

Drain Current (continuous) at Tamb = 25 °C –ID 1 A

Power Dissipation at Tamb = 25 °C Ptot 8301) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Inverse Diode

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 1 A

Forward Voltage Drop (typ.)at VGS = 0 V, IF = 1 mA, Tj = 25 °C

VF 1.0 V

168 ITT INTERMETALL

BS223

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat –ID = 100 µA, VGS = 0 V

–V(BR)DSS 60 70 – V

Gate-Body Leakage Current, Forwardat –VGSF = 20 V, VDS = 0 V

–IGSSF – – 500 nA

Gate-Body Leakage Current, Reverseat –VGSR = 20 V, VDS = 0 V

–IGSSR – – 500 nA

Drain Cutoff Currentat –VDS = 60 V, VGS = 0 V

–IDSS – – 250 µA

Gate-Source Threshold Voltageat VGS = VDS, –ID = 250 µA

–VGS(TO) 1 1.5 3 V

Drain-Source ON Resistanceat –VGS = 10 V, –ID = 600 mA

RDS(on) – 0.7 0.8 Ω

Capacitanceat –VDS = 25 V, VGS = 0 V, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrSS

–––

35015035

–––

pFpFpF

Switching Timesat –VGS = 10 V, –VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

40100

––

nsns

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 169

BS250

P-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

On special request, this transistor is also manufacturedin the pin configuration TO-18.

0.55∅ max.

2.5

G

SD

4.6 3.6

TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

Absolute Maximum Ratings

Inverse Diode

Symbol Value Unit

Drain-Source Voltage –VDSS 60 V

Drain-Gate Voltage –VDGS 60 V

Gate-Source Voltage (pulsed) VGS ± 20 V

Drain Current (continuous) –ID 250 mA

Power Dissipation at Tamb = 25 °C Ptot 0.831) W

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 0.3 A

Forward Voltage Drop (typ.)at VGS = 0, IF = 0.12 A, Tj = 25 °C

VF 0.85 V

170 ITT INTERMETALL

BS250

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat –ID = 100 µA, VGS = 0

–V(BR)DSS 60 70 – V

Gate Threshold Voltageat VGS = VDS, –ID = 1 mA

–VGS(TO) 1.0 2.0 3.0 V

Gate-Body Leakage Currentat –VGS = 15 V, VDS = 0

–IGSS – – 20 nA

Drain Cutoff Current at –VDS = 25 V, VGS = 0 –IDSS – – 0.5 µA

Drain-Source ON Resistanceat –VGS = 10 V, –ID = 0.2 A

rDS(ON) – 3.5 5.0 Ω

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

Forward Transconductanceat –VDS = 10 V, –ID = 0.2 A, f = 1 MHz

gm – 150 – mS

Input Capacitanceat –VDS = 10 V, VGS = 0, f = 1 MHz

Ciss – 60 – pF

Switching Timesat –VGS = 10 V, –VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

525

––

nsns

1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

ITT INTERMETALL 171

172 ITT INTERMETALL

BS250

Admissible power dissipation versus temperature

W1

Ptot

0.6

0.4

10000

0.2

TA

200 °C

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

BS250

0.8

Output characteristics

mA500

-ID(ON)

300

200

6000

100

-VDS

100 V

Pulse test width 80 ms; pulse duty factor 1%

BS250

400

T = 25 °CA

-V = 5.5 VGS

20 40 80

6 V

4.5 V

5 V

3 V

4 V

Saturation characteristics

mA500

-ID(ON)

300

200

600

100

-VDS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS250

400

T = 25 °CA

-V = 5 VGS

2 4 8

3 V3.5 V

4 V

4.5 V

Drain-source current versus gate threshold voltage

mA

0-VGS(TO)

5 V

BS250

10

1

10-1

103

102

10-2

10-3

1 2 3 4

-IDS

V = VDS GS

T = 25 °CA

ITT INTERMETALL 173

BS250

Drain current versus gate-source voltage

A1

-ID

0.6

0.4

00

0.2

-VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS250

0.8

2 4 6 8

-V = 10 VDS

T = 25 °CA

Normalized drain-source current versus temperature

-100Tamb

200 °C

BS250104

103

102

10

1

10-2

0 100

IDSn

IDS (T )amb

IDS (25 °C)

-V = 35 VDS

10-1

I =DSn

Normalized drain-source resistance versus temperature

10

1

-100TA

200 °C

BS250

10-1

0

rDSn

7

5

4

3

2

7

5

4

3

2

100

rDS (T )A

(25 °C)r =DSn rDS

∆V = V – V GS

GS (TO)V at -I = 1 mAD

>3 V1 V0.5 V

−∆V

GS(TO)

Normalized gate-source voltage versus temperature

VGS

-100TA

200 C°

BS2502.0

100

n

VGS (T )A

(25 °C)

-I = 1 mAD

1.6

1.2

0.8

0.4

00

V =GSn VGS

V = DS VGS

174 ITT INTERMETALL

BS250

Drain-source resistance versus gate-source voltage

V

rDS(ON)

1001

-VGS

20 V

BS250102

7

5

4

3

2

10

7

5

4

3

2

-V = 0.1 VDS

T = 25 °CA

Transconductance versus gate-source voltage

mS500

gfs

00

-VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS250

400

300

200

100

2 4 6 8

-V = 10 VDS

Transconductance versus drain current

mS500

gfs

00

-ID

500 mA

Pulse test width 80 ms; pulse duty factor 1%

BS250

400

300

200

100

100 200 300 400

-V = 10 VDS

Capacitance versus drain-source voltage

pF100

C

1000

-VDS

20 V

BS250

80

60

40

20

-V = 0GSf = 1 MHzT = 25 °CA

Ciss

Coss

Crss

ITT INTERMETALL 175

BS250

BS723

Absolute Maximum Ratings

Symbol Value Unit

Drain-Source Voltage –VDSS 60 V

Drain-Gate Voltage –VDGS 60 V

Gate-Source Voltage (pulsed) VGS ±20 V

Drain Current (continuous) at TSB = 50 °C –ID 1 A

Power Dissipation at TSB = 50 °C Ptot 8301) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Device on fiberglass substrate, see layout

Inverse Diode

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 1 A

Forward Voltage Drop (typ.)at VGS = 0 V, IF = 1 A, Tj = 25 °C

VF 1.0 V

P-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

Pin configuration1 = Source, 2 = Gate, 3 = Drain

MarkingS23

176

SOT-89A Plastic PackageWeight approx. 0.04 gDimensions in mm

1.7

4.5

1.5 1.5

10°

0.40.4 0.4 4.0

3.1

±0.2

+0.1

10°+0.2

3

2 3 1

Top View

ITT INTERMETALL

BS723

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat –ID = 100 µA, VGS = 0 V

–V(BR)DSS 60 70 – V

Gate-Body Leakage Current, Forwardat –VGSF = 20 V, VDS = 0 V

–IGSSF – – 500 nA

Gate-Body Leakage Current, Reverseat –VGSR = 20 V, VDS = 0 V

–IGSSR – – 500 nA

Drain Cutoff Currentat –VDS = 60 V, VGS = 0 V

–IDSS – – 250 µA

Gate-Source Threshold Voltageat VGS = VDS, –ID = 250 µA

–VGS(th) 1 1.5 3 V

Drain-Source ON Resistanceat –VGS = 10 V, –ID = 600 mA

RDS(on) – 0.7 0.8 Ω

Capacitanceat –VDS = 25 V, VGS = 0 V, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrSS

–––

35015035

–––

pFpFpF

Switching Timesat –VGS = 10 V, –VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

40100

––

nsns

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

2.51.5

11

2.5 2.5

24 20.5

10

4 3

0.8

1

4.5

2.5

ITT INTERMETALL 177

BS808

Absolute Maximum Ratings

Symbol Value Unit

Drain-Source Voltage –VDSS 240 V

Drain-Gate Voltage –VDGS 240 V

Gate-Source Voltage (pulsed) VGS ±20 V

Drain Current (continuous) at TSB = 50 °C –ID 200 mA

Power Dissipation at TSB = 50 °C Ptot 8301) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Device on fiberglass substrate, see layout

Inverse Diode

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 0.75 A

Forward Voltage Drop (typ.)at VGS = 0 V, IF = 0.75 A, Tj = 25 °C

VF 0.85 V

P-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

Pin configuration1 = Source, 2 = Gate, 3 = Drain

MarkingS08

178

SOT-89A Plastic PackageWeight approx. 0.04 gDimensions in mm

1.7

4.5

1.5 1.5

10°

0.40.4 0.4 4.0

3.1

±0.2

+0.1

10°+0.2

3

2 3 1

Top View

ITT INTERMETALL

BS808

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat –ID = 100 µA, VGS = 0 V

–V(BR)DSS 240 250 – V

Gate-Body Leakage Current, Forwardat –VGSF = 15 V, VDS = 0 V

–IGSSF – – 10 nA

Gate-Body Leakage Current, Reverseat –VGSR = 15 V, VDS = 0 V

–IGSSR – – 10 nA

Drain Cutoff Currentat –VDS = 130 V, VGS = 0 V

–IDSS – – 1 µA

Gate-Source Threshold Voltageat VGS = VDS, –ID = 250 µA

–VGS(th) 0.8 1.5 2.5 V

Drain-Source ON Resistanceat –VGS = 5 V, –ID = 100 mA

RDS(on) – 7 14 Ω

Capacitanceat –VDS = 20 V, VGS = 0 V, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrSS

–––

2003010

–––

pFpFpF

Switching Timesat –VGS = 10 V, –ID = 10 mATurn-On TimeTurn-Off Time

tontoff

––

520

––

nsns

Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

2.51.5

11

2.5 2.5

24 20.5

10

4 3

0.8

1

4.5

2.5

ITT INTERMETALL 179

BS829

Absolute Maximum Ratings

Symbol Value Unit

Drain-Source Voltage –VDSS 400 V

Drain-Gate Voltage –VDGS 400 V

Gate-Source Voltage (pulsed) VGS ±20 V

Drain Current (continuous) at TSB = 50 °C – ID 70 mA

Power Dissipation at TSB = 50 °C Ptot 3501) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Device on fiberglass substrate, see layout

Inverse Diode

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 350 mA

Forward Voltage Drop (typ.)at VGS = 0 V, IF = 350 mA, Tj = 25 °C

VF 1.0 V

P-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– low gate threshold voltage– low drain-source ON resistance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

Pin configuration1 = Drain, 2 = Gate, 3 = Source

MarkingS29

180

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

ITT INTERMETALL

BS829

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat –ID = 100 µA, VGS = 0 V

–V(BR)DSS 400 430 – V

Gate-Body Leakage Current, Forwardat –VGSF = 20 V, VDS = 0 V

–IGSSF – – 100 nA

Gate-Body Leakage Current, Reverseat –VGSR = 20 V, VDS = 0 V

–IGSSR – – 100 nA

Drain Cutoff Currentat –VDS = 400 V, VGS = 0 V

–IDSS – – 500 µA

Gate-Source Threshold Voltageat VGS = VDS, –ID = 250 µA

–VGS(th) 1 1.5 2.5 V

Drain-Source ON Resistanceat VGS = 5 V, –ID = 100 mA

RDS(on) – 40 50 Ω

Capacitanceat –VDS = 25 V, VGS = 0 V, f = 1 MHzInput CapacitanceOutput CapacitanceFeedback Capacitance

CiSSCOSSCrSS

–––

2003010

–––

pFpFpF

Switching Timesat –VGS = 10 V, –VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

1050

––

nsns

Thermal Resistance Junction to Ambient Air RthA – – 3201) K/W

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 181

BS850

P-Channel Enhancement Mode DMOS Transistor

Features– high input impedance– high-speed switching– no minority carrier storage time– CMOS logic compatible input– no thermal runaway– no secondary breakdown

Pin configuration1 = Drain, 2 = Gate, 3 = Source

Marking S50

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

Absolute Maximum Ratings

Inverse Diode

Symbol Value Unit

Drain-Source Voltage –VDSS 60 V

Drain-Gate Voltage –VDGS 60 V

Gate-Source Voltage (pulsed) VGS ± 20 V

Drain Current (continuous) –ID 250 mA

Power Dissipation at TSB = 50 °C Ptot 0.3101) W

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65…+150 °C

1) Device on fiberglass substrate, see layout

Symbol Value Unit

Max. Forward Current (continuous)at Tamb = 25 °C

IF 0.3 A

Forward Voltage Drop (typ.)at VGS = 0, IF = 0.12 A, Tj = 25 °C

VF 0.85 V

182 ITT INTERMETALL

BS850

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Drain-Source Breakdown Voltageat –ID = 100 µA, VGS = 0

–V(BR)DSS 60 90 – V

Gate Threshold Voltageat VGS = VDS, –ID = 1 mA

VGS(TO) 1.0 2 3.0 V

Gate-Body Leakage Currentat –VGS = 15 V, VDS = 0

–IGSS – – 10 nA

Drain Cutoff Current at –VDS = 25 V, VGS = 0 –IDSS – – 0.5 µA

Drain-Source ON Resistanceat –VGS = 10 V, –ID = 200 mA

rDS(ON) – 3.5 5.0 Ω

Thermal Resistance Junction to SubstrateBackside

RthSB – – 3201) K/W

Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

Forward Transconductanceat –VDS = 10 V, –ID = 200 mA, f = 1 MHz

gm – 200 – mS

Input Capacitanceat –VDS = 10 V, VGS = 0, f = 1 MHz

Ciss – 60 – pF

Switching Timesat –VGS = 10 V, –VDS = 10 V, RD = 100 ΩTurn-On TimeTurn-Off Time

tontoff

––

525

––

nsns

1) Device on fiberglass substrate, see layout

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 183

184 ITT INTERMETALL

BS850

Admissible power dissipation versus temperature of substrate backside

mW500

Ptot

300

200

10000

100

TSB

200 °C

Device on fiberglass substrate, see layout

BS850

400

Saturation characteristics

mA500

-ID(ON)

300

200

600

100

-VDS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS850

400

T = 25 °CA

-V = 5 VGS

2 4 8

3 V

3.5 V

4 V

4.5 V

Output characteristics

A1

0.6

0.4

4000

0.2

-VDS

100 V

Pulse test width 80 ms; pulse duty factor 1%

BS850

0.8

20 60 80

-ID(ON)

T = 25 °CA

-V = 6 VGS

5 V

4 V

3 V

7 V

Drain-source current versus gate threshold voltage

mA

0-VGS(TO)

5 V

BS850

10

1

10-1

103

102

10-2

10-3

1 2 3 4

-IDS

V = VDS GS

T = 25 °CA

ITT INTERMETALL 185

BS850

Drain current versus gate-source voltage

A1

-ID

0.6

0.4

00

0.2

-VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS850

0.8

2 4 6 8

-V = 10 VDS

T = 25 °CA

Normalized drain-source current versus temperature

-100TA

200 °C

BS850104

103

102

10

1

10-2

0 100

IDSn

IDS (T )A

IDS (25 °C)

-V = 45 VDS

10-1

I =DSn

Normalized gate-source voltage versus temperature

VGS

-100TA

200 °C

BS8502.0

100

n

VGS (T )A

(25 °C)

-I = 1 mAD

1.6

1.2

0.8

0.4

00

V =GSn VGS

V = DS VGS

Normalized drain-source resistance versus temperature

10

1

-100TA

200 °C

BS850

10-1

0

rDSn

7

5

4

3

2

7

5

4

3

2

100

rDS (T )A

(25 °C)r =DSn rDS

∆V = V – V GS

GS (TO)V at -I = 1 mAD

> 3 V2 V1 V

0.5 V

∆V

GS(TO)

186 ITT INTERMETALL

BS850

Drain-source resistance versus gate-source voltage

V

rDS(ON)

1001

-VGS

20 V

BS850102

7

5

4

3

2

10

7

5

4

3

2

-V = 0.1 VDS

T = 25 °CA

Transconductance versus drain current

mS500

gfs

00

-ID

500 mA

Pulse test width 80 ms; pulse duty factor 1%

BS850

400

300

200

100

100 200 300 400

-V = 10 VDS

Transconductance versus gate-source voltage

mS500

gfs

00

-VGS

10 V

Pulse test width 80 ms; pulse duty factor 1%

BS850

400

300

200

100

2 4 6 8

-V = 10 VDS

Capacitance versus drain-source voltage

pF100

C

1000

-VDS

20 V

BS850

80

60

40

20

V = 0GSf = 1 MHzT = 25 °CA

Ciss

CossCrss

ITT INTERMETALL 187

BS850

188 ITT INTERMETALL

Darlington Transistors

ITT INTERMETALL 189

BCV27

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage VCEO 30 V

Collector-Base Voltage VCBO 40 V

Emitter-Base Voltage VEBO 10 V

Collector Current IC 300 mA

Peak Collector Current ICM 800 mA

Base Current IB 100 mA

Power Dissipation at TSB = 50 °C Ptot 3001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Device on fiberglass substrate, see layout

NPN Silicon Planar Darlington Transistorfor general NF applications

As complementary type, the PNP transistor BCV26 isrecommended.

Features– high collector current– high current gain

Pin configuration1 = Collector, 2 = Base, 3 = Emitter

MarkingFF

3 2

1

190

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

ITT INTERMETALL

BCV27

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Base Cutoff Currentat VCBO = 30 V

ICBO – – 0.1 µA

Emitter-Base Cutoff Currentat VEB = 10 V

IEBO – – 0.1 µA

Collector-Emitter Breakdown Voltageat IC = 10 mA

V(BR)CEO 30 – – V

Collector-Base Breakdown Voltageat IC = 10 µA

V(BR)CBO 40 – – V

Emitter-Base Breakdown Voltageat IE = 100 nA

V(BR)EBO 10 – – V

DC Current Gainat VCE = 5 V, IC = 1 mAat VCE = 5 V, IC = 10 mAat VCE = 5 V, IC = 100 mA

hFEhFEhFE

40001000020000

–––

–––

–––

Collector-Emitter Saturation Voltageat IC = 100 mA, IB = 0.1 mA

VCEsat – – 1.0 V

Base-Emitter Saturation Voltageat IC = 100 mA, IB = 0.1 mA

VBEsat – – 1.5 V

Gain-Bandwidth Productat VCE = 5 V, IC = 30 mA, f = 100 MHz

fT – 220 – MHz

Collector-Base Capacitanceat VCB = 30 V, IE = 0, f = 1 MHz

CCBO – 3.5 – pF

Thermal Resistance Junction to Ambient Air RthA – – 4301) K/W

1) Device on fiberglass substrate, see layout below

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 191

BCV26

Absolute Maximum Ratings

Symbol Value Unit

Collector-Emitter Voltage –VCEO 30 V

Collector-Base Voltage –VCBO 40 V

Emitter-Base Voltage –VEBO 10 V

Collector Current –IC 300 mA

Peak Collector Current –ICM 800 mA

Base Current –IB 100 mA

Power Dissipation at TSB = 50 °C Ptot 3001) mW

Junction Temperature Tj 150 °C

Storage Temperature Range TS –65 to +150 °C

1) Device on fiberglass substrate, see layout

PNP Silicon Planar Darlington Transistorfor general NF applications

As complementary type, the NPN transistor BCV27 isrecommended.

Features– high collector current– high current gain

Pin configuration1 = Collector, 2 = Base, 3 = Emitter

MarkingFD

3 2

1

192

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

ITT INTERMETALL

BCV26

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Collector-Base Cutoff Currentat –VCBO = 30 V

–ICBO – – 0.1 µA

Emitter-Base Cutoff Currentat –VEB = 10 V

–IEBO – – 0.1 µA

Collector-Emitter Breakdown Voltageat –IC = 10 mA

–V(BR)CEO 30 – – V

Collector-Base Breakdown Voltageat IC = 10 µA

–V(BR)CBO 40 – – V

Emitter-Base Breakdown Voltageat –IE = 100 nA

–V(BR)EBO 10 – – V

DC Current Gainat –VCE = 5 V, –IC = 1 mAat –VCE = 5 V, –IC = 10 mAat –VCE = 5 V, –IC = 100 mA

hFEhFEhFE

40001000020000

–––

–––

–––

Collector-Emitter Saturation Voltageat –IC = 100 mA, –IB = 0.1 mA

–VCEsat – – 1.0 V

Base-Emitter Saturation Voltageat –IC = 100 mA, –IB = 0.1 mA

–VBEsat – – 1.5 V

Gain-Bandwidth Productat –VCE = 5 V, –IC = 30 mA, f = 100 MHz

fT – 220 – MHz

Collector-Base Capacitanceat –VCB = 30 V, IE = 0, f = 1 MHz

CCBO – 3.5 – pF

Thermal Resistance Junction to Ambient Air RthA – – 4301) K/W

1) Device on fiberglass substrate, see layout below

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 193

194 ITT INTERMETALL

ITT INTERMETALL 195

Bias Resistor Transistors

DTC114EK

Absolute Maximum Ratings

Symbol Value Unit

Supply Voltage VSUP 50 V

Input Voltage VI 40 V

–VI 10 V

Collector Current IC 50 mA

Peak Collector Current ICM 100 mA

Power Dissipation Ptot 3001) mW

Junction Temperature Tj 125 °C

Storage Temperature Range TS –65 to +125 °C

1) Device on fiberglass substrate, see layout

NPN Bias Resistor Transistor

The built-in bias resistor allows inverter circuit configu-ration without external resistors for input.

Pin configuration1 = Collector/OUT2 = Base/IN3 = Emitter/GND

MarkingEC4

Equivalent circuit

R1

R2

IN

IN

OUT R1 = 10 kΩ

GND R2 = 10 kΩ

OUT

GND

196

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

ITT INTERMETALL

DTC114EK

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Input OFF Voltageat VSUP = 5 V, IO = 100 µA

VI(OFF) – – 0.5 V

Input ON Voltageat VO = 0.3 V, IO = 10 mA

VI(ON) 3.0 – – V

Output ON Voltageat IO = 10 mA, II = 0.5 mA

VO(ON) – 0.1 0.3 V

Input Currentat VI = 5 V

II – – 0.88 mA

Output OFF Currentat VSUP = 30 V, VI = 0 V

IO(OFF) – – 10 µA

DC Current Gainat IO = 5 mA, VO = 5 V

GI 30 – – –

Input Resistance R1 – 10 – kΩ

Resistance Ratio R2/R1 0.8 1 1.2 –

Transition Frequencyat VCE = 10 V, IE = –5 mA

fT – 250 – MHz

Collector-Base Capacitanceat VCB = 10 V, IE = 0 mA, f = 1 MHz

Cob – 5.6 – pF

Switching Timesat VSUP = 5 V, VI = 5 V, RL = 1 kΩRise TimeStorage TimeFall Time

trtstf

–––

0.052.00.36

–––

µsµsµs

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 197

DTC124XK

Absolute Maximum Ratings

Symbol Value Unit

Supply Voltage VSUP 50 V

Input Voltage VI 40 V

–VI 10 V

Collector Current IC 100 mA

Peak Collector Current ICM 100 mA

Power Dissipation Ptot 3001) mW

Junction Temperature Tj 125 °C

Storage Temperature Range TS –65 to +125 °C

1) Device on fiberglass substrate, see layout

NPN Bias Resistor Transistor

The built-in bias resistor allows inverter circuit configu-ration without external resistors for input.

Pin configuration1 = Collector/OUT2 = Base/IN3 = Emitter/GND

MarkingDC4

Equivalent circuit

R1

R2

IN

IN

OUT R1 = 22 kΩ

GND R2 = 47 kΩ

OUT

GND

198

0.4

0.95 0.95

3

0.4 0.4

+0.1

1

2 3

Top View

SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

2.45+0.1

ITT INTERMETALL

DTC124XK

Characteristics at Tamb = 25 °C

Symbol Min. Typ. Max. Unit

Input OFF Voltageat VSUP = 5 V, IO = 100 µA

VI(OFF) – – 0.4 V

Input ON Voltageat VO = 0.3 V, IO = 2 mA

VI(ON) 2.5 – – V

Output ON Voltageat IO = 10 mA, II = 0.5 mA

VO(ON) – 0.1 0.3 V

Input Currentat VI = 0.5 V

II – – 0.36 mA

Output OFF Currentat VSUP = 30 V, VI = 0 V

IO(OFF) – – 10 µA

DC Current Gainat IO = 5 mA, VO = 5 V

GI 68 – – –

Input Resistance R1 – 22 – kΩ

Resistance Ratio R2/R1 1.7 2.1 2.6 –

Transition Frequencyat VCE = 10 V, IE = –5 mA

fT – 250 – MHz

Collector-Base Capacitanceat VCB = 10 V, IE = 0 mA, f = 1 MHz

Cob – 4.3 – pF

Switching Timesat VSUP = 5 V, VI = 5 V, RL = 1 kΩRise TimeStorage TimeFall Time

trtstf

–––

0.122.00.35

–––

µsµsµs

Layout for RthA testThickness: Fiberglass 1.5 mm

Copper leads 0.3 mm

15 12

5

0.8

7.5

3

1

1.5

5.1

2

2

1

ITT INTERMETALL 199

200 ITT INTERMETALL

ITT INTERMETALL 201

ITT INTERMETALL Sales Offices

GermanyITT INTERMETALLHans-Bunte-Strasse 19D-79108 FreiburgP.O. Box 840D-79008 FreiburgTel. ++49-761-517-0Fax ++49-761-517-2174

Hong KongITT Semiconductors (FE) Ltd.Room 5, 15th Floor, Block B,Veristrong Industrial CentreNo. 34-36, Au Pui Wan StreetFo Tan, ShatinNew TerritoriesHong KongTel. ++852-2688-0894Fax ++852-2687-4861

JapanITT Semiconductors (FE) Ltd.P.O. Box 4718th Floor, Sumitomo BuildingShinjuku-kuTokyo 163-02Tel. ++81-3-3347-8881Fax ++81-3-3347-8844

SingaporeITT Semiconductors (FE) Ltd.Representative Office150 Orchard Road # 07-13Orchard PlazaSingapore 0923Tel. ++65-732-65-66Fax ++65-737-73-92

United KingdomITT Semiconductors UK(for Discrete Semiconductors)Ms. Julie VollerJays CloseViables Industrial EstateBasingstokeHampshire RG22 4BWTel. ++44-1256-346-394Fax ++44-1256-346-395

ITT Semiconductors UK(for Integrated Circuits)Mr. John ThorogoodP.O. Box 1827GranboroughBucks. MK18 3ZTTel. ++44-1926-670-670Fax ++44-1926-670-676

ITT Semiconductors UK(for Integrated Circuits)Mr. Julian RichardsP.O. Box 81GuildfordSurrey GU2 6FYTel. ++44-1483-566-333Fax ++44-1483-566-332

USASales Headquarters:ITT Semiconductors2500 West Higgins RoadSuite 1015Hoffman Estates, IL 60195Tel. ++1-847-519-9610Fax ++1-847-519-9615

Central Area:ITT Semiconductors909 West Maumee StreetElmhurst BuildingAngola, IN 46703Tel. ++1-219-833-1960Fax ++1-219-665-2811

Western Area:ITT Semiconductors2635 North First StreetSuite 101San José, CA 95134Tel. ++1-408 526-2084Fax ++1-408 324-1379

202 ITT INTERMETALL

ITT INTERMETALL Distributors / Agents

AustraliaCRUSADER Electronic Components Pty. Ltd.P.O. Box 226Padstow NSW 2211Tel. (02) 792 3922Fax (02) 792 1446

AustriaTRANSOHMVertriebsgesellschaft m.b.H.Kolbegasse 68A-1232 WienTel. (0431) 6 10 66-0Fax (0431) 6 10 66-10

SPOERLE ELECTRONICDistribution International GmbHHeiligenstädter Strasse 52A-1190 WienTel. (02 22) 36 36 50-0Fax (02 22) 3 69 22 73

BelgiumSPOERLE ELECTRONICDistribution International GmbHKeiberg IIMinervastraat, 14/B2B-1930 ZaventemTel. (02) 725 46 60Fax (02) 725 45 11

CanadaFarnell Electronic Services300 North Rivermede RoadConcord, Ontario L4K 2Z4Tel. (416) 798-4884Fax (416) 798-4889

ChinaWalasey Ltd.Shanghai Liaison OfficeRoom 1708, Block 1Hu Ban Building1250, Zhong Shan Rd., North, #1ShanghaiP.R.C.Tel. (21) 516-1882 or (21) 542-4152Fax (21) 542-4152

Czech RepublicSPOERLE ELECTRONIC spol. s.r.o.Charkovska 24101 00 PrahaTel. (2) 73 13 55 Fax (2) 73 13 54

DenmarkFarnell Electronic ServicesNaverland 29DK-2600 GlostrupTel. (42) 45 66 45Fax (42) 45 07 86

FinlandFarnell Electronic ServicesTyöpajakatu 5SF-00580 HelsinkiTel. (0) 4766-0Fax (0) 4766-6318

FranceARROW ELECTRONIQUE78-79, rue des SoletsSilic 585F-94663 Rungis CEDEXTel. (1) 49 78 49 78Fax (1) 49 78 05 96

Farnell Electronic ServicesP.O. Box 69 - St. AubinF-91192 Gif s/Yvette CEDEX Tel. (1) 6 98 58-383Fax (1) 6 98 58-399

Dimacel Composants63, rue Jean JauresP.O. Box 116F-95874 Bezons CEDEXTel. (1) 34 23 70 00Fax (1) 30 76 31 97

ITT INTERMETALLMr. Francois BoubetAgent Technico-Commercial11, rue de RimoronF-91650 Breux-JouyTel. (1) 64 58 60 60Fax (1) 64 58 60 60

RutronikComposants ElectroniquesLe SaillantF-19130 VoutezacTel. (55) 84 74 83Fax (55) 84 79 00

GermanyBeck GmbH & Co. Eltersdorfer Strasse 7D-90425 Nürnberg Tel. (0911) 9 34 08-0Fax (0911) 9 34 08-28

Farnell Electronic ServicesBahnhofstrasse 44D-71696 MöglingenTel. (07141) 487-0Fax (07141) 487-210

Future Electronics Deutschland GmbHMünchner Str. 18D-85774 UnterföhringTel. (089) 957 27-0Fax (089) 957 27-173

RUTRONIKElektronische BauelementeGmbHRSC-Halbleiter GmbHIndustriestrasse 2D-75228 IspringenTel. (07231) 801-0Fax (07231) 822 82

SPOERLE ELECTRONICMax-Planck-Strasse 1-3D-63303 Dreieich Tel. (06103) 304-8Fax (06103) 304-455

Hong KongWalasey Ltd. Room 1010, 10th FloorAPEC PlazaNo. 49, Hoi Yuen RoadKwun TongKowloon Hong KongTel. 2357-1676Fax 2357-1189

ARRAY Electronics Ltd.24th Floor, Wyler Centre, Phase 2No. 200, Tai Lin Pai RoadKwai ChungNew TerritoriesHong KongTel. 2418-3700 or 2418-3800Fax 2418-6992 or 2418-6993

ItalyTARA S.R.L.Viale Milanofiori, E5I-20090 Assago (Milano)Tel. (02) 82 470 232Fax (02) 82 426 31

Silverstar Ltd. S.P.A.Viale Fulvio Testi, 28020126 Milano, MITel. (02) 66 12 51Fax (02) 66 10 13 59

Rebosio Componenti S.P.A.Viale G. Prati, 320051 Limbiate (Milano)Tel. (02) 99 65 767Fax (02) 99 62 968

Farnell S.P.A.Viale Milanofiori E/520094 Assago (Milano)Tel. (02) 82 470Fax (02) 82 42 631

Eurodis Fanton S.R.L.Via Olindo Simoni, 840011 Anzola d’Emilia, BOTel. (05) 17 35 015Fax (05) 17 35 013

JapanUNI Electronics Inc. P.O. Box 68Sumitomo BuildingShinjuku-kuTokyo 163Tel. (03) 33 47-8878Fax (03) 33 47-8808

KoreaSOEI KOREA Inc.WooNam Building, 4th Floor824-22, Yeoksam-dongKangnam-kuSeoul 135-080Tel. (02) 508 3221Fax (02) 508 3229

NetherlandsSPOERLE ELECTRONICDistribution International GmbHColtbaan 17NL-3439 NG NieuwegeinTel. (03402) 912 34Fax (03402) 467 64/359 24

Farnell Electronic ServicesChroomstraat 28NL-2718 RR ZoetermeerTel. (079) 613-161Fax (079) 613-169

ITT INTERMETALL 203

ITT INTERMETALL Distributors / Agents

NorwayFarnell Electronic ServicesKarihaugun 89N-1001 Oslo Tel. (47) 2232-1270Fax (47) 2232-5120

PolandSPOERLE ELECTRONICPolska Sp. z.o.o. ul. Domaniewska 4102-672 WarschauTel. (22) 640 03 49or (22) 640 04 47/48/49Fax (22) 640 03 48

SingaporeUNI Electronics PTE. Ltd.1 Tanglin Road #03-260Orchard Parade Hotel(Podium Block)Singapore 1024Tel. (+65) 235 77 40or (+65) 235 82 57 Fax (+65) 235 52 98

South AfricaElectronic Building Elements (Pty) Ltd.P.O. Box 912-1222Silverton, 0127Tel. (012) 803-7680Fax (012) 803-8294

SpainAKTA SPAIN S.A.Roger de Llúria, 155ENTLO 2.a

E-08037 BarcelonaTel. (3) 218 49 49 - 415 22 66Fax (3) 237 07 80

AMITRON-ARROW S.A.Albasanz, 75E-28037 MadridTel. (1) 304 30 40Fax (1) 327 24 72

SwedenFarnell Electronic ServicesAnkdammsgatan 32P.O. Box 1330S-17126 SolnaTel. (08) 83 00 20Fax (08) 27 13 03

Ericsson ProcompIsafjordsgatan 16S-16481 Kista-StockholmTel. (08) 757 40 40Fax (08) 757 41 10

SwitzerlandFarnell Electronic ServicesBrandschenkestrasse 178CH-8027 ZürichTel. (01) 2 04 61 11Fax (01) 2 04 64 54

AKTA Multikomponent AGAlte Steinhauserstr. 3Postfach 5039CH-6330 ChamTel. (041) 740 14 42Fax (041) 740 13 23

SPOERLE ELECTRONICDistribution International GmbHCherstr. 4PostfachCH-8152 Opfikon-GlattbruggTel. (01) 1 874 6262Fax (01) 1 874 6200

SPOERLE ELECTRONICDistribution International GmbHEn ChamardCH-1442 Montagny s/YverdonTel. (024) 27 01 00Fax (024) 24 52 45

TaiwanWesTech Electronics, Inc.P.O. Box 55-04665F, No. 197Ho Ping E. Road, Sec. 1Taipei, Taiwan 106, R.O.C.Tel. (02) 356-0620Fax (02) 394-2047

TurkeyBIGSTARElektronik Sanayi ve Ticaret A.S.Okcu Musa Cad. 69/2TR-80020 Karaköy-IstanbulTel. (0) 212 252 59 15 (3 lines)Fax (0) 212 252 54 38

INTER A.S.Kadiköy HasircibasiCaddesi No. 55TR-81310 IstanbulTel. (0) 216 349 94 00 (30 lines)Fax (0) 216 349 94 30

United KingdomARROW Electronics (UK) Ltd.St. Martins Business CentreCambridge RoadBedford MK42 0LFTel. (01234) 34 72 11Fax (01234) 21 46 74

Farnell Electronic ServicesEdinburgh WayHarlow, EssexCM20 2DFTel. (01279) 44 11 44Fax (01279) 44 16 87

First Principals Ltd.2 Walker RoadBardon HillCoalvilleLeicestershire LE67 1TUTel. (01530) 51 12 95Fax (01530) 51 12 96

Flint Distribution Ltd.Enterprise HouseAshby RoadCoalvilleLeicestershire LE67 3LATel. (01530) 51 03 35Fax (01530) 51 02 75

Future Electronics Ltd. Future HousePoyle RoadColnbrook Slough, Berks.SL3 0EZTel. (01075) 368 70 00Fax (01075) 368 91 00

HB Electronics Ltd.Lever StreetBolton, Lancs.B13 6BJTel. (01204) 38 63 61Fax (01204) 38 49 11

Farnell Electronic Services346 Edinburgh AvenueSloughSL1 4TUTel. (01753) 82 42 12Fax (01753) 82 41 60

USADiodes Incorporated3050 East Hillcrest DriveWestlake Village, CA 91362Tel. (805) 446-4800Fax (805) 446-4850

204 ITT INTERMETALL

Type Page

2N3904 Small-Signal Transistor (NPN) 202Nv3906 Small-Signal Transistor (PNP) 682N4124 Small-Signal Transistor (NPN) 242N4126 Small-Signal Transistor (PNP) 722N7000 DMOS Transistor (N-Channel) 1162N7002 DMOS Transistor (N-Channel) 122

BC327 Small-Signal Transistor (PNP) 78BC328 Small-Signal Transistor (PNP) 78BC337 Small-Signal Transistor (NPN) 30BC338 Small-Signal Transistor (NPN) 30BC546 Small-Signal Transistor (NPN) 36BC547 Small-Signal Transistor (NPN) 36BC548 Small-Signal Transistor (NPN) 36BC549 Small-Signal Transistor (NPN) 36BC556 Small-Signal Transistor (PNP) 84BC557 Small-Signal Transistor (PNP) 84BC558 Small-Signal Transistor (PNP) 84BC559 Small-Signal Transistor (PNP) 84BC807 Small-Signal Transistor (PNP) 90BC808 Small-Signal Transistor (PNP) 90BC817 Small-Signal Transistor (NPN) 42BC818 Small-Signal Transistor (NPN) 42BC846 Small-Signal Transistor (NPN) 48BC847 Small-Signal Transistor (NPN) 48BC848 Small-Signal Transistor (NPN) 48BC849 Small-Signal Transistor (NPN) 48BC856 Small-Signal Transistor (PNP) 96BC857 Small-Signal Transistor (PNP) 96BC858 Small-Signal Transistor (PNP) 96BC859 Small-Signal Transistor (PNP) 96

BCV26 Darlington Transistor (PNP) 192BCV27 Darlington Transistor (NPN) 190

BF420 Small-Signal Video Transistor (NPN) 54BF421 Small-Signal Video Transistor (PNP) 102BF422 Small-Signal Video Transistor (NPN) 54BF423 Small-Signal Video Transistor (PNP) 102BF820 Small-Signal Video Transistor (NPN) 56BF821 Small-Signal Video Transistor (PNP) 104BF822 Small-Signal Video Transistor (NPN) 56BF823 Small-Signal Video Transistor (PNP) 104

Type Page

BS108 DMOS Transistor (N-Channel) 128BS109 DMOS Transistor (N-Channel) 134BS123 DMOS Transistor (N-Channel) 136BS170 DMOS Transistor (N-Channel) 138BS208 DMOS Transistor (P-Channel) 160BS209 DMOS Transistor (P-Channel) 166BS223 DMOS Transistor (P-Channel) 168BS250 DMOS Transistor (P-Channel) 170BS623 DMOS Transistor (N-Channel) 136BS723 DMOS Transistor (P-Channel) 176BS808 DMOS Transistor (P-Channel) 178BS809 DMOS Transistor (N-Channel) 144BS828 DMOS Transistor (N-Channel) 146BS829 DMOS Transistor (P-Channel) 180BS850 DMOS Transistor (P-Channel) 182BS870 DMOS Transistor (N-Channel) 152

DTC114EK Bias Resistor Transistor (NPN) 196DTC124XK Bias Resistor Transistor (NPN) 198

MMBT3904 Small-Signal Transistor (NPN) 58MMBT3906 Small-Signal Transistor (PNP) 106

MMBTA42 Small-Signal Video Transistor (NPN) 62MMBTA43 Small-Signal Video Transistor (NPN) 62MMBTA92 Small-Signal Video Transistor (PNP) 110MMBTA93 Small-Signal Video Transistor (PNP) 110

MPSA42 Small-Signal Video Transistor (NPN) 64MPSA43 Small-Signal Video Transistor (NPN) 64MPSA92 Small-Signal Video Transistor (PNP) 112MPSA93 Small-Signal Video Transistor (PNP) 112

Alphanumerical List of Types

INTERMETALL semiconductors

ITT INTERMETALL Printed in GermanyHans-Bunte-Strasse 19 Edition 1996D-79108 Freiburg (Germany) Order No. 6240-15-1EP.O. Box 840D-79008 Freiburg (Germany)Tel. +49-7 61-5 17-0Fax +49-7 61-5 17-21 74E-mail: [email protected]: http://www.itt-sc.de