8 opticalspectroscopy figs 131ahrenkiel.sdsmt.edu/courses/fall2019/nano702/lectures/8_optical... ·...

23
Optical Spectroscopy Interaction of light with matter can reveal details about electronic transitions described by quantum mechanics. One need is to probe ever‐smaller volumes of materials, e.g. nano‐materials. A micro‐spectroscopy method to for probing at sub micron features at varying temperatures is shown below. Outline 1. Optical transitions Light scattering Selection rules Energy relaxation, or `carrier cooling' 2. Optical spectroscopy Measuring Emission (fluorescence/luminescence) Measuring absorption (PLE) Time‐resolved luminescence Interpretation of time‐resolved luminescence Ultrafast, transient absorption 3. Excitons, defects and symmetry effects Excitons Donor‐acceptor pairs Valence‐band splitting Micro‐spectroscopy set‐up capable of examining sub‐micron regions of materials at temperatures down to 4K. The solid immersion lens sits on the sample surface, and enhances the resolution of the far‐field objective by increasing the refractive index.

Upload: others

Post on 17-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Optical SpectroscopyInteraction of light with matter can reveal details about electronic transitions described by quantum mechanics. One need is to probe ever‐smaller volumes of materials, e.g. nano‐materials. A micro‐spectroscopy method to for probing at sub micron features at varying temperatures is shown below.

Outline1. Optical transitions

Light scatteringSelection rulesEnergy relaxation, or `carrier cooling'

2. Optical spectroscopyMeasuring Emission (fluorescence/luminescence)Measuring absorption (PLE)Time‐resolved luminescenceInterpretation of time‐resolved luminescenceUltrafast, transient absorption

3. Excitons, defects and symmetry effectsExcitonsDonor‐acceptor pairsValence‐band splitting

Micro‐spectroscopy set‐up capable of examining sub‐micron regions of materials at temperatures down to 4K. The solid immersion lens sits on the sample surface, and enhances the resolution of the far‐field objective by increasing the refractive index.

Page 2: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Light scatteringDue to electron‐photon coupling, energy and momentum can be exchanged with matter via interaction with electromagnetic radiation. Energy and momentum conservation are required in collisions between free particles.

2 1E E h

2 1 p k k k

//Energy conservation

//Momentum conservation

time

Page 3: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Emission processes

Raman scatteringfluorescence

electron

electron

photon

photon

photon

phonon

1 1, E k

2 2, E k

p, h k

1 1, E k

2 2, E k

ph, k

Optical emission processes involve emission of light by change of electron energy (fluorescence or luminescence) and by inelastic scattering of light of lattice vibrations or phonons (Raman scattering).

Page 4: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Optical transitionsThe quantum state of a bound electron in an atom can be described by four quantum numbers: three result from the spatial coordinates and one from the spin degree of freedom. The three spatial quantum numbers can often be associated with those of H‐like orbital. The state can then be specified as:

, , ;n m s 𝑛: principle quantum number (𝑛 1,2,3, …ℓ: angular momentum quantum number (ℓ=0,1,2...𝑛)𝑚: magnetic quantum number (|𝑚|=0,1,2,..ℓ)𝑠: spin (𝑠 1 2⁄ )

An atomic transition involves a change of quantum state.

Page 5: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Selection rulesThe transition rate can be estimated by Fermi's golden rule:

2

0 0 0 0

2 ˆ, , ; 0 , , ;i f fin m s n m s E

The matrix element may introduce selection rules that prohibit certain transitions. For example, consider the Hamiltonian describing the interaction of an electric dipole with an electromagnetic field:

The interaction does not involve spin, in which case the spin term can be factored out.

0 0 0

ˆ ˆ0 , , 0 , ,f i f is s n m n m

f i fis s This leads to two observations:1) The transition must involve initial and final states having the same spin, because2) The matrix element must connect the initial and final states:

0 0 0ˆ, , 0 , , 0n m n m

The first condition indicates that the transition must be spin allowed. The second indicates that the transition must be dipole allowed.

1 0

ˆ ei tt p E

Page 6: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Energy relaxation of charge carriers in solidsWithin the continuous energy bands of a solid, there are many pathways for an electron in an excited to lose energy. Energy can be exchanged with the lattice by the emission of phonons in small increments, allowing "relaxation" of  the carrier to the lowest available state, which is found at the band edge.

When the carrier has reached the band edge, the only available route to lose more energy is by falling into a lower energy band, which occurs by the emission of a photon.

Note that vacancies in a filled band, which are called holes, can undergo a similar relaxation process, in which the vacancies are considered "holes", which float to the top of the band.

Page 7: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Energy relaxation in moleculesThe highest‐occupied and lowest‐unoccupied molecular orbitals (HOMO and LUMO) play a similar role in molecules to that of bands in solids. In molecules, thermal relaxation can occur by the exchange of energy with normal modes of vibration, which occur at discrete energies, rather than in continuous bands.  

Notice that vibrational modes may introduce energy levels within HOMO‐LUMO energy gap. Thus, the energy to excite an electron across the gap by absorption is generally greater than that of a photon emitted by the excited molecule.

Page 8: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Density of statesThe DOS for a bulk semiconductor vanishes in the gap between the conduction‐band and valence‐band edges. We are often concerned only with the DOS very close to the band edges, in which case the dispersion relations are approximately quadratic for each band.

C E

V E

filled CB states

empty VB states

Page 9: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Effective mass of an energy band 

222

2 2gE V

3

2

1

0

00

g

g

E E

EE E

2 2

02Gm

2

* 2 20

1 1 n

kn

E km k

0n nr E *

2 0

41

2 1n

nn n

rm m

r r

The effective mass of a band of electronic states is evaluated by assuming the band has a parabolic dispersion relation in the vicinity of an energy maximum or minimum, usually near the zone center.

2 2

*2nn

kE km

We had considered a three‐band approximation of a periodic potential. The band gap was found to be:

The band energies at the zone center are:

where

The effective mass in each band can be written as:

where:

Page 10: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Absorption spectroscopy and photoluminescence excitationPhotoluminescence excitation spectroscopy uses the energy relaxation of carriers excited above the band edge. These carriers thermalize to the band edge and emit light at the band‐gap energy. A tunable light source is scanned through the band gap while measuring the emission near the band edge. The PLEintensity above the band edge can be used to determine the DOS.

Photoluminescence spectrum

The measured bandgap is generally lower than that measured by absorption spectroscopy due tobound states with energies just below the bandedge.

Page 11: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Semiconductors: Doping (I)

If we substitute an atom in pure Si with B or P, the dopant atom has one missing/extra valence electron.

The dopant easily ionizes, either-accepting an electron (B) from the VB, or-donating an electron (P) from the CV-These are called electron acceptors/donors

Most semiconductors in devices are doped with impurities, or "dopants". "Donor" dopants contribute electrons to the conduction band (𝑛 𝑁D), making the material called "n-type"."Acceptor" dopants contribute holes to the valence band (𝑝 𝑁A), making the material "p-type".

Page 12: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Semiconductors: Doping (II)We can use the Bohr model to estimate the ionization energy of a dopant:

Coulomb potential: 2

04eV r

r

20

B 20

4am e

Modified Bohr radius:

Ionization energy:

The ionization energy of the dopant atom is:

m

//permittivity of solid

//carrier effective mass

2

2 20

12n

B

En m a

20

22 20

12n n

B

m mE E

n m a

022

0

1 13.6 eVn

m mE

n

2

0 0

14

eV rr

20 0

B 20 0

4am m m e

Page 13: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

ExcitonsAn electron in the conduction band may be bound to a positively charged hole in the valence band,  forming an exciton. The Coulomb attraction between the electron and hole results in a "quasi‐particle" with binding energy:

022

0

1 13.6 eVn

mE

n

1 1 1

e hm m

where μ is the exciton, or reduced, mass of the electron‐hole pair:

A typical binding energy is on the order of 10 meV, which is less than 𝑘B𝑇 at room temperature. Thus, excitons are usually only detectable at low temperatures.Often, the electron effective mass is much less than that of the hole (𝑚e ≪ 𝑚h), in which case 𝜇 𝑚 .

Page 14: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Measuring Fluorescence / LuminescenceIn equilibrium, a balance in absorption and emission is maintained between a specimen and the environment. To measure a fluorescence or luminescence spectrum, the sample is excited, usually by light or electrons.

When light is used for excitation, a dichroic beamsplitter is often introduced to direct the incident light onto the specimen and prevent its collection in a detector, while allowing collection of the emitted light at longer wavelengths.

GaxIn1‐xP

Page 15: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Donor‐acceptor pairsDiscrete lines in the emission spectra can occur, corresponding to integral numbers of lattice spacings between donor and acceptor dopants. The recombination of electrons and holes bound to these dopants is a function of the dopant‐ion separation.

Page 16: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Time‐resolved photoluminescenceTRPL gives the intensity of emitted light as a function of time following excitation. The data contain information about the recombination mechanisms in a material.

An important experimental method uses time‐correlated single‐photon counting, which requires high‐speed electronics that collect the arrival time of each photon following rapidly pulsed excitation.

TRPL can also be measured with a streak camera, which resolves the intensity of collected light as a function of time.

Page 17: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Influences on TRPL lifetime

0 e tt

0 e tI t U t I

1 1 1R NR

dU t tdt

The recombination rate U is often proportional to the change in concentration of excess carriers Δ𝜌:

0 e e 0 eR NRt t tt

This gives an exponential decay of the excess‐carrier concentration:

This emitted intensity is proportional to the negative of recombination rate:

There may be both radiative and non‐radiative processes influencing recombination

The measured decay rate may not represent the true radiative rate.

Page 18: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Recombination mechanism (I): Spontaneous emission (radiative)

rad rad 0 0U B n p n p

rad D

rad rad A

, //n-type1, //p-type

B NB N

Band‐to‐band transitions in semiconductors are the predominant form of radiative recombination. 

The radiative rate is:

0 D

0 A

, //n-type, //p-type

n Np N

Most semiconductors in devices are doped with impurities, or "dopants". "Donor" dopants contribute electrons to the conduction band (𝑛 𝑁D), making the material called "n‐type"."Acceptor" dopants contribute holes to the valence band (𝑝 𝑁A), making the material "p‐type".

equilibriumconcentrations

non‐equilibriumconcentrations

1 e‐, 1 h+

The radiative recombination rate varies linearly with dopant concentration.

Page 19: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Recombination mechanism (II): Defects (non‐radiative)

0 0

SRHR Rp n

n p n pUn n p p

SRH

1 , //n-type1

1 , //p-type

p

n

Recombination can occur at point defects by the capture of an electron/hole, followed by the capture of a hole/electron. The recombination rate is explained by the Shockley‐Read‐Hall model.

The net recombination rate in doped material is equal to that for capture of the minority carrier.

electron capture in defect state

hole capture in defect state

concentrations when Fermi level is equal to the defect level

Page 20: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Recombination mechanism (III): Auger (non‐radiative)

2 2,Aug 0 0

2 2,Aug 0 0

p p

n n

U A n p n p

U A n p n p

2D

2Aug A

, p-type1, n-type

p

n

A N

A N

Auger recombination involves a series of process. Radiated emission is reabsorbed. 

The recombination rate of the minority carrier varies as the square of the majority‐carrier density.

Page 21: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

High‐injection lifetime (I)

0n t n n t

n t p t t

rad

1 d dt

PL rad rad 0 0

2rad 0 0

dI U B n p n p dtB n p t t

0 D 0n N p 2

PL rad DI B N

The photoluminescence intensity decay rate is not a direct measure of the radiative recombination rate.At high injection, 1 𝜏PL⁄ may be larger than the 1 𝜏rad⁄

We can write the electron and hole concentrations after excitation as the equilibrium values, plus excess concentrations

Equal concentrations of electrons and holes are generated by the excitation: 

The instantaneous recombination rate can be defined as:

0p t p p t

The PL intensity is proportional to the recombination rate:

Assume the material is doped n‐type:

Page 22: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

High‐injection lifetime (II)

PL

PL PL

D D2

DD

D

PL D rad rad

1

2 2 1

21 1 2

dI dtI

N d N ddt N dtN

NN

The radiative lifetime can be written as:

The actual lifetime can be up to twice the photoluminescence lifetime

rad Drad 0 inj

1 1 1B N

D

PL D 0 inj

21 1 1NN

Now find the rate of decay of the PL intensity:

rad D0

1 B N

radinj

1 B

where we have separated the high‐injection correction from the low‐injection rate

The photoluminescence lifetime is now:

Page 23: 8 OpticalSpectroscopy figs 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/8_Optical... · source is scanned through the band gap while measuring the emission near the band

Transient absorptionThe transmitted fraction through a thin specimen of a probe pulse can be measured with varying time delay following excitation with a high‐intensity pump pulse. The absorption by the sample due to excited carriers will decrease as the carriers recombine.