66 ueda system_performance_and_degradation_analysis_of_different_pv_technologies

21
System performance and degradation analysis of different PV technologies Yuzuru Ueda (Tokyo University of Science) 4th PV Performance Modeling and Monitoring Workshop 22-23 October 2015, Cologne, Germany

Upload: sandia-national-laboratories-energy-climate-renewables

Post on 14-Apr-2017

479 views

Category:

Presentations & Public Speaking


0 download

TRANSCRIPT

System performance and

degradation analysis of

different PV technologies

Yuzuru Ueda (Tokyo University of Science)

4th PV Performance Modeling and Monitoring Workshop

22-23 October 2015, Cologne, Germany

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 2

System designing

•Selecting technology

•Estimating yield

•Reliability & safety

•Initial and O&M Cost

Monitoring and Analysis

•1minute

•Irradiance (Global tilt, GHI, DNI)

•AC output

•DC output (I,V,P)

•Module Temp.

•(Spectrum)

O & M

•Performance

•Failure detection

Motivation

Contribute to the system designing and daily O&M

through the monitoring data analysis

Characterization

•Performance

•Losses

•Degradation

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 3

Loss modeling and

Analysis methods

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 4

loss fa

cto

rs K

x calc

ula

tions

Yie

ld e

stim

atio

n u

sin

g K

x IN

OUTX

E

EK

EIN EOUT

Loss factors KX :

KX =1: No effect

KX <1: Loss

KX >1: Gain

Photovoltaic energy conversion model

kNL

kDR

kOD

kT

kR

kS

P.R

kDC

kSF

kIV

kMP

kPC

Meas. Error

Measurement error

System

output

Degradation, Recovery

Non-linearity of VOC, FF

Module temperature

Array I-V imbalance

Incoming solar energy

Irradiance

DC power

Shading

Optical degradation, Soil

Reflection (Incident angle)

Spectral mismatch

Error

AC power

PCS

(Inverter)

DC circuit

•MPP-Tracking error Stepped I-V curve

Fast fluctuation

Start-up / Low irradiance

•PCS protection

•Grid voltage

•PCS capacity shortage

Max. power point mismatch

Rating error

Photovoltaic energy conversion

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 5

Soil, Optical degradation KAP

DC circuit KDC

Reflection (Incident angle) KR

Shading KS

Module temperature KT

Operating point mismatch KPC KGV

KMH KF

Non-linearity (VOC, FF) KEr

PCS (Inverter) KPC

Degradation, Recovery KAP

Array I-V imbalance KAP

Spectral mismatch KSF

System loss analysis

Theoretical and empirical models for loss factors Kx calculations

Input data: IDC VDC PDC, IAC VAC PAC, Irradiance, Module temp.

A

PCSPC

E

EK

)]25([1 modmax TK PT

dtIRIVE

EK

ADCABDA

ADC

)(2

dE

dE

dSRE

dSREK

PV

PV

SF

0

1700

3000

1700

300

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 6

Soil, Optical degradation KAP

DC circuit KDC

Reflection (Incident angle) KR

Shading KS

Module temperature KT

Operating point mismatch KPC KGV

KMH KF

Non-linearity (VOC, FF) KEr

PCS (Inverter) KPC

Degradation, Recovery KAP

Array I-V imbalance KAP

Spectral mismatch KSF

Reflection

Calculate reflection loss using geometrical optics theory

n1

n2

Ii

Irθ1

θ2

Medium 1

Medium 2

n1

n2

Ii

Irθ1θ1

θ2θ2

Medium 1

Medium 2neEffective

refractive index

neEffective

refractive index

2001497.01388.07.59 ed

20.0026935788.090 er

Ag

ArerrAdeddAbb

AllG

GrGrGrr

||2

1rr

I

Ir

i

r

12

2

12

2

sin

sin

r

12

2

12

2

||tan

tan

r

= tilt angle

GAb: Beam, GAd: Diffused, GAr: Refrection

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 7

0

20

40

60

80

100

120

140

160

180

200

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Fre

q

Soil, Optical degradation KAP

DC circuit KDC

Reflection (Incident angle) KR

Shading KS

Module temperature KT

Operating point mismatch KPC KGV

KMH KF

Non-linearity (VOC, FF) KEr

PCS (Inverter) KPC

Degradation, Recovery KAP

Array I-V imbalance KAP

Spectral mismatch KSF

Effective array peak power

Effective array peak power represent “Real performance”

of the array in the field

Peak power drop

Irradiance

DC

ou

tpu

t

1[kW/m2]

[kW]

Fre

qu

en

cy

PDC/Irrad •DC circuit loss corrected

•MPP mismatch data filtered out

•Fluctuation data filtered out

•Temperature loss corrected

•Spectral mismatch corrected

•Reflection loss corrected

•Shading loss filtered out

•I-V imbalance

•Rating error

•Degradation

•Malfunction

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 8

Soil, Optical degradation KAP

DC circuit KDC

Reflection (Incident angle) KR

Shading KS

Module temperature KT

Operating point mismatch KPC KGV

KMH KF

Non-linearity (VOC, FF) KEr

PCS (Inverter) KPC

Degradation, Recovery KAP

Array I-V imbalance KAP

Spectral mismatch KSF

Shading

Calculate shading loss for each solar height and solar azimuth

in increments of 5 degree

South

West

East

12

3

45

6View

Solar Azimuth [deg]-90 -60 -30 0 30 60 90

Sola

r H

eig

ht [d

eg]

0

10

20

30

40

50

60

70

80

90

WestEast

1

2

3456

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 9

Overview of the

Hokuto PV testing site

and

Los Alamos testing site

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 10

Evaluation of the different PV technologies

Hokuto testing site

(Since 2008)

Commissioned by New Energy and Industrial Technology Development Organization (NEDO)

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 11

Hokuto testing site

Photo: Inter Pic.

Type Manufacturer Capacity [kW]

single-crystalline SHARP 30

silicon SANYO 30

SHARP 30

KYOCERA 100

Mitsubishi electric 30

KANEKA 30

KANEKA 10

Mitsubishi Heavy Industries 10

Fuji Electric Systems 10

spherical SST 20

compound- Showa Shell Solar 30

semiconductor Honda Soltec 3

single-crystalline MOTECH 10

silicon KPE 10

E-TON 10

Isofoton 30

GE 30

Sun Power 50

Q-Cells 10

ErSol 10

Suntech 30

BP Solar 10

Day4Energy 30

Schott Solar 30

SHARP 3

DAIDO METAL 3

multi-crystalline silicon

amorphous silicon

multi-crystalline silicon

Systems

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 12

The Japan-U.S. Smart Grid

Collaborative Demonstration Project in New Mexico, United States.

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 13

Results

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 14

0.5

0.6

0.7

0.8

0.9

1.0

1.12008/0

4

2008/0

8

2008/1

2

2009/0

4

2009/0

8

2009/1

2

2010/0

4

2010/0

8

2010/1

2

2011/0

4

2011/0

8

2011/1

2

2012/0

4

2012/0

8

2012/1

2

2013/0

4

2013/0

8

2013/1

2

2014/0

4

2014/0

8

2014/1

2

2015/0

4

2015/0

8

Perf

orm

ance R

atio

mc-Si

sc-Si

HJ-Si

a-Si

a-Sitandem

CIS

Performance Ratio Hokuto

(@nameplate)

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 15

0.6

0.7

0.8

0.9

1.0

1.1

1.22008/0

4

2008/0

8

2008/1

2

2009/0

4

2009/0

8

2009/1

2

2010/0

4

2010/0

8

2010/1

2

2011/0

4

2011/0

8

2011/1

2

2012/0

4

2012/0

8

2012/1

2

2013/0

4

2013/0

8

2013/1

2

2014/0

4

2014/0

8

2014/1

2

2015/0

4

2015/0

8

mc-Si

sc-Si

HJ-Si

a-Si

a-Sitandem

CIS

Effective a

rray p

eak p

ow

er

Effective Array Peak-power (degradation)

Hokuto

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 16

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2012

/09

2012

/11

2013

/01

2013

/03

2013

/05

2013

/07

2013

/09

2013

/11

2014

/01

2014

/03

2014

/05

2014

/07

2014

/09

2014

/11

2015

/01

2015

/03

2015

/05

2015

/07

Perf

orm

ance

Rat

io (Sys

tem

s, A

C)

sc-Si HJ-Si BC-Si mc-Si

mc-Si a-Si a-Si tandem CIS

CIS CdTe

Performance Ratio Los Alamos

(@nameplate)

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 17

Performance Ratio Los Alamos

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2012/07

2012/08

2012/09

2012/10

2012/11

2012/12

2013/01

2013/02

2013/03

2013/04

2013/05

2013/06

2013/07

2013/08

2013/09

2013/10

2013/11

2013/12

2014/01

2014/02

2014/03

2014/04

2014/05

2014/06

2014/07

2014/08

2014/09

2014/10

2014/11

2014/12

2015/01

2015/02

2015/03

2015/04

2015/05

2015/06

2015/07

2015/08

2015/09

Perf

orm

ance R

atio

(M

odu

les,

DC

)

sc-Si HJ-Si BC-Si mc-Si mc-Si

a-Si a-Si tandem CIS CIS CdTe

(@flash test value)

After conditioning

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 18

0.6

0.7

0.8

0.9

1.0

1.1

1.2

2012

/09

2012

/11

2013

/01

2013

/03

2013

/05

2013

/07

2013

/09

2013

/11

2014

/01

2014

/03

2014

/05

2014

/07

2014

/09

2014

/11

2015

/01

2015

/03

2015

/05

2015

/07

Effec

tive

Arr

ay P

eak

pow

er

Loss

sc-Si HJ-Si BC-Si mc-Si

mc-Si a-Si a-Si tandem CIS

CIS CdTe

Effective Array Peak-power (degradation)

Los Alamos

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 19

0.6

0.7

0.8

0.9

1.0

20

08

/04

20

08

/08

20

08

/12

20

09

/04

20

09

/08

20

09

/12

20

10

/04

20

10

/08

20

10

/12

20

11

/04

20

11

/08

20

11

/12

20

12

/04

20

12

/08

20

12

/12

20

13

/04

20

13

/08

20

13

/12

20

14

/04

20

14

/08

20

14

/12

20

15

/04

20

15

/08

Perf

orm

ance R

atio

A1b

A2c

A3

A4

A5

A6b

A7c

A8c

A9

A10

0.6

0.7

0.8

0.9

1.0

20

08

/04

20

08

/08

20

08

/12

20

09

/04

20

09

/08

20

09

/12

20

10

/04

20

10

/08

20

10

/12

20

11

/04

20

11

/08

20

11

/12

20

12

/04

20

12

/08

20

12

/12

20

13

/04

20

13

/08

20

13

/12

20

14

/04

20

14

/08

20

14

/12

20

15

/04

20

15

/08

Perf

orm

ance R

atio

A1b

B1c

B2b

B4a

B5

B6

B8

B9c

Fb

0.7

0.8

0.9

1.0

1.1

20

08

/04

20

08

/08

20

08

/12

20

09

/04

20

09

/08

20

09

/12

20

10

/04

20

10

/08

20

10

/12

20

11

/04

20

11

/08

20

11

/12

20

12

/04

20

12

/08

20

12

/12

20

13

/04

20

13

/08

20

13

/12

20

14

/04

20

14

/08

20

14

/12

20

15

/04

20

15

/08

A1b

A2c

A3

A4

A5

A6b

A7c

A8c

A9

A10

Effective

arr

ay p

eak

pow

er

0.7

0.8

0.9

1.0

1.1

20

08

/04

20

08

/08

20

08

/12

20

09

/04

20

09

/08

20

09

/12

20

10

/04

20

10

/08

20

10

/12

20

11

/04

20

11

/08

20

11

/12

20

12

/04

20

12

/08

20

12

/12

20

13

/04

20

13

/08

20

13

/12

20

14

/04

20

14

/08

20

14

/12

20

15

/04

20

15

/08

A1b

B1c

B2b

B4a

B5

B6

B8

B9c

Fb

Effective

arr

ay p

eak

pow

er

Hokuto

linear regression of the

monthly KAP

Average: -0.57%/year

linear regression of the

monthly KAP

Average: -0.50%/year

Degradation Rate from KAP

sc-Si mc-Si

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 20

Summary

•Seven years operation results of different PV technologies are

summarized.

•Annual degradation rate of the systems with c-Si PV was less

than -0.6 [%/year] in average. This value was obtained from

outdoor monitoring data.

•Effective array peak power calculation can be applied to the

daily monitoring data analysis for failure detection.

ACKNOWLEDGMENTS:

This research is conducted under the financial support of the New Energy and Industrial

Technology Development Organization (NEDO). Authors would like to acknowledge their support

and cooperative discussions with the project members.

Photovoltaic Systems and Renewable Energy Integration TOKYO UNIVERSITY OF SCIENCE 2015/10/23 Y.U 21

Thank you for your attention