6.776 high speed communication circuits and systems ... · h.-s. lee & m.h. perrott mit ocw...

41
6.776 High Speed Communication Circuits and Systems Lecture 5 Generalized Reflection Coefficient, Smith Chart Massachusetts Institute of Technology February 15, 2005 Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

Upload: others

Post on 03-Sep-2019

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

6.776High Speed Communication Circuits and Systems

Lecture 5Generalized Reflection Coefficient, Smith Chart

Massachusetts Institute of TechnologyFebruary 15, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

Page 2: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Reflection Coefficient

We defined, at the load

Load and characteristic impedances were related

Alternately

Can we find reflection coefficient at locations other than the load location?: Generalized reflection coefficient

Page 3: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Voltage and Current Waveforms

In Lecture 3, we found that in sinusoidal steady-state in a transmission line,

where the – sign is for the wave traveling in the +z direction,a nd the + sign is for the wave traveling in the –z direction.

Thus, the incident wave has the voltage

And the reflected wave

Similarly for currents:

Page 4: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Determine Voltage and Current At Different Positions

x

z

Ex

Hyy

ZL

ExHy

ZL

Incident Wave

Reflected Wave

0Lz

V+ejwtejkz

I+ejwtejkz

V-ejwte-jkz

I-ejwte-jkz

Incident and reflected waves must be added together

Page 5: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Determine Voltage and Current At Different Positions

x

z

Ex

Hyy

ZL

ExHy

ZL

Incident Wave

Reflected Wave

0Lz

V+ejwtejkz

I+ejwtejkz

V-ejwte-jkz

I-ejwte-jkz

Page 6: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Define Generalized Reflection Coefficient

Recall:

Define Generalized Reflection Coefficient:

Since

Page 7: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Generalized Reflection Coefficient Cont’d

Similarly:

Page 8: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

A Closer Look at Γ(z)

Recall ΓL is

We can view Γ(z) as a complex number that rotates clockwise as z (distance from the load) increases

Note: |ΓL|

|ΓL| Re{Γ(z)}

Im{Γ(z)}

ΓL

∆ = 2kzΓL

Γ(z)

0

Page 9: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Calculate |Vmax| and |Vmin| Across The Transmission Line

We found that

So that the max and min of V(z,t) are calculated as

We can calculate this geometrically!

Page 10: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

A Geometric View of |1 + Γ(z)|

|ΓL|

Re{1+Γ(z)}

Im{1+Γ(z)}

Γ(z)

10

|1+Γ(z)|

Page 11: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Reflections Cause Amplitude to Vary Across Line

Equation:Graphical representation:

directionof travel

z

tV+ejwtejkz

z

|1 + Γ(z)|

max|1+Γ(z)|

λ

0

min|1+Γ(z)|

|1+Γ(0)|

Page 12: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Voltage Standing Wave Ratio (VSWR)

Definition

For passive load (and line)

We can infer the magnitude of the reflection coefficient based on VSWR

Page 13: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Reflections Influence Impedance Across The Line

From Slide 7

- Note: not a function of time! (only of distance from load)

Alternatively

- From Lecture 3:

Page 14: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Impedance as a Function of Location

Also

We can now express Z(z) as

Note: Z(z) and Γ(z) are periodic in z with a period of λ/2

Page 15: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Example: Z(λ/4) with Shorted Load

x

z

y

ZL

Calculate reflection coefficient

Calculate generalized reflection coefficient

Calculate impedance

0Lz

λ/4

Z(λ/4)

Page 16: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Generalize Relationship Between Z(λ/4) and Z(0)

General formulation

At load (z=0)

At quarter wavelength away (z = λ/4)

- Impedance is inverted (Zo is real)Shorts turn into opensCapacitors turn into inductors

Page 17: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Now Look At Z(∆) (Impedance Close to Load)

Impedance formula (∆ very small)

- A useful approximation:

- Recall from Lecture 2:

Overall approximation:

Page 18: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Example: Look At Z(∆) With Load Shorted

x

z

y

ZL

0∆z

Z(∆)

Reflection coefficient:

Resulting impedance looks inductive!

Page 19: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Example: Look At Z(∆) With Load Open

Reflection coefficient:

Resulting impedance looks capacitive!

x

z

ZL

y

0∆z

Z(∆)

Page 20: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Compare to an Ideal LC Tank Circuit

Calculate input impedance about resonance

L CZin

= 0 negligible

Page 21: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Transmission Line Version: Z(λ0 /4) with Shorted Load

As previously calculated

Impedance calculation

Relate λ to frequency

x

z

y

ZL

0Lz

λ0/4

Z(λ0/4)

Page 22: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Calculate Z(∆ f) – Step 1

Wavelength as a function of ∆ f

Generalized reflection coefficient

x

z

y

ZL

0Lz

λ0/4

Z(λ0/4)

Page 23: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Calculate Z(∆ f) – Step 2

x

z

y

ZLλ0/4

Impedance calculation

Recall

0Lz

Z(λ0/4)

- Looks like LC tank circuit (but more than one mode)!

Page 24: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Smith Chart

Define normalized load impedance

Relation between Zn and ΓL

- Consider working in coordinate system based on ΓKey relationship between Zn and Γ

- Equate real and imaginary parts to get Smith Chart

Page 25: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Real Impedance in Γ Coordinates (Equate Real Parts)

0.2 0.5 1 2 5

ΓL=0

Im{ΓL}

Re{ΓL}

ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Zn=0.5

Page 26: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Imag. Impedance in Γ Coordinates (Equate Imag. Parts)

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

Im{ΓL}

Re{ΓL}

ΓL=0 ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Zn=j0.5

Zn=-j0.5

Page 27: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

What Happens When We Invert the Impedance?

Fundamental formulas

Impact of inverting the impedance

- Derivation:

We can invert complex impedances in Γ plane by simply changing the sign of Γ !

How can we best exploit this?

Page 28: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

The Smith Chart as a Calculator for Matching Networks

Consider constructing both impedance and admittance curves on Smith chart

- Conductance curves derived from resistance curves- Susceptance curves derived from reactance curves

For series circuits, work with impedance- Impedances add for series circuits

For parallel circuits, work with admittance- Admittances add for parallel circuits

Page 29: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Resistance and Conductance on the Smith Chart

0.2 0.5 1 2 5

Im{ΓL}

Re{ΓL}

ΓL=0 ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Yn=2

Yn=0.5 Zn=0.5

Zn=2

Page 30: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Reactance and Susceptance on the Smith Chart

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

Im{ΓL}

Re{ΓL}

ΓL=0 ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Yn=-j2

Yn=j2

Zn=j2

Zn=-j2

Page 31: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Overall Smith Chart

0.2 0.5 1 2 5

j0.2

j0.2

0

j0.5

j0.5

0

j1

j1

0

j2

j2

0

j5

j 5

0

Page 32: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Smith Chart element Paths

INCREASING SERIES L DECREASING SERIES C

DECREASING SHUNT L INCREASING SHUNT C

Figure by MIT OCW. Adapted fromhttp://contact.tm.agilent.com/Agilent/tmo/an-95-1/classes/imatch.html

Page 33: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

L-Match Circuits (Matching Load to Source)

π or L match networksremove forbidden regions

Figure by MIT OCW. Adapted fromhttp://contact.tm.agilent.com/Agilent/tmo/an-95-1/classes/imatch.html

Page 34: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Example – Match RC Network to 50 Ohms at 2.5 GHz

Circuit

Step 1: Calculate ZLn

Step 2: Plot ZLn on Smith Chart (use admittance, YLn)

Zin Rp=200Cp=1pFMatchingNetwork ZL

Page 35: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Plot Starting Impedance (Admittance) on Smith Chart

0.2 0.5 1 2 5

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

YLn=0.25+j0.7854

(Note: ZLn=0.37-j1.16)

Page 36: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Develop Matching “Game Plan” Based on Smith Chart

By inspection, we see that the following matching network can bring us to Zin = 50 Ohms (center of Smith chart)-need to step up impedance

Use the Smith chart to come up with component values- Inductance Lm shifts impedance up along reactance

curve- Capacitance Cm shifts impedance down along susceptance curve

Zin Rp=200Cp=1pFZL

Lm

Cm

Matching Network

Page 37: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Add Reactance of Inductor Lm

0.2 0.5 1 2 5

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

ZLn=0.37-j1.16

Z2n=0.37+j0.48

normalizedinductor

reactance= j1.64

Page 38: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Inductor Value Calculation Using Smith Chart

From Smith chart, we found that the desired normalized inductor reactance is

Required inductor value is therefore

Page 39: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Add Susceptance of Capacitor Cm (Achieves Match!)

0.2 0.5 1 2 5

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

ZLn=0.37-j1.16

Z2n=0.37+j0.48

1.0+j0.0

normalizedcapacitor

susceptance= j1.31

(note: Y2n=1.00-j1.31)

Page 40: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Capacitor Value Calculation Using Smith Chart

From Smith chart, we found that the desired normalized capacitor susceptance is

Required capacitor value is therefore

Page 41: 6.776 High Speed Communication Circuits and Systems ... · H.-S. Lee & M.H. Perrott MIT OCW Develop Matching “Game Plan” Based on Smith Chart By inspection, we see that the following

H.-S. Lee & M.H. Perrott MIT OCW

Useful Web Resource

Play the “matching game” at

- Allows you to graphically tune several matching networks

- Note: it is set up to match source impedance to load impedance rather than match the load to the source impedance

Same results, just different viewpoint

http://contact.tm.agilent.com/Agilent/tmo/an-95-1/classes/imatch.html