6b hot pack calorimetry - health and science pipeline ... · hot pack calorimetry teacher...

12
HASPI Medical Chemistry Unit 6: Energy Lab 6b, Page 1 HASPI Medical Chemistry Lab 6b Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the type of reaction that occurs in a hot pack. By linking this to the hydrated crystals lab in the fall where students heated Epsom salts (magnesium sulfate hydrate) until they lost all water, students are able to quantify the energy that they stored in their anhydrate pellet since the last lab occurred. To quantify this they must dissolve the anhydrate in water as well as the hydrate and use Hess’ law to find the difference. The anhydrate dissolving in water is an exothermic reaction. The hydrate (Epsom salts) dissolving in water is a slightly endothermic reaction. Students will experience both types of reactions in this lab, and they will turn potential energy they put into their anhydrate in the previous lab back into kinetic energy which they can measure as the increase in water temperature. Next Generation Science Standards NGSS/Common Core State Standards Students who demonstrate understanding can: HSPS14: Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. HSPS31: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. HSPS33: Design, build and refine a device that works within given constraints to convert one form of energy into another form of energy. HSPS34: Plan and conduct an investigation to provide evidence that the transfer of thermal energy, when two components of different temperatures are combined within a closed system, results in a more uniform energy distribution among the components in the system (second law of thermodynamics). Medical Application: Hot packs and cold packs are chemical reactions that students will study. Science and Engineering Practices Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system. Using Mathematics and Computational Thinking Create a computational model or simulation of a phenomenon, designed device, process, or system. Constructing Explanations and Designing Solutions Design, evaluate, and/or refine a solution to a complex real‐world problem, based on scientific knowledge, student‐generated sources of evidence, prioritized criteria, and tradeoff considerations. Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. Disciplinary Core Ideas PS1.A: Structure and Properties of Matter A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart. PS1.B: Chemical Reactions Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy. Disciplinary Core Ideas (continued)

Upload: others

Post on 04-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b, Page1

HASPIMedicalChemistryLab6bHotPackCalorimetryTeacherInformationLabOverviewInthislabstudentsmeasuretheamountofenergyreleasedinthetypeofreactionthatoccursinahotpack.BylinkingthistothehydratedcrystalslabinthefallwherestudentsheatedEpsomsalts(magnesiumsulfatehydrate)untiltheylostallwater,studentsareabletoquantifytheenergythattheystoredintheiranhydratepelletsincethelastlaboccurred.ToquantifythistheymustdissolvetheanhydrateinwateraswellasthehydrateanduseHess’lawtofindthedifference.Theanhydratedissolvinginwaterisanexothermicreaction.Thehydrate(Epsomsalts)dissolvinginwaterisaslightlyendothermicreaction.Studentswillexperiencebothtypesofreactionsinthislab,andtheywillturnpotentialenergytheyputintotheiranhydrateinthepreviouslabbackintokineticenergywhichtheycanmeasureastheincreaseinwatertemperature.NextGenerationScienceStandards

NGSS/CommonCoreStateStandardsStudentswhodemonstrateunderstandingcan:HS‐PS1‐4:Developamodeltoillustratethatthereleaseorabsorptionofenergyfromachemicalreactionsystemdependsuponthechangesintotalbondenergy.HS‐PS3‐1:Createacomputationalmodeltocalculatethechangeintheenergyofonecomponentinasystemwhenthechangeinenergyoftheothercomponent(s)andenergyflowsinandoutofthesystemareknown.HS‐PS3‐3:Design,buildandrefineadevicethatworkswithingivenconstraintstoconvertoneformofenergyintoanotherformofenergy.HS‐PS3‐4:Planandconductaninvestigationtoprovideevidencethatthetransferofthermalenergy,whentwocomponentsofdifferenttemperaturesarecombinedwithinaclosedsystem,resultsinamoreuniformenergydistributionamongthecomponentsinthesystem(secondlawofthermodynamics).MedicalApplication:Hotpacksandcoldpacksarechemicalreactionsthatstudentswillstudy.

ScienceandEngineeringPracticesDevelopingandUsingModelsDevelopamodelbasedonevidencetoillustratetherelationshipsbetweensystemsorbetweencomponentsofasystem.UsingMathematicsandComputationalThinkingCreateacomputationalmodelorsimulationofaphenomenon,designeddevice,process,orsystem.ConstructingExplanationsandDesigningSolutionsDesign,evaluate,and/orrefineasolutiontoacomplexreal‐worldproblem,basedonscientificknowledge,student‐generatedsourcesofevidence,prioritizedcriteria,andtradeoffconsiderations.PlanningandCarryingOutInvestigationsPlanandconductaninvestigationindividuallyandcollaborativelytoproducedatatoserveasthebasisforevidence,andinthedesign:decideontypes,howmuch,andaccuracyofdataneededtoproducereliablemeasurementsandconsiderlimitationsontheprecisionofthedata(e.g.,numberoftrials,cost,risk,time),andrefinethedesignaccordingly.

DisciplinaryCoreIdeasPS1.A:StructureandPropertiesofMatterAstablemoleculehaslessenergythanthesamesetofatomsseparated;onemustprovideatleastthisenergyinordertotakethemoleculeapart.PS1.B:ChemicalReactionsChemicalprocesses,theirrates,andwhetherornotenergyisstoredorreleasedcanbeunderstoodintermsofthecollisionsofmoleculesandtherearrangementsofatomsintonewmolecules,withconsequentchangesinthesumofallbondenergiesinthesetofmoleculesthatarematchedbychangesinkineticenergy.

DisciplinaryCoreIdeas(continued)

Page 2: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b,Page2

PS3.A:DefinitionsofEnergyEnergyisaquantitativepropertyofasystemthatdependsonthemotionandinteractionsofmatterandradiationwithinthatsystem.Thatthereisasinglequantitycalledenergyisduetothefactthatasystem’stotalenergyisconserved,evenas,withinthesystem,energyiscontinuallytransferredfromoneobjecttoanotherandbetweenitsvariouspossibleforms.Atthemacroscopicscale,energymanifestsitselfinmultipleways,suchasinmotion,sound,light,andthermalenergy.PS3.B:ConservationofEnergyandEnergyTransferConservationofenergymeansthatthetotalchangeofenergyinanysystemisalwaysequaltothetotalenergytransferredintooroutofthesystem.Energycannotbecreatedordestroyed,butitcanbetransportedfromoneplacetoanotherandtransferredbetweensystems.Uncontrolledsystemsalwaysevolvetowardmorestablestates—thatis,towardmoreuniformenergydistribution(e.g.,waterflowsdownhill,objectshotterthantheirsurroundingenvironmentcooldown).Mathematicalexpressions,whichquantifyhowthestoredenergyinasystemdependsonitsconfiguration(e.g.relativepositionsofchargedparticles,compressionofaspring)andhowkineticenergydependsonmassandspeed,allowtheconceptofconservationofenergytobeusedtopredictanddescribesystembehavior.Theavailabilityofenergylimitswhatcanoccurinanysystem.PS3.D:EnergyinChemicalProcessesAlthoughenergycannotbedestroyed,itcanbeconvertedtolessusefulforms—forexample,tothermalenergyinthesurroundingenvironment.ETS1.A:DefiningandDelimitinganEngineeringProblemCriteriaandconstraintsalsoincludesatisfyinganyrequirementssetbysociety,suchastakingissuesofriskmitigationintoaccount,andtheyshouldbequantifiedtotheextentpossibleandstatedinsuchawaythatonecantellifagivendesignmeetsthem(secondary).

CrosscuttingConceptsEnergyandMatterChangesofenergyandmatterinasystemcanbedescribedintermsofenergyandmatterflowsinto,outof,andwithinthatsystem.SystemsandSystemModelsModelscanbeusedtopredictthebehaviorofasystem,butthesepredictionshavelimitedprecisionandreliabilityduetotheassumptionsandapproximationsinherentinmodels.ConnectionstootherDCIsinthisgrade‐band:HS.PS1.A;HS.PS1.B;HS.PS2.B;HS.LS2.B;HS.ESS1.A;HS.ESS2.A;HS.ESS2.D;HS.ESS3.A;HS.PS3.A;HS.PS3.B;HS.PS3.D;HS.LS1.CArticulationofDCIsacrossgrade‐bands:MS.PS1.A;MS.PS2.B;MS.PS3.A;MS.PS3.B;MS.PS3.C;MS.ESS2.A;MS.PS3.D;MS.LS1.CCommonCoreStateStandardsConnections:ELA/Literacy

RST.11‐12.1 Citespecifictextualevidencetosupportanalysisofscienceandtechnicaltexts,attendingtoimportantdistinctionstheauthormakesandtoanygapsorinconsistenciesintheaccount.(HS‐PS3‐4)

WHST.9‐12.7 Conductshortaswellasmoresustainedresearchprojectstoansweraquestion(includingaself‐generatedquestion)orsolveaproblem;narroworbroadentheinquirywhenappropriate;synthesizemultiplesourcesonthesubject,demonstratingunderstandingofthesubjectunderinvestigation.(HS‐PS3‐3),(HS‐PS3‐4),(HS‐PS3‐5)

WHST.11‐12.8 Gatherrelevantinformationfrommultipleauthoritativeprintanddigitalsources,usingadvancedsearches effectively;assessthestrengthsandlimitationsofeachsourceintermsofthespecifictask,purpose,andaudience;integrateinformationintothetextselectivelytomaintaintheflowofideas,avoidingplagiarismandoverrelianceonanyonesourceandfollowingastandardformatforcitation.(HS‐PS3‐4),(HS‐PS3‐5)

WHST.9‐12.9 Drawevidencefrominformationaltextstosupportanalysis,reflection,andresearch.(HS‐PS3‐4),(HS‐PS3‐5)SL.11‐12.5 Makestrategicuseofdigitalmedia(e.g.,textual,graphical,audio,visual,andinteractiveelements)inpresentationsto

enhanceunderstandingoffindings,reasoning,andevidenceandtoaddinterest.(HS‐PS3‐1),(HS‐PS3‐2),(HS‐PS3‐5),(HS‐PS1‐4)

CommonCoreStateStandardsConnections:MathematicsMP.2 Reasonabstractlyandquantitatively. (HS‐PS3‐1), (HS‐PS3‐2), (HS‐PS3‐3), (HS‐PS3‐4),(HS‐PS3‐5)MP.4 Modelwithmathematics.(HS‐PS3‐1), (HS‐PS3‐2), (HS‐PS3‐3), (HS‐PS3‐4), (HS‐PS3‐5),(HS‐PS1‐4)HSN.Q.A.1 Useunitsasawaytounderstandproblemsandtoguidethesolutionofmulti‐stepproblems;chooseandinterpretunits

consistentlyinformulas;chooseandinterpretthescaleandtheoriginingraphsanddatadisplay.(HS‐PS3‐1),(HS‐PS3‐3),(HS‐PS1‐4)

HSN.Q.A.2 Defineappropriatequantitiesforthepurposeofdescriptivemodeling. (HS‐PS3‐1),(HS‐PS3‐3),(HS‐PS1‐4)HSN.Q.A.3 Choosealevelofaccuracyappropriatetolimitationsonmeasurementwhenreportingquantities.(HS‐PS3‐1),

(HS‐PS3‐3),(HS‐PS1‐4)

Page 3: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b, Page3

ObjectivesBytheendofthislabstudentswillbeableto:

Calculatetheenergygainedorlostinachemicalreactionusingcalorimetry. UseHess’lawtorelatetwoexperimentalreactionsinordertodeterminethechangeinenergyfor

thesumofthosereactions.Time

EstimatedTime

ActualTime(pleasemakenotebelow)

Pre‐Lab:20‐30Minutes

Lab:40minutesorless

PostLabCalculations:1hour

Materials

Suppliesneededfor5sections

Provided(P)or

Needed(N)

Quantity

Company/Item#

ApproximateCost

EpsomSalts P 2‐3gpergroup

Grocery/DrugStore

$3

AnhydrousmagnesiumsulfateYoushouldhavesavedthisfromlab4a*seelabnotesforanotheroption

P(ifyoudid4a)

2‐3gpergroup

FlinnM0115

$17

Studentmadecalorimetersfromlab6a 1pergroup Thermometers 1pergroup Balance GraduatedCylinderstomeasure20mLofwater

Accesstowater PrerequisiteKnowledgeStudentsshouldalreadyknowthefollowinginformation:

Theuseoftheequationq=cmΔT Thetermsendothermicandexothermic ConversionbetweenkelvinandCelsius

LabSetup Studentscanusetheirowncalorimetersfromlab6a.Ifnot,youcanmakeyourownfoamcup

calorimeter.Tomake10calorimetersbuy10largecupsand20smallcups.Placeasmallcupinsideeachlargecuptocreateaninsulateddevice.Pokeathermometersizedholeintheothersmallcupanduseitforalid.

Eachgroupneedsathermometerandwillneedtoweighouttwoseparatesubstances.Provideasmanybalancesasyouthinkyouwillneed.

CompanyContactInformationFlinnScientific

http://www.flinnsci.com/

Page 4: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b,Page4

LabNotes&CommonMisconceptions TheBackgroundandReviewquestionsareaperfectpre‐labassignmenttosendhomewith

studentsashomeworkbeforethelab. Ifyoudidlab4ayoushouldhavekeptthesmalldriedpellets.Itisbestiftheyarekeptinasealed

ziptopbag,butIhavestillhadsuccesswhentheyareleftout. Ifyoudidnotdolab4ayouhaveafewoptions.

o YoucanpurchasetheanhydratefromachemicalcompanysuchasFlinn.o YoucananhydratetheEpsomsaltathome.Itneedstoreachatleast450degreesto

anhydratesoyoucanputitinyourovenforawhileatahightemperature.Itshouldbeapproximatelyhalftheweightattheendasitis51.2%water.

o IfyouhaveBunsenburnersandcruciblesthestudentscancreatethemagnesiumsulfateanhydratefromEpsomsaltsbyfollowingtheprocedurelistedinlab4a.Thepelletmustbecooledbeforeitcanbeusedforthislab.Itwilltakeabout10minutestoanhydratebyBunsenburnerandanother10minutestocool.

Thesecondreactionismildlyendothermic,sostudentswillseeonlya1‐2degreechangeintemperature.TheyareoftensurprisedtoseeanendothermicreactionsoIfinditbestnottotellthemaheadoftimesotheydiscoveritthemselves.

Thefirstreactionshouldhave3significantfiguresincalculationsandthesecondreactionshouldonlyhavetwosignificantfiguresincalculationsdependingonthetemperaturechangetheysaw.It’sbestthatyoureviewsignificantfiguresrulesbeforethelabtoensuretheydotheircalculationsproperly.

Letusknowhowitwent!Gotowww.HASPI.org/feedbacktoshareyoursuggestions&successes.Connections&ApplicationLab4aandlab6ahavestrongconnectionstothislab.Ifyouhavealreadydonetheselabsyoumightreviewthemwithyourstudentsbeforedoingthislabtohelpthemmakeconnections.

Askstudentstostudythereactionsthathavetodowithcoldpacks. MRE’sor“MealsReadytoEat”areamilitarystaplethatself‐heat.Havestudentsstudythe

reactionandfindouthowmuchenergyisneededforthese. Havestudentscreateabrochureeducatingapatientonwhentouseheattherapyandcoldtherapy. Drawanenergydiagramforeachofthethreereactionsshowingthechangeinenergy. Createavideoanimationoftheprocessesobservedinthislab. Explorethethermodynamicsofotherheatpackreactioningredientssuchasironpowder.

References:http://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=1&ContentID=4483http://www.spine‐health.com/treatment/heat‐therapy‐cold‐therapy/benefits‐heat‐therapy‐lower‐back‐painhttp://www.middleschoolchemistry.com/lessonplans/chapter5/lesson9http://home.howstuffworks.com/question290.htmhttp://prezi.com/lranljsxv4hx/copy‐of‐chemistry‐hotcold‐packs/http://www.chemistryland.com/CHM130FieldLab/Lab11/Lab11.html

Page 5: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b, Page5

HotPackCalorimetryHASPIMedicalChemistryLab6bBackground/Introduction

Manycommonreactionsinchemistrycausetemperaturechanges.Endothermicreactionsabsorbheat,makingtheenvironmentaroundthemfeelcolder.Exothermicreactionsreleaseheat,makingtheenvironmentaroundthemfeelwarmer.Wecanusethesereactionstoprovidethermotherapysothattreatmentcanbequickandcanbeavailableanywhere.Thermotherapyistheuseofheatorcoldtotreataninjuryorillness.Weusechemicalreactionstocreateheatpacksandcoldpacks.

Coldpacksareusedmostoftentoreduceinflammationandswelling.Thisisbestforanewinjury.

Coldtherapydecreasesbloodflow Lessbloodflowleadstolessswellingandinflamation Coldtherapyisidealforanareathatisswollenorbruised Coldtreatmentisbestduringthefirst24‐48hoursafteraninjury Coldtherapyshouldoccurfor20minutesatatimewithatleast10minutesbetweenapplications

Hotpacksareusedtoprovidepainrelief.,Commonusesareforbackpainorarthritispain.Thistreatmentisbestforrecurringpain.

Bloodvesselsaredilatedsothatthereisanincreasedflowofbloodtothemuscles Bloodflowbringsoxygenandnutrientssothatdamagedtissuecanheal Theheatallowssofttissuestostretchsothatthereisdecreasedstiffnessandincreasedflexibility

Thiscangreatlyincreasetherangeofmotion Heatcanrelaxjoints,muscles,ligamentsandtendons Heattherapyshouldoccurin20minuteincrements

HotPackChemistryThereareafewwaysthatexothermicreactionscanbeusedashotpacks.Thereactionwewillstudytodaymixesanhydrousmagnesiumsulfate(MgSO4)withwater.Whenthesemixheatisreleased.InahotpackthereispowderedMgSO4alongwithasmallbagofwater.Whenyousqueezethehotpack,thewaterpacketburststobeginthereaction.Thistypeofhotpackcanonlybeusedonetime.Anothertypeofhotpackusesasupersaturatedsolutionofsodiumacetate.Sodiumacetatehasaboilingpointof130°F,butifyoumeltitbyheatingitabovethattemperature,youcancoolitbackdownanditwillstayaliquiduntilsomethingcausesjustonemoleculetofreeze.Thiscausesachainreactionuntilallofthesodiumacetatefreezes.Inorderforthemoleculestosolidifyandfreeze,theenergywithinthemmustbereleased,whichiswhythisfeelshotinyourhands.Thesehotpacksarereusableaslongasyouboilthemtodissolveormeltthesodiumacetateagain.

http://www.chemistryland.com/CHM130FieldLab/Lab11/Lab11.html

Name(s): Period: Date:

Page 6: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b,Page6

Ironfilingscanalsobeusedasahotpack.Theyreactwithoxygenintheair,sotheyareinameshpacketwhichissealedinsideofthepackaging.Onceopened,theironfilingsreactwiththeoxygeninthesamewaytheyreacttocreaterust,butithappensveryquicklybecausetheironisinverysmallpieces.Waterisabletospeedupthisreaction,increasingtheheatforamoment,buttheheatpackwillcoolmorequicklyifthereactionspeedsup.ColdPackChemistryEndothermicreactionscanbeusedascoldpacks.Acommonlyusedcoldpackcontainsammoniumnitrateandwater.Whenthesmallbagofwaterinsideisputunderpressureitburststobegintheendothermicreaction.Thisreactionneedsenergy,soittakestheenergyfromyou,makingyoufeelcold.Coldisjustthesensationofenergymovingawayfromyou.ANewConcept‐Calorimetry!Todaywewillusecalorimetrytostudytheenergygivenoffbyourreactions.Calorimetryallowsustomeasuretheenergygiventowaterbyareaction,orbyahotmetal.Thisisusedtofindtheamountofenergyinourfood,toidentifyunknownmetals,andinthiscase,tofindtheEnthalpyofHydrationforoursubstance.Incalorimetrywearegoingtodoareactioninaverywellinsulatedcontainer,whichwewillmakefromstyrofoamcups.Asthereactionproceeds,thewaterwillabsorbtheenergyreleased.Wecanuseathermometertomeasurethechangeintemperatureofthewater,thenusethereactionq=mcΔTinordertofindoutthequantityofenergythatwasreleased!

ReviewQuestions1. Whatisthedifferencebetweenanexothermicandendothermicreaction?2. Howdoyouchoosewhichtherapyisrightforyourinjury?3. Whywouldn'tahotpackhelpwithswelling?4. Howdoyouthinkyoumightbeabletore‐usethechemicalsinaMagnesiumSulfatehotpack?5. Ifthereactioncreatingrust(IronOxide)isexothermic,whydon'trustycarsandnailsfeel

warm?6. Whatdoesthecoldsensationmeaninchemistry?7. Whydoweneedaninsulatedcontainerforcalorimetry?8. Whaterrorsdoyoupredictwewillencounterinacalorimetrylab?

Reaction

Heat q=m c ΔT

energyinJoules

massingrams

specificheat

changeintemperature

Page 7: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b, Page7

HotPackCalorimetryHASPIMedicalChemistryLab6b ObjectivesFindtheamountofenergyreleasedwhenMgSO4isrehydratedtoformMgSO47H2OSpecifically:

CalculatetheEnthalpyofHydration(ΔH)forMgSO4 LearnCalorimetrytechniques ApplyHess'Law Usetheequationq=mcΔT

Materials

FoamCupCalorimeter Thermometer AnhydrousMgSO4 MgSO47H2Ocrystals

DIordistilledwater DigitalBalanceandweighboats 50mlor100mLGraduatedcylinder

ConnectionstopastlabYoupreparedtheanhydratebyheatingtheMgSO47H2O(s)lastsemesterinthehydratedcrystalslab.Ittookheattoremovethewaterfromthecrystals,whichmeantitwasanendothermicreaction.ThatenergyhasbeenstoredintheanhydrateandwhenthereactionisreversedtheenergyyouputintotheMgSO4withyourBunsenburnerwillnowbereleasedinanexothermicreaction. ScenarioInthislabwewilldissolveMagnesiumSulfatehydrate(MgSO47H2O)andmagnesiumsulfateanhydrate(MgSO4)tofindtheΔHvaluesforeachprocess.Ahydrateisachemicalwithwatertrappedinitscrystallinestructure.Whenyoulookatthehydrateyouwillnoticeitlooksdry,notwet.Thatisbecausethewateristrapped.Weuseadotintheformulaofahydratetoshowthatthewatermoleculesaretrapped.InordertofindtheΔH(enthalpyofhydration)wewillperformtwoseparateexperiments,andthenrelatethemtofindourgoalreaction.Reaction1:MgSO4(s)Mg+2(aq)+SO4‐2(aq)Herewewilladdwatertotheanhydratetodissolvethesubstance.Reaction2:MgSO47H2O(s)Mg+2(aq)+SO4‐2(aq)+7H2O(l)Herewewilldissolvethehydratedcrystalinwater.GoalReaction:MgSO4(s)+7H2O(l)MgSO47H2O(s)ByaddingtheabovereactionstogetherwecandeterminetheΔHforthisreaction.

H2O

H2O

Name(s): Period: Date:

H2O

Page 8: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b,Page8

UsingHess'lawyoucanreversethesecondreactionandaddittothefirstinordertocalculatetheΔHofthegoalreaction.FirstwewillcalculatetheΔHforreaction1andreaction2usingcalorimetry.ProcedureandcalculationsforReaction1:MgSO4(s)Mg+2(aq)+SO4‐2(aq)1.ObtainasampleoftheanhydrousMgSO4.WeighthesampleandrecordthemassinDataTable1.Itshouldbeabout1.50‐3.00g.2.Addexactly20.0mLofDIwatertoyourcalorimeter.3.Recordtheinitialtemperatureofthewater.4.AddtheMgSO4anhydratetoyourcalorimeterandimmediatelyclosethelid.5.Stiruntilthetemperaturestopsincreasing.6.Recordthehighesttemperaturereachedasthefinaltemperature.

DATATABLE1MassofanhydrousMgSO4pelletorpowder

Massofwaterused(sameasmL)

Initialtemperatureofthewater

FinalTemperatureofthewater

ΔT(Final‐Initial)

CalculationsforReaction11.Useq=mcΔTtofindouthowmanyjoulesofenergywereabsorbedbythewater.Rememberthatthespecificheatofwateris4.184J/g°C.Besuretousethemassofwaterforthiscalculation.(Forwater1mL=1g)

a)EnergyinJoulesb)EnergyinkJ

2.Findthemolesofanhydrateuseda.WhatisthemolarmassofMgSO4?b.ConvertthegramsofMgSO4inDataTable1intomoles

a)molarmassofMgSO4

b)molesofMgSO4used

3.FindthejoulesofheatreleasedfromthereactioninkJ.Remember,energyabsorbedbywaterisnegativetheenergyreleasedfromthereaction.

Energy=

4.FindtheΔHforthisreactioninkJ/mol.(dividekJbymoles)

ΔH1=

5.Isthisreactionendothermicorexothermic?

H2O

Page 9: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b, Page9

ProcedureandcalculationsforReaction2: MgSO47H2O(s)Mg+2(aq)+SO4‐2(aq)+H2O(l ) 1.Weighoutabout2.00gofcrystalline MgSO47H2O 2.Addexactly20.0mLofDIwatertoyourcalorimeter3.Recordtheinitialtemperatureofthewater4.AddtheMgSO4hydratedcrystalstoyourcalorimeterandimmediatelyclosethelid5.Stiruntilthetemperaturestopsincreasing6.Recordthefinaltemperaturereachedbythesolutionafteritstopschanging

DATATABLE2

MassofMgSO47H2O

Massofwaterused(sameasmL)

Initialtemperatureofthewater

FinalTemperatureofthewater

ΔT(Final‐Initial)

CalculationsforReaction21.Useq=mcΔTtofindouthowmanyjoulesofenergywereabsorbedbythewater.Rememberthatthespecificheatofwateris4.184J/g°C.Besuretousethemassofwaterforthiscalculation.(Forwater1mL=1g)

a)answerinJoulesb)answerinkJ

2. Find the moles of anhydrate used a. What is the molar mass of MgSO47H2O? b. Convert the grams of MgSO47H2O in Data Table 2 into moles

a) molar mass of MgSO7H2O4

b) moles of MgSO47H2O used

3. Find the joules of heat absorbed in the reaction in kJ. Remember, energy lost by water is negative the energy gained by the reaction.

Energy=

4. Find the ΔH for this reaction in kJ/mol. (divide kJ by moles)

ΔH2 =

5. Is this reaction endothermic or exothermic?

H2O

Page 10: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b,Page10

Conclusions: Calculate the ΔH for the goal reaction using the given reactions 1. Label each reaction with the enthalpy of reaction you found in the lab Reaction 1: MgSO4(s) Mg+2(aq) + SO4-2(aq) ΔH1 = Reaction 2: MgSO47H2O (s) Mg+2(aq) + SO4-2(aq) + 7H2O(l) ΔH2 =

2. In order to find the goal reaction, the above reactions may be reversed or multiplied as needed so that they add up to make this reaction: MgSO4(s) + 7H2O(l) MgSO47H2O (s) Remember that a reversed reaction causes the sign on the ΔH value to reverse, and a doubled reaction doubles the ΔH value. Cancel out anything that appears on both sides of the arrows. Show your work as you add these reactions together: Reaction 1: ΔH = + Reaction 2: ΔH = Equals Goal Reaction MgSO4(s) + 7H2O(l) MgSO47H2O (s) ΔH = 3. When you add together the ΔH values, what is the ΔH of hydration for MgSO4? 4. If the theoretical value is -104kJ/mol, what is the percent error? 5. List 2 sources of unavoidable error

H2O

H2O

Page 11: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b, Page11

Applications:

1.Explainthedifferencebetweenpotentialenergyandkineticenergyin2‐3sentences.

2.Usingthetermspotentialandkineticenergy,describewhathappenedinthefirstreaction,whereyoudissolvedtheanhydrateinwater.

3.Thelawofconservationofenergystatesthatthetotalenergyofanisolatedsystemcannotchange.Howdoesthisapplytoourlab?4.Whatcouldyoudotoincreasetheamountofenergyreleasedinreaction1?5.Attheendofthetrial,thetemperaturebegantodecrease.Whathappenedtotheenergythatwasinthecalorimeter?

6.Whatchangescouldyouhavemadetothelabapparatustoimproveyourresults,reducingyourpercenterror?

Page 12: 6b Hot Pack Calorimetry - Health and Science Pipeline ... · Hot Pack Calorimetry Teacher Information Lab Overview In this lab students measure the amount of energy released in the

HASPIMedicalChemistryUnit6:Energy Lab6b,Page12

7.Drawadiagramofeachexperiment,includingthecalorimeter,thechemicalandthewater.Usearrowstoshowtheflowofenergybetweenthemagnesiumsulfateandthewater.Experiment1:DissolvingtheAnhydrate

Experiment2:DissolvingtheHydrate

ResourcesandReferenceshttp://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=1&ContentID=4483http://www.spine‐health.com/treatment/heat‐therapy‐cold‐therapy/benefits‐heat‐therapy‐lower‐back‐painhttp://www.middleschoolchemistry.com/lessonplans/chapter5/lesson9http://home.howstuffworks.com/question290.htmhttp://prezi.com/lranljsxv4hx/copy‐of‐chemistry‐hotcold‐packs/Pictures:http://www.chemistryland.com/CHM130FieldLab/Lab11/Lab11.html