7/3-11mena3100 diffraction analysis of crystal structure x-rays, neutrons and electrons lett...

18
7/3-11 MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

Upload: raymond-booker

Post on 21-Dec-2015

220 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

7/3-11 MENA3100

Diffraction

Analysis of crystal structure

x-rays, neutrons and electrons

Lett forkortet versjon av Anette Gunnes sin presentasjon

Page 2: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

The reciprocal lattice

• g is a vector normal to a set of planes, with length equal to the inverse spacing between them

• Reciprocal lattice vectors a*,b* and c*

• These vectors define the reciprocal lattice• All crystals have a real space lattice and a reciprocal lattice• Diffraction techniques map the reciprocal lattice

*** clbkahg

)(*,

)(*,

)(*

bac

bac

acb

acb

cba

cba

Page 3: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Radiation: x-rays, neutrons and electrons

• Elastic scattering of radiation– No energy is lost

• The wavelength of the scattered wave remains unchanged

• Regular arrays of atoms interact elastically with radiation of sufficient short wavelength – CuKα x-ray radiation: λ = 0.154 nm

• Scattered by electrons• From sample volume of the order of (0.1 mm)3

– Neutron radiation λ ~ 0.1nm• Scattered by atomic nuclei• From sample volume of the order of (10 mm)3

– Electron radiation (200 kV): λ = 0.00251 nm• Scattered by atomic nuclei and electrons• Thickness less than ~200 nm• Sample volume down to (10 nm)3

Page 4: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Interference of waves

• Sound, light, ripples in water etc etc

• Constructive and destructive interference )

2sin()(

)2

sin()(

2

1

xL

x

xL

x

=2n =(2n+1)

Constructive interference Destructive interference

0

Page 5: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Nature of light

• Newton: particles (corpuscles)

• Huygens: waves• Thomas Young double

slit experiment (1801)• Path difference phase

difference• Wave-particle duality

Page 6: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Discovery of X-rays

• Wilhelm Röntgen 1895/96• Nobel Prize in 1901• Particles or waves?• Not affected by magnetic fields• No refraction, reflection or

intereference observed• If waves, λ10-9 m

Page 7: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Max von Laue

• The periodicity within crystals had been deduced earlier (e.g. Auguste Bravais).

• von Laue realized that if X-rays were waves with short wavelength, interference phenomena should be observed like in Young’s double slit experiment.

• Experiment in 1912 (Friedrich, Knipping and von Laue), Nobel Prize in 1914 (von Laue)

Page 8: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Bragg’s law

•William Lawrence Bragg found a simple interpretation of von Laue’s experiment• Consider a crystal as a periodic arrangement of atoms, this gives crystal planes• Assume that each crystal plane reflects radiation as a semitransparent mirror • Analyze this situation for cases of constructive and destructive interference• Nobel prize together with his father in 1915 for solving the first crystal structures

Page 9: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Derivation of Bragg’s law

)sin(

)sin(

hkl

hkl

dx

d

x

Path difference Δ= 2x => phase shiftConstructive interference if Δ=nλThis gives the criterion for constructive interference:

ndhkl )sin(2

θ

θ

θ

x

dhkl

Bragg’s law tells you at which angle θB to expect maximum diffracted intensity for a particular family of crystal planes. For large crystals, all other angles give zero intensity.

Page 10: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Relationship between resiprocal vector and interplanar spacing

0k

k

g

θ 1

kko

dg

1

sin2

sin2 kg

Bragg’s law:

sin21

d

Thus:

Page 11: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

The limiting-sphere construction

• Vector representation of Bragg law

• IkI=Ik0I=1/λ

– λx-rays>> λe k= ghkl

(hkl)

k0

k-k0

2θIncident beamDiffr

acte

d be

am

Limiting sphereReflecting sphere

Page 12: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

The Ewald Sphere (’limiting sphere construction’)

1

'kk

Elastic scattering:

k k’

g

The observed diffraction pattern is the part of the reciprocal space that is intersected by the Ewald sphere

Page 13: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Cu K X-ray: = 150 pm => small kElectrons at 200 kV: = 2.5 pm => large k

The Ewald Sphere is almost flat when 1/ becomes large

Page 14: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

50 nm

Page 15: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Structure factors

The structure factors for x-ray, neutron and electron diffraction are similar. For neutrons and electrons we need only to replace by fj

(n) or fj(e) .

N

j

xjhklg fFF

1

)( 2exp( ))( jjj lwkvhui X-ray:

The coordinate of atom j within the crystal unit cell is given rj=uja+vjb+wjc. h, k and l are the Miller indices of the Bragg reflection g. N is the number of atoms within the crystal unit cell. fj(n) is the x-ray scattering factor, or x-ray scattering amplitude, for atom j.

rj

ujaa b

x

z

c

y

vjb

wjc

The intensity of a reflection is proportional to:

ggFF

Page 16: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

Example: fcc

• eiφ = cosφ + isinφ

• enπi = (-1)n

• eiφ + e-iφ = 2cosφ

N

jjhklg fFF

1

2exp( ))( jjj lwkvhui

Atomic positions in the unit cell: [000], [½ ½ 0], [½ 0 ½ ], [0 ½ ½ ]

Fhkl= f (1+ eπi(h+k) + eπi(h+l) + eπi(k+l))

If h, k, l are all odd then:Fhkl= f(1+1+1+1)=4f

If h, k, l are mixed integers (exs 112) thenFhkl=f(1+1-1-1)=0 (forbidden)

What is the general condition for reflections for fcc?

What is the general condition for reflections for bcc?

Page 17: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

The structure factor for fcc

What is the general condition for reflections for bcc?

The reciprocal lattice of a FCC lattice is BCC

Page 18: 7/3-11MENA3100 Diffraction Analysis of crystal structure x-rays, neutrons and electrons Lett forkortet versjon av Anette Gunnes sin presentasjon

MENA3100

The reciprocal lattice of bcc

• Body centered cubic lattice • One atom per lattice point, [000] relative to the lattice point• What is the reciprocal lattice?

N

jjhklg fFF

1

2exp( ))( jjj lwkvhui