7.3 the jacobi and gauss-seidel iterative methodszxu2/acms40390f15/lec-7.3.pdfย ยท main idea of...

21
1 7.3 The Jacobi and Gauss-Seidel Iterative Methods

Upload: phambao

Post on 30-Sep-2018

240 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

1

7.3 The Jacobi and Gauss-Seidel Iterative Methods

Page 2: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

2

The Jacobi Method Two assumptions made on Jacobi Method:

1.The system given by ๐‘Ž๐‘Ž11๐‘ฅ๐‘ฅ1 + ๐‘Ž๐‘Ž12๐‘ฅ๐‘ฅ2 + โ‹ฏ๐‘Ž๐‘Ž1๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘› = ๐‘๐‘1 ๐‘Ž๐‘Ž21๐‘ฅ๐‘ฅ1 + ๐‘Ž๐‘Ž22๐‘ฅ๐‘ฅ2 + โ‹ฏ๐‘Ž๐‘Ž2๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘› = ๐‘๐‘2

โ‹ฎ ๐‘Ž๐‘Ž๐‘›๐‘›1๐‘ฅ๐‘ฅ1 + ๐‘Ž๐‘Ž๐‘›๐‘›2๐‘ฅ๐‘ฅ2 + โ‹ฏ๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘› = ๐‘๐‘๐‘›๐‘›

Has a unique solution. 2.The coefficient matrix ๐ด๐ด has no zeros on its main diagonal, namely, ๐‘Ž๐‘Ž11, ๐‘Ž๐‘Ž22, โ€ฆ , ๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘› are nonzeros.

Page 3: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

3

Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ1, the 2nd equation for ๐‘ฅ๐‘ฅ2 and so on to obtain the rewritten equations:

๐‘ฅ๐‘ฅ1 =1๐‘Ž๐‘Ž11

(๐‘๐‘1 โˆ’ ๐‘Ž๐‘Ž12๐‘ฅ๐‘ฅ2 โˆ’ ๐‘Ž๐‘Ž13๐‘ฅ๐‘ฅ3 โˆ’ โ‹ฏ๐‘Ž๐‘Ž1๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›)

๐‘ฅ๐‘ฅ2 =1๐‘Ž๐‘Ž22

(๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž21๐‘ฅ๐‘ฅ1 โˆ’ ๐‘Ž๐‘Ž23๐‘ฅ๐‘ฅ3 โˆ’ โ‹ฏ๐‘Ž๐‘Ž2๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›)

โ‹ฎ

๐‘ฅ๐‘ฅ๐‘›๐‘› =1๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

(๐‘๐‘๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž๐‘›๐‘›1๐‘ฅ๐‘ฅ1 โˆ’ ๐‘Ž๐‘Ž๐‘›๐‘›2๐‘ฅ๐‘ฅ2 โˆ’ โ‹ฏ๐‘Ž๐‘Ž๐‘›๐‘›,๐‘›๐‘›โˆ’1๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1)

Then make an initial guess of the solution ๐’™๐’™(0) = (๐‘ฅ๐‘ฅ1(0), ๐‘ฅ๐‘ฅ2

(0), ๐‘ฅ๐‘ฅ3(0), โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘›

(0)). Substitute these values into the right hand side the of the rewritten equations to obtain the first approximation, ๏ฟฝ๐‘ฅ๐‘ฅ1

(1), ๐‘ฅ๐‘ฅ2(1), ๐‘ฅ๐‘ฅ3

(1), โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘›(1)๏ฟฝ.

This accomplishes one iteration.

Page 4: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

4

In the same way, the second approximation ๏ฟฝ๐‘ฅ๐‘ฅ1(2), ๐‘ฅ๐‘ฅ2

(2), ๐‘ฅ๐‘ฅ3(2), โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘›

(2)๏ฟฝ is computed by substituting the first approximationโ€™s value ๏ฟฝ๐‘ฅ๐‘ฅ1

(1), ๐‘ฅ๐‘ฅ2(1), ๐‘ฅ๐‘ฅ3

(1), โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘›(1)๏ฟฝ into the right hand side of the rewritten equations.

By repeated iterations, we form a sequence of approximations ๐’™๐’™(๐‘˜๐‘˜) =

๏ฟฝ๐‘ฅ๐‘ฅ1(๐‘˜๐‘˜), ๐‘ฅ๐‘ฅ2

(๐‘˜๐‘˜), ๐‘ฅ๐‘ฅ3(๐‘˜๐‘˜), โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘›

(๐‘˜๐‘˜)๏ฟฝ๐‘ก๐‘ก

, ๐‘˜๐‘˜ = 1,2,3, โ€ฆ

The Jacobi Method. For each ๐‘˜๐‘˜ โ‰ฅ 1, generate the components ๐‘ฅ๐‘ฅ๐‘–๐‘–(๐‘˜๐‘˜) of

๐’™๐’™(๐’Œ๐’Œ) from ๐’™๐’™(๐’Œ๐’Œโˆ’๐Ÿ๐Ÿ) by

๐‘ฅ๐‘ฅ๐‘–๐‘–(๐‘˜๐‘˜) =

1๐‘Ž๐‘Ž๐‘–๐‘–๐‘–๐‘–

โŽฃโŽขโŽขโŽขโŽก๏ฟฝ(โˆ’๐‘Ž๐‘Ž๐‘–๐‘–๐‘–๐‘–๐‘ฅ๐‘ฅ๐‘–๐‘–

(๐‘˜๐‘˜โˆ’1))๐‘›๐‘›

๐‘–๐‘–=1,๐‘–๐‘–โ‰ ๐‘–๐‘–

+ ๐‘๐‘๐‘–๐‘–

โŽฆโŽฅโŽฅโŽฅโŽค

, for ๐‘–๐‘– = 1,2, , โ€ฆ๐‘›๐‘›

Page 5: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

5

Example. Apply the Jacobi method to solve 5๐‘ฅ๐‘ฅ1 โˆ’ 2๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ3 = โˆ’1โˆ’3๐‘ฅ๐‘ฅ1 + 9๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ3 = 2 2๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฅ๐‘ฅ2 โˆ’ 7๐‘ฅ๐‘ฅ3 = 3

Continue iterations until two successive approximations are identical when rounded to three significant digits. Solution

๐‘›๐‘› ๐‘˜๐‘˜ = 0 ๐‘˜๐‘˜ = 1 ๐‘˜๐‘˜ = 2 ๐‘˜๐‘˜ = 3 ๐‘˜๐‘˜ = 4 ๐‘˜๐‘˜ = 5 ๐‘˜๐‘˜ = 6 ๐‘ฅ๐‘ฅ1

(๐‘˜๐‘˜) 0.000 -0.200 0.146 0.192

๐‘ฅ๐‘ฅ2(๐‘˜๐‘˜) 0.000 0.222 0.203 0.328

๐‘ฅ๐‘ฅ2(๐‘˜๐‘˜) 0.000 -0.429 -0.517 -0.416

Page 6: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

6

When to stop: 1. ||๐’™๐’™(๐‘˜๐‘˜)โˆ’๐’™๐’™(๐‘˜๐‘˜โˆ’1)||

||๐’™๐’™(๐‘˜๐‘˜)||< ๐œ€๐œ€; or ๏ฟฝ๏ฟฝ๐’™๐’™(๐‘˜๐‘˜) โˆ’ ๐’™๐’™(๐‘˜๐‘˜โˆ’1)๏ฟฝ๏ฟฝ < ๐œ€๐œ€. Here ๐œ€๐œ€ is

a given small number . Another stopping criterion: ||๐’™๐’™(๐‘˜๐‘˜)โˆ’๐’™๐’™(๐‘˜๐‘˜โˆ’1)||

||๐’™๐’™(๐‘˜๐‘˜)||

Definition 7.1 A vector norm on ๐‘…๐‘…๐‘›๐‘› is a function, || โˆ™ ||, from ๐‘…๐‘…๐‘›๐‘› to ๐‘…๐‘… with the properties:

(i) ||๐’™๐’™|| โ‰ฅ 0 for all ๐’™๐’™ โˆˆ ๐‘…๐‘…๐‘›๐‘› (ii) ๏ฟฝ|๐’™๐’™|๏ฟฝ = 0 if and only if ๐’™๐’™ = ๐ŸŽ๐ŸŽ (iii)๏ฟฝ|๐›ผ๐›ผ๐’™๐’™|๏ฟฝ = |๐›ผ๐›ผ|๏ฟฝ|๐’™๐’™|๏ฟฝ for all ๐›ผ๐›ผ โˆˆ ๐‘…๐‘… and ๐’™๐’™ โˆˆ ๐‘…๐‘…๐‘›๐‘› (iv) ๏ฟฝ|๐’™๐’™ + ๐’š๐’š|๏ฟฝ โ‰ค ๏ฟฝ|๐’™๐’™|๏ฟฝ + ||๐’š๐’š|| for all ๐’™๐’™,๐’š๐’š โˆˆ ๐‘…๐‘…๐‘›๐‘›

Definition 7.2 The Euclidean norm ๐‘™๐‘™2 and the infinity norm ๐‘™๐‘™โˆž for the vector ๐’™๐’™ = [๐‘ฅ๐‘ฅ1, ๐‘ฅ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘›]๐‘ก๐‘ก are defined by

||๐’™๐’™||2 = ๏ฟฝ๏ฟฝ๐‘ฅ๐‘ฅ๐‘–๐‘–2๐‘›๐‘›

๐‘–๐‘–=1

๏ฟฝ

12

and

Page 7: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

7

||๐’™๐’™||โˆž = max1โ‰ค๐‘–๐‘–โ‰ค๐‘›๐‘›

|๐‘ฅ๐‘ฅ๐‘–๐‘–|

Example. Determine the ๐‘™๐‘™2 and ๐‘™๐‘™โˆž norms of the vector ๐‘ฅ๐‘ฅ = (โˆ’1,1,โˆ’2)๐‘ก๐‘ก. Solution:

||๐’™๐’™||2 = ๏ฟฝ(โˆ’1)2 + (1)2 + (โˆ’2)2 = โˆš6.

||๐’™๐’™||โˆž = max{|โˆ’1|, |1|, |โˆ’2|} = 2.

Page 8: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

8

The Jacobi Method in Matrix Form Consider to solve an ๐‘›๐‘› ร— ๐‘›๐‘› size system of linear equations ๐ด๐ด๐’™๐’™ = ๐’ƒ๐’ƒ with

๐ด๐ด = ๏ฟฝ

๐‘Ž๐‘Ž11 ๐‘Ž๐‘Ž12 โ€ฆ ๐‘Ž๐‘Ž1๐‘›๐‘›๐‘Ž๐‘Ž21 ๐‘Ž๐‘Ž22 โ€ฆ ๐‘Ž๐‘Ž2๐‘›๐‘›โ‹ฎ๐‘Ž๐‘Ž๐‘›๐‘›1

โ‹ฎ๐‘Ž๐‘Ž๐‘›๐‘›2

โ‹ฑโ€ฆ

โ‹ฎ๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

๏ฟฝ and ๐’ƒ๐’ƒ = ๏ฟฝ

๐‘๐‘1๐‘๐‘2โ‹ฎ๐‘๐‘๐‘›๐‘›

๏ฟฝ for ๐’™๐’™ = ๏ฟฝ

๐‘ฅ๐‘ฅ1๐‘ฅ๐‘ฅ2โ‹ฎ๐‘ฅ๐‘ฅ๐‘›๐‘›๏ฟฝ.

We split ๐ด๐ด into

Page 9: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

9

๐ด๐ด = ๏ฟฝ

๐‘Ž๐‘Ž11 0 โ€ฆ 00 ๐‘Ž๐‘Ž22 โ€ฆ 0โ‹ฎ0

โ‹ฎ0

โ‹ฑโ€ฆ

โ‹ฎ๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

๏ฟฝ โˆ’ ๏ฟฝ

0 โ€ฆ 0 0โˆ’๐‘Ž๐‘Ž21 โ€ฆ 0 0โ‹ฎ

โˆ’๐‘Ž๐‘Ž๐‘›๐‘›1โ‹ฑ โ‹ฎ

โ€ฆ โˆ’๐‘Ž๐‘Ž๐‘›๐‘›,๐‘›๐‘›โˆ’1 0

๏ฟฝ

โˆ’ ๏ฟฝ

0 โˆ’๐‘Ž๐‘Ž12 โ€ฆ โˆ’๐‘Ž๐‘Ž1๐‘›๐‘›0 0 โ‹ฎโ‹ฎ0

โ‹ฎ0

โ‹ฑโ€ฆ

โˆ’๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1,๐‘›๐‘›0

๏ฟฝ = ๐ท๐ท โˆ’ ๐ฟ๐ฟ โˆ’ ๐‘ˆ๐‘ˆ

Where ๐ท๐ท = ๏ฟฝ

๐‘Ž๐‘Ž11 0 โ€ฆ 00 ๐‘Ž๐‘Ž22 โ€ฆ 0โ‹ฎ0

โ‹ฎ0

โ‹ฑโ€ฆ

โ‹ฎ๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›

๏ฟฝ ๐ฟ๐ฟ = ๏ฟฝ

0 โ€ฆ 0 0โˆ’๐‘Ž๐‘Ž21 โ€ฆ 0 0โ‹ฎ

โˆ’๐‘Ž๐‘Ž๐‘›๐‘›1โ‹ฑ โ‹ฎ

โ€ฆ โˆ’๐‘Ž๐‘Ž๐‘›๐‘›,๐‘›๐‘›โˆ’1 0

๏ฟฝ,

Page 10: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

10

๐‘ˆ๐‘ˆ = ๏ฟฝ

0 โˆ’๐‘Ž๐‘Ž12 โ€ฆ โˆ’๐‘Ž๐‘Ž1๐‘›๐‘›0 0 โ‹ฎโ‹ฎ0

โ‹ฎ0

โ‹ฑโ€ฆ

โˆ’๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1,๐‘›๐‘›0

๏ฟฝ

๐ด๐ด๐’™๐’™ = ๐’ƒ๐’ƒ is transformed into (๐ท๐ท โˆ’ ๐ฟ๐ฟ โˆ’ ๐‘ˆ๐‘ˆ)๐’™๐’™ = ๐’ƒ๐’ƒ. ๐ท๐ท๐’™๐’™ = (๐ฟ๐ฟ + ๐‘ˆ๐‘ˆ)๐’™๐’™ + ๐’ƒ๐’ƒ

Assume ๐ท๐ทโˆ’1 exists and ๐ท๐ทโˆ’1 =

โŽฃโŽขโŽขโŽขโŽขโŽก1๐‘Ž๐‘Ž11

0 โ€ฆ 0

0 1๐‘Ž๐‘Ž22

โ€ฆ 0

โ‹ฎ0

โ‹ฎ0

โ‹ฑโ€ฆ

โ‹ฎ1๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›โŽฆ

โŽฅโŽฅโŽฅโŽฅโŽค

Then ๐’™๐’™ = ๐ท๐ทโˆ’1(๐ฟ๐ฟ + ๐‘ˆ๐‘ˆ)๐’™๐’™ + ๐ท๐ทโˆ’1๐’ƒ๐’ƒ

The matrix form of Jacobi iterative method is ๐’™๐’™(๐‘˜๐‘˜) = ๐ท๐ทโˆ’1(๐ฟ๐ฟ + ๐‘ˆ๐‘ˆ)๐’™๐’™(๐‘˜๐‘˜โˆ’1) + ๐ท๐ทโˆ’1๐’ƒ๐’ƒ ๐‘˜๐‘˜ = 1,2,3, โ€ฆ

Page 11: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

11

Define ๐‘‡๐‘‡๐‘–๐‘– = ๐ท๐ทโˆ’1(๐ฟ๐ฟ + ๐‘ˆ๐‘ˆ) and ๐’„๐’„ = ๐ท๐ทโˆ’1๐’ƒ๐’ƒ, Jacobi iteration method can also be written as

๐’™๐’™(๐‘˜๐‘˜) = ๐‘‡๐‘‡๐‘–๐‘–๐’™๐’™(๐‘˜๐‘˜โˆ’1) + ๐’„๐’„ ๐‘˜๐‘˜ = 1,2,3, โ€ฆ The Gauss-Seidel Method Main idea of Gauss-Seidel

Page 12: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

12

With the Jacobi method, only the values of ๐‘ฅ๐‘ฅ๐‘–๐‘–(๐‘˜๐‘˜) obtained in the ๐‘˜๐‘˜ th

iteration are used to compute ๐‘ฅ๐‘ฅ๐‘–๐‘–(๐‘˜๐‘˜+1). With the Gauss-Seidel method, we

use the new values ๐‘ฅ๐‘ฅ๐‘–๐‘–(๐‘˜๐‘˜+1) as soon as they are known. For example, once

we have computed ๐‘ฅ๐‘ฅ1(๐‘˜๐‘˜+1) from the first equation, its value is then used in

the second equation to obtain the new ๐‘ฅ๐‘ฅ2(๐‘˜๐‘˜+1), and so on.

Example. Use the Gauss-Seidel method to solve

Page 13: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

13

5๐‘ฅ๐‘ฅ1 โˆ’ 2๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ3 = โˆ’1โˆ’3๐‘ฅ๐‘ฅ1 + 9๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ3 = 2 2๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฅ๐‘ฅ2 โˆ’ 7๐‘ฅ๐‘ฅ3 = 3

Choose the initial guess ๐‘ฅ๐‘ฅ1 = 0, ๐‘ฅ๐‘ฅ2 = 0, ๐‘ฅ๐‘ฅ3 = 0 ๐‘›๐‘› ๐‘˜๐‘˜ = 0 ๐‘˜๐‘˜ = 1 ๐‘˜๐‘˜ = 2 ๐‘˜๐‘˜ = 3 ๐‘˜๐‘˜ = 4 ๐‘˜๐‘˜ = 5 ๐‘˜๐‘˜ = 6 ๐‘ฅ๐‘ฅ1

(๐‘˜๐‘˜) 0.000 -0.200 0.167

๐‘ฅ๐‘ฅ2(๐‘˜๐‘˜) 0.000 0.156 0.334

๐‘ฅ๐‘ฅ2(๐‘˜๐‘˜) 0.000 -0.508 -0.429

The Gauss-Seidel Method. For each ๐‘˜๐‘˜ โ‰ฅ 1, generate the components ๐‘ฅ๐‘ฅ๐‘–๐‘–

(๐‘˜๐‘˜) of ๐’™๐’™(๐’Œ๐’Œ) from ๐’™๐’™(๐’Œ๐’Œโˆ’๐Ÿ๐Ÿ) by

Page 14: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

14

๐‘ฅ๐‘ฅ๐‘–๐‘–(๐‘˜๐‘˜) =

1๐‘Ž๐‘Ž๐‘–๐‘–๐‘–๐‘–

๏ฟฝโˆ’๏ฟฝ(๐‘Ž๐‘Ž๐‘–๐‘–๐‘–๐‘–๐‘ฅ๐‘ฅ๐‘–๐‘–(๐‘˜๐‘˜))

๐‘–๐‘–โˆ’1

๐‘–๐‘–=1

โˆ’ ๏ฟฝ (๐‘Ž๐‘Ž๐‘–๐‘–๐‘–๐‘–๐‘ฅ๐‘ฅ๐‘–๐‘–(๐‘˜๐‘˜โˆ’1))

๐‘›๐‘›

๐‘–๐‘–=๐‘–๐‘–+1

+ ๐‘๐‘๐‘–๐‘–๏ฟฝ , for ๐‘–๐‘–

= 1,2, , โ€ฆ๐‘›๐‘› Namely,

๐‘Ž๐‘Ž11๐‘ฅ๐‘ฅ1(๐‘˜๐‘˜) = โˆ’๐‘Ž๐‘Ž12๐‘ฅ๐‘ฅ2

(๐‘˜๐‘˜โˆ’1) โˆ’โ‹ฏโˆ’ ๐‘Ž๐‘Ž1๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›(๐‘˜๐‘˜โˆ’1) + ๐‘๐‘1

๐‘Ž๐‘Ž22๐‘ฅ๐‘ฅ2(๐‘˜๐‘˜) = โˆ’๐‘Ž๐‘Ž21๐‘ฅ๐‘ฅ1

(๐‘˜๐‘˜) โˆ’ ๐‘Ž๐‘Ž23๐‘ฅ๐‘ฅ3(๐‘˜๐‘˜โˆ’1) โˆ’โ‹ฏโˆ’ ๐‘Ž๐‘Ž2๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›

(๐‘˜๐‘˜โˆ’1) + ๐‘๐‘2๐‘Ž๐‘Ž33๐‘ฅ๐‘ฅ3

(๐‘˜๐‘˜) = โˆ’๐‘Ž๐‘Ž31๐‘ฅ๐‘ฅ1(๐‘˜๐‘˜) โˆ’ ๐‘Ž๐‘Ž32๐‘ฅ๐‘ฅ2

(๐‘˜๐‘˜) โˆ’ ๐‘Ž๐‘Ž34๐‘ฅ๐‘ฅ4(๐‘˜๐‘˜โˆ’1) โˆ’โ‹ฏโˆ’ ๐‘Ž๐‘Ž3๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›

(๐‘˜๐‘˜โˆ’1) + ๐‘๐‘3โ‹ฎ

๐‘Ž๐‘Ž๐‘›๐‘›๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›(๐‘˜๐‘˜) = โˆ’๐‘Ž๐‘Ž๐‘›๐‘›1๐‘ฅ๐‘ฅ1

(๐‘˜๐‘˜) โˆ’ ๐‘Ž๐‘Ž๐‘›๐‘›2๐‘ฅ๐‘ฅ2(๐‘˜๐‘˜) โˆ’โ‹ฏโˆ’ ๐‘Ž๐‘Ž๐‘›๐‘›,๐‘›๐‘›โˆ’1๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1

(๐‘˜๐‘˜) + ๐‘๐‘๐‘›๐‘›

Matrix form of Gauss-Seidel method.

Page 15: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

15

(๐ท๐ท โˆ’ ๐ฟ๐ฟ)๐’™๐’™(๐’Œ๐’Œ) = ๐‘ˆ๐‘ˆ๐’™๐’™(๐‘˜๐‘˜โˆ’1) + ๐’ƒ๐’ƒ ๐’™๐’™(๐’Œ๐’Œ) = (๐ท๐ท โˆ’ ๐ฟ๐ฟ)โˆ’1๐‘ˆ๐‘ˆ๐’™๐’™(๐‘˜๐‘˜โˆ’1) + (๐ท๐ท โˆ’ ๐ฟ๐ฟ)โˆ’1๐’ƒ๐’ƒ

Define ๐‘‡๐‘‡๐‘”๐‘” = (๐ท๐ท โˆ’ ๐ฟ๐ฟ)โˆ’1๐‘ˆ๐‘ˆ and ๐’„๐’„๐‘”๐‘” = (๐ท๐ท โˆ’ ๐ฟ๐ฟ)โˆ’1๐’ƒ๐’ƒ, Gauss-Seidel method can be written as

๐’™๐’™(๐‘˜๐‘˜) = ๐‘‡๐‘‡๐‘”๐‘”๐’™๐’™(๐‘˜๐‘˜โˆ’1) + ๐’„๐’„๐‘”๐‘” ๐‘˜๐‘˜ = 1,2,3, โ€ฆ Convergence theorems of the iteration methods

Page 16: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

16

Let the iteration method be written as ๐’™๐’™(๐‘˜๐‘˜) = ๐‘‡๐‘‡๐’™๐’™(๐‘˜๐‘˜โˆ’1) + ๐’„๐’„ for each ๐‘˜๐‘˜ = 1,2,3, โ€ฆ

Definition 7.14 The spectral radius ๐œŒ๐œŒ(๐ด๐ด) of a matrix ๐ด๐ด is defined by

๐œŒ๐œŒ(๐ด๐ด) = max|๐œ†๐œ†| , where ๐œ†๐œ† is an eigenvalue of ๐ด๐ด. Remark: For complex ๐œ†๐œ† = ๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘, we define |๐œ†๐œ†| = โˆš๐‘Ž๐‘Ž2 + ๐‘๐‘2. Lemma 7.18 If the spectral radius satisfies ๐œŒ๐œŒ(๐‘‡๐‘‡) < 1, then (๐ผ๐ผ โˆ’ ๐‘‡๐‘‡)โˆ’1 exists, and

(๐ผ๐ผ โˆ’ ๐‘‡๐‘‡)โˆ’1 = ๐ผ๐ผ + ๐‘‡๐‘‡ + ๐‘‡๐‘‡2 + โ‹ฏ = ๏ฟฝ๐‘‡๐‘‡๐‘–๐‘–โˆž

๐‘–๐‘–=0

Theorem 7.19 For any ๐’™๐’™(0) โˆˆ ๐‘…๐‘…๐‘›๐‘›, the sequence {๐’™๐’™(๐‘˜๐‘˜)}๐‘˜๐‘˜=0โˆž defined by

Page 17: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

17

๐’™๐’™(๐‘˜๐‘˜) = ๐‘‡๐‘‡๐’™๐’™(๐‘˜๐‘˜โˆ’1) + ๐’„๐’„ for each ๐‘˜๐‘˜ โ‰ฅ 1 converges to the unique solution of ๐’™๐’™ = ๐‘‡๐‘‡๐’™๐’™ + ๐’„๐’„ if and only if ๐œŒ๐œŒ(๐‘‡๐‘‡) < 1. Proof (only show ๐œŒ๐œŒ(๐‘‡๐‘‡) < 1 is sufficient condition) ๐’™๐’™(๐‘˜๐‘˜) = ๐‘‡๐‘‡๐’™๐’™(๐‘˜๐‘˜โˆ’1) + ๐’„๐’„ = ๐‘‡๐‘‡๏ฟฝ๐‘‡๐‘‡๐’™๐’™(๐‘˜๐‘˜โˆ’2) + ๐’„๐’„๏ฟฝ + ๐’„๐’„ = โ‹ฏ = ๐‘‡๐‘‡๐‘˜๐‘˜๐’™๐’™(0) + (๐‘‡๐‘‡๐‘˜๐‘˜โˆ’1 +โ‹ฏ+ ๐‘‡๐‘‡ + ๐ผ๐ผ)๐’„๐’„ Since ๐œŒ๐œŒ(๐‘‡๐‘‡) < 1, lim

๐‘˜๐‘˜โ†’โˆž๐‘‡๐‘‡๐‘˜๐‘˜๐’™๐’™(0) = ๐ŸŽ๐ŸŽ

lim๐‘˜๐‘˜โ†’โˆž

๐’™๐’™(๐‘˜๐‘˜) = ๐ŸŽ๐ŸŽ + lim๐‘˜๐‘˜โ†’โˆž

(๏ฟฝ๐‘‡๐‘‡๐‘–๐‘–๐‘˜๐‘˜โˆ’1

๐‘–๐‘–=0

) ๐’„๐’„ = (๐ผ๐ผ โˆ’ ๐‘‡๐‘‡)โˆ’1๐’„๐’„

Page 18: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

18

Definition 7.8 A matrix norm || โˆ™ || on ๐‘›๐‘› ร— ๐‘›๐‘› matrices is a real-valued function satisfying

(i) ||๐ด๐ด|| โ‰ฅ 0 (ii) ๏ฟฝ|๐ด๐ด|๏ฟฝ = 0 if and only if ๐ด๐ด = 0 (iii)๏ฟฝ|๐›ผ๐›ผ๐ด๐ด|๏ฟฝ = |๐›ผ๐›ผ|๏ฟฝ|๐ด๐ด|๏ฟฝ (iv) ๏ฟฝ|๐ด๐ด + ๐ต๐ต|๏ฟฝ โ‰ค ๏ฟฝ|๐ด๐ด|๏ฟฝ + ||๐ต๐ต|| (v) ๏ฟฝ|๐ด๐ด๐ต๐ต|๏ฟฝ โ‰ค ๏ฟฝ|๐ด๐ด|๏ฟฝ||๐ต๐ต||

Theorem 7.9. If || โˆ™ || is a vector norm, the induced (or natural) matrix norm is given by

๏ฟฝ|๐ด๐ด|๏ฟฝ = max๏ฟฝ|๐’™๐’™|๏ฟฝ=1

||๐ด๐ด๐’™๐’™||

Example. ||๐ด๐ด||โˆž = max

||๐’™๐’™||โˆž=1||๐ด๐ด๐’™๐’™||โˆž, the ๐‘™๐‘™โˆž induced norm.

||๐ด๐ด||2 = max||๐’™๐’™||2=1

||๐ด๐ด๐’™๐’™||2, the ๐‘™๐‘™2 induced norm.

Page 19: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

19

Theorem 7.11. If ๐ด๐ด = [๐‘Ž๐‘Ž๐‘–๐‘–๐‘–๐‘–] is an ๐‘›๐‘› ร— ๐‘›๐‘› matrix, then

๏ฟฝ|๐ด๐ด|๏ฟฝโˆž = max1โ‰ค๐‘–๐‘–โ‰ค๐‘›๐‘›

๏ฟฝ๏ฟฝ๐‘Ž๐‘Ž๐‘–๐‘–๐‘–๐‘–๏ฟฝ๐‘›๐‘›

๐‘–๐‘–=1

Example. Determine ๏ฟฝ|๐ด๐ด|๏ฟฝโˆž for the matrix ๐ด๐ด = ๏ฟฝ1 2 โˆ’10 3 โˆ’15 โˆ’1 1

๏ฟฝ

Corollary 7.20 If ๏ฟฝ|๐‘‡๐‘‡|๏ฟฝ < 1 for any natural matrix norm and ๐’„๐’„ is a given vector, then the sequence {๐’™๐’™(๐‘˜๐‘˜)}๐‘˜๐‘˜=0โˆž defined by ๐’™๐’™(๐‘˜๐‘˜) = ๐‘‡๐‘‡๐’™๐’™(๐‘˜๐‘˜โˆ’1) + ๐’„๐’„ converges, for any ๐’™๐’™(0) โˆˆ ๐‘…๐‘…๐‘›๐‘› , to a vector ๐’™๐’™ โˆˆ ๐‘…๐‘…๐‘›๐‘›, with ๐’™๐’™ = ๐‘‡๐‘‡๐’™๐’™ + ๐’„๐’„ , and the following error bound hold:

(i) |๏ฟฝ๐’™๐’™ โˆ’ ๐’™๐’™(๐‘˜๐‘˜)๏ฟฝ| โ‰ค ๏ฟฝ|๐‘‡๐‘‡|๏ฟฝ๐‘˜๐‘˜|๏ฟฝ๐’™๐’™(0) โˆ’ ๐’™๐’™๏ฟฝ|

Page 20: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

20

(ii) |๏ฟฝ๐’™๐’™ โˆ’ ๐’™๐’™(๐‘˜๐‘˜)๏ฟฝ| โ‰ค ๏ฟฝ|๐‘‡๐‘‡|๏ฟฝ๐‘˜๐‘˜

1โˆ’||๐‘‡๐‘‡|||๏ฟฝ๐’™๐’™(1) โˆ’ ๐’™๐’™(0)๏ฟฝ|

Theorem 7.21 If ๐ด๐ด is strictly diagonally dominant, then for any choice of ๐’™๐’™(0), both the Jacobi and Gauss-Seidel methods give sequences {๐’™๐’™(๐‘˜๐‘˜)}๐‘˜๐‘˜=0โˆž that converges to the unique solution of ๐ด๐ด๐’™๐’™ = ๐’ƒ๐’ƒ. Rate of Convergence Corollary 7.20 (i) implies |๏ฟฝ๐’™๐’™ โˆ’ ๐’™๐’™(๐‘˜๐‘˜)๏ฟฝ| โ‰ˆ ๐œŒ๐œŒ(๐‘‡๐‘‡)๐‘˜๐‘˜|๏ฟฝ๐’™๐’™(0) โˆ’ ๐’™๐’™๏ฟฝ| Theorem 7.22 (Stein-Rosenberg) If ๐‘Ž๐‘Ž๐‘–๐‘–๐‘–๐‘– โ‰ค 0, for each ๐‘–๐‘– โ‰  ๐‘๐‘ and ๐‘Ž๐‘Ž๐‘–๐‘–๐‘–๐‘– โ‰ฅ 0, for each ๐‘–๐‘– = 1,2, โ€ฆ ,๐‘›๐‘› , then one and only one of following statements holds:

(i) 0 โ‰ค ๐œŒ๐œŒ๏ฟฝ๐‘‡๐‘‡๐‘”๐‘”๏ฟฝ < ๐œŒ๐œŒ๏ฟฝ๐‘‡๐‘‡๐‘–๐‘–๏ฟฝ < 1; (ii) 1 < ๐œŒ๐œŒ๏ฟฝ๐‘‡๐‘‡๐‘–๐‘–๏ฟฝ < ๐œŒ๐œŒ๏ฟฝ๐‘‡๐‘‡๐‘”๐‘”๏ฟฝ; (iii)๐œŒ๐œŒ๏ฟฝ๐‘‡๐‘‡๐‘–๐‘–๏ฟฝ = ๐œŒ๐œŒ๏ฟฝ๐‘‡๐‘‡๐‘”๐‘”๏ฟฝ = 0; (iv) ๐œŒ๐œŒ๏ฟฝ๐‘‡๐‘‡๐‘–๐‘–๏ฟฝ = ๐œŒ๐œŒ๏ฟฝ๐‘‡๐‘‡๐‘”๐‘”๏ฟฝ = 1.

Page 21: 7.3 The Jacobi and Gauss-Seidel Iterative Methodszxu2/acms40390F15/Lec-7.3.pdfย ยท Main idea of Jacobi To begin, solve the 1st equation for ๐‘ฅ๐‘ฅ 1, the 2 nd equation for ๐‘ฅ๐‘ฅ

21