6dfgs spectra of radio sources at 20 and 100 ghz (12 and 3mm) elaine m. sadler (university of...

18
6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum survey at millimetre wavelengths The radio-source population at 12mm (QSOs, blazars and `young’ radio galaxies) 6dFGS spectra of AT20G sources, and links to GLAST

Upload: sandra-swales

Post on 01-Apr-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

6dFGS spectra of radio sources at 20 and 100 GHz (12 and

3mm) Elaine M. Sadler (University of Sydney)

• The AT20G survey - first all-sky radio continuum survey at millimetre wavelengths

• The radio-source population at 12mm (QSOs, blazars and `young’ radio galaxies)

• 6dFGS spectra of AT20G sources, and links to GLAST

Page 2: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

The AT 20 GHz Survey Team: R. Ekers (PI), L. Staveley-Smith, W. Wilson, M. Kesteven, R. Ricci, R. Subrahmanyan , C. Jackson (ATNF) , E. Sadler, M. Walker (Sydney), G. De Zotti (Padua)

Page 3: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

AT20G observing strategy • 3 ATCA baselines (30, 30, 60m)

• Wide-band analogue correlator - frequency range: 16-24 GHz - Bandwidth: 8 GHz • Active scanning, high scan rate: 10 deg/min • No delay correction, need to scan along meridian• Detection limit ~40 mJy at 20 GHz• Pilot study (Dec -60o to -70o) in 2002/3• Main survey began in 2004 (Dec -30o to -50o now

complete)

Page 4: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

AT20G science goals

• First all-sky radio survey at mm wavelengths - investigate source populations at 20-100 GHz (not predictable from 1-5 GHz surveys!)

• Catalogue foreground discrete-source population for future CMB missions (variability, polarization particularly important).

• Set up new calibration network for ATCA, ALMA at 20-100 GHz

Page 5: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Pilot study results: two populations

Aitoff equal area projection of the confirmed sources, in Galactic

coordinates Two populations: Galactic & extragalactic

Page 6: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Pilot study: source density

Steep increase in source density near the Galactic plane

Galactic sources: mainly HII regions, some young SNRs?

Extragalactic sources: Mainly QSOs, blazars, radio galaxies (AGN)

Page 7: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Optical IDs of AT20G sources

AT20G detects only a small subset of the low-frequency (NVSS/ SUMSS) radio sources discussed by Tom Mauch.

High DSS optical ID rate: > 90% for AT20G sources, < 30% for NVSS/SUMSS

Most optical IDs are stellar (QSO candidates), many are `6dFGS additional targets’ (radio/X-ray sources) in DR1.

SUMSS

AT20G

Page 8: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Typical radio-galaxy SED

Non-thermal (AGN)

Thermal (stars + dust)

Radio flux density decreases with increasing freq.

As a result, surface density of classical radio galaxies (and starburst galaxies) is high below 1 GHz, low above 10 GHz

Page 9: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Spectral-energy distribution of blazars

Blazars (BL Lacs and flat-spectrum radio QSOs) have a characteristic double-peaked SED

Synchrotron peak: anywhere in IR to X-ray region.

Inverse Compton scattering: gamma- ray peak (GeV to TeV energies) (Ulrich et al. 1997)

Because of their rising radio spectra, blazars are bright at 20 GHz

Page 10: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Radio emission from blazars

Radio-loud AGNs (radio galaxies, quasars, BL Lacs) have radio jets (pc scales) and/or lobes.

Blazar = BL Lac Objects + Flat-spectrum radio QSOs (FSRQs)

In unified model for AGNs, blazars are viewed within about 20° of jet axis (I.e. relativistic beaming common)

Page 11: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Gamma-ray Sources with GLAST

GLAST LAT

(D. Thompson/GLAST team 2004)

GLAST: Next-generation -ray satellite due for launch in 2007.

All-sky surveys will probe ~30x fainter than EGRET.

Source population expected to be blazars and pulsars

Southern blazar census: AT20G + 6dFGS!!

Page 12: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

AT20G sources in the 6dFGS DR1

• 1254 extragalactic (|b|>10o) radio sources detected at 20 GHz in declination zone -30 < < -50 deg.

• 62 of these (2.5%) have 6dFGS spectra in DR1 (which had incomplete coverage of the AT20G area)

• 26 galaxies in main 6dFGS sample (23 with redshifts)

• 34 ‘additional targets’ : 20 QSOs

5 BL Lacs

2 emission-line galaxies

7 with noisy spectra

Page 13: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Radio spectral index plots

Radio spectral indices at low and high freq. uncorrelated

(equivalent to a radio ‘two-colour diagram’)

Page 14: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Radio galaxy, main 6dFGS sample

Powerful nearby radio galaxy (NGC3100) in main 6dFGS sample. 175 mJy at 20 GHz, 530 mJy at 1.4 GHz.

2MASS

Page 15: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

QSO, z=3.12, radio additional target

DSS B R

Lyman

Radio spectrum turns up above 8 GHz, 57 mJy at 20 GHz. Not selected in 6dF QSO samples

Page 16: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

QSO, z=1.29, X-ray additional target

DSS B R

CIII

MgII Radio spectrum peaks around 5 GHz, 350 mJy at 20 GHz.

Page 17: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

BL Lac?, radio additional target

B R

Inverted radio spectrum, rising from 160 mJy at 1.4 GHz to

655 mJy at 20 GHz. Detected by WMAP, 2.4 Jy at 4.9 mm, i.e. spectrum continues to rise above 60 GHz! Likely-ray blazar?

Probably one of the strongest sources in the sky at 100 GHz?

Page 18: 6dFGS spectra of radio sources at 20 and 100 GHz (12 and 3mm) Elaine M. Sadler (University of Sydney) The AT20G survey - first all-sky radio continuum

Summary• 6dFGS (main-survey and additional-target samples) overlaps the AT20G radio survey and is useful in characterising high-frequency radio sources and measuring their redshifts.

• Could make the 6dFGS data even more useful by:

- allocating higher priority to AT20G additional targets (which have low surface density)

-adding a QSO template to the redshifting program to remove the need for re-redshifting QSO/blazar spectra

Looking forward to DR2!!