802.11e – service differentiation - disi, university of...

88
Nomadic Communications 802.11e – Service Differentiation Renato Lo Cigno [email protected] - Tel: 2026 Dipartimento di Ingegneria e Scienza dell’Informazione Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications

Upload: others

Post on 17-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

Nomadic Communications 802.11e – Service Differentiation

Renato Lo Cigno [email protected] - Tel: 2026

Dipartimento di Ingegneria e Scienza dell’Informazione

Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications

Page 2: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 2

Copyright  

Quest’opera  è  prote2a  dalla  licenza:      Crea&ve  Commons    A-ribuzione-­‐Non  commerciale-­‐Non  opere  derivate    2.5  Italia  License    Per  i  de2agli,  consultare  h-p://crea&vecommons.org/licenses/by-­‐nc-­‐nd/2.5/it/        

Page 3: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 3

Quality-of-Service Provisioning: Some Terminology

n  Definition: A flow is a packet stream from a source to a destination, belonging to the same application

n  Definition: QoS is a set of service requirements to be met by the network while transporting a flow

n  Typical QoS metrics include: available bandwidth, packet loss rate, estimated delay, packet jitter, hop count and path reliability

Page 4: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 4

QoS in Wireless Networks

n  QoS schemes in wired networks are NOT suitable for wireless networks

n  e.g., current wired-QoS routing algorithms require accurate link state and topology information

n  time-varying capacity of wireless links, limited resources and node mobility make maintaining accurate information difficult

n  Supporting QoS in wireless networks is an even more difficult challenge

Page 5: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 5

Service Differentiation MAC Schemes ...

Service differentiation- based MAC schemes

Station-based Queue-based

DCF-based PCF-based DCF-based PCF-based

AC scheme

DFS

VMAC

Blackburst

DC scheme

Priority-based

Distributed TDM

Per-flow scheme

802.11e EDCF

AEDCF

802.11e HCF

Page 6: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 6

A QoS Standard for WLANs: IEEE 802.11e

n  The IEEE 802.11 TG E was formed in 1999

n  The Project Authorization Request (PAR) was approved in March 2000

•  Scopes of the IEEE 802.11 Task Group E

n  Enhance the current 802.11 MAC to improve and manage QoS

n  Consider efficiency enhancements in the areas of DCF and PCF

n  Provide different classes of service (4 TCs)

Page 7: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 7

802.11e Standard

n  Released 2007 n  PHY unchanged (use a/b/g) n  MAC Enhanced: Goals

n  Traffic Differentiation and Guarantee n  TSPEC and CAC n  Interoperation with legacy 802.11

n  It’s also the base for 802.11n MAC

Page 8: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 8

802.11e: QSTA, QAP, QBSS, HCF

n  A station using 802.11e is called QoS Enhanced Station (QSTA)

n  An AP using 802.11e is called QoS Access Point (QAP) n  QSTA e QAP works within a QoS Basic Service Set

(QBSS) n  The two coordination functions DCF e PCF are

substituted by a single Hybrid Coordination Function (HCF)

Page 9: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 9

TXOPs

n  TXOP: Transmission Opportunity

n  Time interval during which a QSTA has the right to transmit

n  It is characterized by a starting time and a maximum duration (TXOP_Limit)

n  Used in both CP and CFP

Page 10: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 10

802.11e Coordination Function

n  Hybrid Coordination Function, alternates:

n  EDCA (Enhanced Distributed Channel Access), contention based, conceived to support legacy stations and provide some stochastic level of differentiation

n  HCCA (HCF Coordinated Channel Access), polling based, provides collision free periods with guaranteed assignment and deterministic differentiation

Page 11: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 11

802.11e QoS Mechanisms

802.11e proposes a new access scheme: Hybrid Coordination Function (HCF), composed of two coordination functions

n  Enhanced Distributed Channel Access (EDCA)

n  A basis layer of 802.11e; operates in CP

n  HCF Controlled Channel Access (HCCA)

n  HCCA operates in CFP

DCF PCF

CFP CP

EDCA HCCA

CP CFP

Page 12: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 12

802.11e QoS Mechanisms

n  MAC-level FEC (Hybrid I and II)

n  Ad hoc features:

n  Direct Communication / Side Traffic

n  WARP: Wireless Address Resolution Protocol

n  AP mobility

Page 13: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 13

802.11e: Hybrid Coordinator

n  Within a QBSS a centralized controller is needed to coordinated all QSTAs. This is theHybrid Coordinator (HC), normally implemented within a QAP

n  An HC has the role of splitting the transmission superframe in two phases continuously altrernating: n  Contention Period (CP), where QSTAs content for the channel

using EDCA

n  Contention-Free Period (CFP), where HC defines who is going to use the channel and for what time with a collision free polling protocol

Page 14: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 14

MAC 802.11e: HCCA

Beacon Beacon

CFP

Beacon Interval (BI)

CAP

CP

CAP

EDCA

HCCA

Page 15: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 15

802.11e: EDCF

n  The Enhanced Distributed Coordination Function (EDCF) define a differentiated access scheme based on an improved (yet complex) contention scheme

n  It is an evolution of CSMA/CA DCF, with the add-on of traffic classes to support QoS and differentiate traffic

n  EDCF is designed to support frames with the same 8 priority levels of 802.1d, but mapping them on only 4 access categories

n  Every frame passed to the MAC layer from above, must have a priority identifier (from 0 to 7), called Traffic Category Identification (TCId)

Page 16: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 16

802.11e: EDCF

n  TCId is written in one header field of the MAC frame n  Each 802.11e QSTA & QAP MUST have four separated AC

queues n  Each AC queue is FIFO and behaves independently from

the others as far as the CSMA/CA MAC protocol is concerned

Page 17: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 17

802.11e: EDCF

AC3 AC2 AC1

Transmission attempt

Backoff (AIFS[AC])

Backoff (AIFS[AC])

Backoff (AIFS[AC])

Backoff (AIFS[AC])

Virtual Collision Handler (manage interal collisions)

Grants TXOP to highest priority class

AC0 Virtual Station

Page 18: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 18

802.11e: EDCF

n  ACs are differentiated based on their CSMA parameters:

n  IFS n  CWmin n  CWmax n  Backoff exponent

Page 19: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 19

802.11e: EDCF

n  Higher priority ACs are assigned parameters that result in shorter CWs so that a statistical advantage is gained in accessing the channel

n  Protocol parameters become vectors n  CWmin[AC] n  CWmax[AC] n  AIFS[AC] n  bck[AC]

n  CW[AC,t] is derived with the usual CSMA/CA rules

Page 20: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 20

802.11e: EDCF

n  Arbitration InterFrame Space (AIFS) substitute the common DIFS

n  Each AIFS is at least DIFS long

n  Befor entering the backoff procedure each Virtual Station will have to wait AIFS[AC], instead of DIFS

Page 21: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 21

Arbitraration IFS (AIFS)

802.11a: slot=9 µs, SIFS=6 µs, PIFS=15 µs, DIFS=24 µs, AIFS ≥34 µs

ACK

D

SIFS

SIFS

PIFS

AIFS[0](=DIFS)

AIFS[1]

MP

HP

LP

AIFS[2]

CW (in slots)

count down till idle, backoff when busy

defer access

Page 22: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 22

Contention Window

•  CWmin[AC] and CWmax[AC]

•  Contention Window update:

[ ] [ ]( ) 11 −⋅+= bckACCWACCW oldnew

Page 23: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 23

Backoff

802.11a: slot=9 µs, SIFS=16 µs, PIFS=25 µs, DIFS=34 µs, AIFS ≥34 µs

ACK

D

SIFS

SIFS

PIFS

AIFS[0](=DIFS)

AIFS[1]

backoff

backoff

RTS

CTS SIFS

MP

HP

AIFS[2]

CW (in slots)

count down till idle, backoff when busy

defer access

backoff LP

Page 24: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 24

Virtual Stations

n  Each AC queue behaves like a different virtual station (independent sensing and backoff)

n  If the backoff counters of two or more parallel ACs in the same QSTA reach 0 at the same time, a scheduler inside the QSTA avoids l collision by granting the TXOP to the AC with the highest UP

n  The lowest priority colliding behaves as if there were an external collision

Page 25: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 25

802.11e: EDCF – Beacon Frames

n  Values of AIFS[AC], CWmin[AC] e CWmax[AC] are determined by the QAP and transmitted within beacon frames (normally every 100 msec)

n  QSTAs must abide to the received parameters

n  QSTAs may use these parameters to chose the QAP the prefer to connect to (estimate of the expected performance)

Page 26: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 26

802.11e: TXOP

n  TXOP is the time interval in which a STA may use the channel

n  It’s an initial time plus a duration, indeed the contention is no more for a PDU, but can be for many aggregated PDUs

n  CW[AC] is managed with usual rules of increment (after collisions/failures) and decrement (during idle cahnnel): NewCW[AC] = ((OldCW[AC] + 1) * 2) - 1

Page 27: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 27

802.11e: EDCF

n  Sample allocation of TCId to ACs:

TCID CA Traffic description

0 0 Best Effort

1 0 Best Effort

2 0 Best Effort

3 1 Video Probe

4 2 Video

5 2 Video

6 3 Voice

7 3 Voice

Page 28: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 28

EDCA Bursting

n  Once the station has gained access to the medium, it can be allowed to send more than one frame without contending again

n  The station cannot transmit longer than TXOP_Limit

n  ACK frame by frame or Burst ACK

n  SIFS is used between frames within the same TXOP to maintain the channel control when assigned

Page 29: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 29

EDCA Bursting: Pros / Cons

n  Pros

n  Reduces network overhead

n  Increases throughput (SIFS and burst ACKs)

n  Better fairness among the same priority queues: independently of the frame size, a QSTA gets a TXOP every time it wins a contention

n  E.g., STA A uses 500 B frame; STA B uses 1K B frame. Thus B would get higher throughput in 802.11, while in 802.11e both can get approximately same throughput

Page 30: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 30

EDCA Bursting: Pros / Cons

n  Cons

n  Possible increasing of delay jitter

n  TXOP_Limit should be longer than the time required for transmitting the largest data frame at the minimum speed

n  In any case EDCA does not solve the downlink/uplink unfairness problem

Page 31: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 31

802.11e: HCF

n  HC may allocate TXOPs to himself (QAP) or to other QSTAs n  Self allocation is done to transmit MSDUs, allocation of

resources may solve the uplink/downlink unfairness n  Allocation to AP can be done after a Point coordination

InterFrame Space (PIFS) con PIFS < DIFS n  HC (QAP) has priority over other stations and may

interrupt a CP to start a CFP transmitting a Poll frame

Page 32: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 32

802.11e: HCF

n  Time is diveded between contention free periods (CFP) and contention periods (CP), that are alternated roughly cyclically

n  A sequence CFP + CP defines a Periodic Superfame of 802.11e

n  The CP can be interrpted by other contention free periods called CAPs

Page 33: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 33

802.11e: HCF

Page 34: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 34

MAC 802.11e: HCCA

AP

STA1

STA2

Poll + Data

NAV

Ack + Data

Ack

Ack + Data

NAV

Poll + Ack + Data

Ack + Data

NAV

CF- Null

TXOP 1 TXOP 2

Ack + Data

early channel release

Page 35: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 35

802.11e: HCF – QoS CFPoll Frame

n  Within a CP, TXOP is determined either: n  Through EDCF rules (free channel + AIFS + BO + TXtime) n  Through a poll frame, called QoS CFPoll, sent by HC to a station

n  QoS CFPoll is sent after PIFS, so with priority wrt any other traffic

n  Indeed there is not a big difference between a CFP and CAPs

n  During CFP, TXOPs are again determined by HC and QoS CFPoll can be piggybacked with data and ACKs if needed

n  Stations not polled set NAV and cannot access the channel

Page 36: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 36

802.11e: HCF – QoS CFPoll Frame

n  The CFP must terminate within a time specified in beacons

and it is terminated by the CF-End frame sent by HC n  QoS CF-Poll frame was introduced with the 802.11e

amendment, for backward compatibility it contains a NAV field the legacy stations can use to avoid interfering

n  NAV specify the whole TXOP duration n  Legacy stations in HCF can only use the CP period

Page 37: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 37

HCCA

n  HCCA effectively provides policing and deterministic channel access by controlling the channel through the HC

n  It is backward compatible with basic DCF/PCF

n  Based on polling of QSTAs by the HC

Page 38: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 38

HCCA

Crucial features of HCCA

n  HCCA operates in CP and CFP

n  Uses TXOPs which are granted through HC (in HCCA!)

n  HC allocates TXOPs by using QoS CF-Poll frames

n  In CPs, the time interval during which TXOPs are polled by HC is called CAP (Controlled Access Period)

n  4 Traffic Categories (TCs)

Page 39: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 39

HC Behavior in HCCA

n  According to HCCA:

n  HC may allocate TXOPs to itself to transmit MSDUs whenever it wants, however only after having sensed the channel idle for PIFS

n  In CP, the HC can send the CF-Poll frame after a PIFS idle period, thus starting a CAP

n  In CFP, only the HC can grant TXOPs to QSTAs by sending the CF-Poll frame

n  The CFP ends after the time announced by HC in the beacon frame or by the CF-End frame from HC

Page 40: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 40

QSTA Behavior in HCCA

n  A QSTA behaves as follows

n  In CP QSTAs can gain a TXOP thanks to a CF-Poll frame issued by HC during CAPs, otherwise they can use EDCA

n  In CFP, QSTAs do not attempt accessing the channel on their own but wait for a CF-Poll frame from the HC

n  The HC indicates the TXOP duration to be used in the CF-Poll frame (QoS-control field)

n  Legacy stations kept silent by NAV whenever they detect a CF-Poll frame

Page 41: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 41

802.11e Superframe

During the CP, a TXOP may begin because:

n  The medium is determined to be available under EDCA rules (EDCA-TXOP)

n  The STA receives a special polling frame from HC (polled-TXOP)

802.11e periodic superframe Contention Free Period, CFP Contention Period, CP

beacon QoS CF-Poll

TXOP

CF-End

TXOP TXOP TXOP

QoS CF-Poll

DATA/ACK (polled by HC)

DATA/ACK

RTS/CTS/DATA/ACK (after DIFS+backoff)

TX by HC

TX by QSTAs

time

Page 42: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 42

Polling in HCCA

n  Polling list is a crucial key in HCCA

n  Traffic scheduling (i.e., how QSTAs are polled) is not specified

n  QSTAs can send updates to the HC on their queue size as well as on the desired TXOP, (through the QoS control field in data frames)

n  QSTAs can send ADDTS requests to initiate a new traffic stream

Page 43: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 43

Traffic Signaling

n  Two types of signaling traffic are supported:

n  Connectionless queue state indicator

n  E.g., Arrival rate measurement: notification and not negotiation between peer entities is used

n  TSPEC (Traffic Specification) between HC and QSTAs

n  E.g., service negotiation and resource reservation

Page 44: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 44

Traffic Signaling

n  TSPEC are the base for CAC

n  QoS without CAC is impossible

n  QoS is granted to flows not to packets

n  Flows are persistent (normally)

n  Flows can be predicted (sometimes)

Page 45: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 45

Resource Scheduling

n  Not essential to backward compatibility n  The standard has just a reference impl. (SS)

n  HCF is implemented in the AP n  HCCA scheduling is a function of HCF

n  Requirements of traffic flows are contained in the Traffic Specifications (TSPEC): n  Maximum, minimum and mean datarate n  Maximum and nominal size of the MSDUs n  Maximum Service Interval and Delay Bound n  Inactivity Interval n  …

Page 46: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

EDCA Differentiation HCCF Scheduling

Renato Lo Cigno www.disi.unitn.it/locigno/didattica/NC/

Page 47: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 47

...Copyright

Quest’opera è protetta dalla licenza Creative Commons NoDerivs-NonCommercial. Per vedere una copia di questa licenza, consultare: http://creativecommons.org/licenses/nd-nc/1.0/ oppure inviare una lettera a: Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

This work is licensed under the Creative Commons NoDerivs-NonCommercial License. To view a copy of this license, visit: http://creativecommons.org/licenses/nd-nc/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Page 48: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 48

Thanks & Disclaimer

n  These slides and results are based on the following paper

n  “Performance Evaluation of Differentiated Access Mechanisms Effectiveness in 802.11 Networks”, IleniaTinnirello , Giuseppe Bianchi , Luca Scalia, IEEE Globecomm 2004.

n  As such they must be considered examples of the possible performances and tradeoffs

n  Thanks to Bianchi and all the other authors for providing copy of the papers graphics and slides

Page 49: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 49

EDCA or HCCA?

n  How does EDCA support differentiation? n  Is this enough for standard purposes? n  Are parameters easy to tune and universal?

n  How can HCCA polling-based scheduling be implemented? n  Do we need to use the feedback from the STA? n  How can the traffic be described?

Page 50: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

G. Bianchi, I. Tinnirello, L. Scalia

Performance Evaluation of Differentiated Access Mechanisms Effectiveness in

802.11 Networks

presented @ Globecom 2004

Page 51: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 51

QoS Support issues in legacy 802.11 •  DCF is long term fair

•  Equal channel access probability among the stations •  Averagely, the same channel holding time (for homogeneous

packet sizes)

•  Solution: differentiate packet sizes? •  Solution: differentiate channel holding times?

•  NO WAY! QoS is not a matter of how long I hold the channel •  It means more…

•  Need to manage access delay problems for real-time apps!!!

•  Need to modify 802.11 channel access fairness!!!

Page 52: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 52

QoS @ IEEE 802.11 MAC

n  802.11e defines different traffic classes onto map data flows n  Each traffic class behaves as an independent MAC entity n  Differentiated access priority is provided by:

n  Giving probabilistically lower backoff counters (CWmin, CWmax, PF) n  Giving deterministically lower inter-frame spaces and backoff de-freezing

times. (AIFSN)

Different MAC Access Parameters @ each class to differentiate channel access probability

AC3 AC2 AC1

AC0

Transmission attempt

Backoff

(AIFS[AC])

Backoff

(AIFS[AC])

Backoff

(AIFS[AC])

Backoff

(AIFS[AC])

Virtual Collision Handler (manage interal collisions)

Grants TXOP to highest priority class

EDCA

Backoff based parameters: CWmin, CWmax, PF Channel monitoring based parameters: AIFS

Page 53: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 53

EDCA Performance Evaluation

n  Performance Evaluation: answers we try to give… n  Homogeneous sources

n  Performance effectiveness of each differentiation MAC parameter, individually taken

n  How each differentiation parameter reacts to different load conditions?

n  Hetrogenous sources

n  What are the most effective settings to manage high-priority delay requirements?

Page 54: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 54

EDCA Performance Evaluation

n  Simulations n  Same number of HP and LP stations n  Same packet size (1024 bytes)

n  Homogeneous sources scenario n  Saturation conditions for HP and LP stations

n  Queues never empty n  Data rate = Phy rate = 1 Mbps

n  Heterogeneous sources scenario n  3 pkts/sec. for HP traffic n  Saturation conditions for LP traffic

n  Data rate = Phy rate = 1 Mbps

Page 55: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 55

CWmax Differentiation (1)

n  CWmax(A)<CWmax(B) n  Once reached CWmax (repetead collisions), A gets access

priority over B

Coll Coll Retry #1

Coll Success Max Retry Limit A

BA extracts probablistically a lower backoff value due to its lower CWmax

Backoff……

Page 56: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 56

CWmax Differentiation (2)

Page 57: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 57

CWmax Differentiation (3)

n  Low throughput differentiation n  Only with CWmax=64 effective n  @ low loads poor performance

n  Few collisions n  Inefficient channel usage

n  Consecutive Collisions are needed for the differentiation effect

n  Overall throughput suffers @ high loads

Page 58: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 58

PF Differentiation (1)

n  PF(A)<PF(B) n  once a collision occurs, station A has probabilistically an higher chance

to extract a lower backoff value, thus it may retransmits first.

Coll Retry #1

Busy

Success A

B

A extracts probablistically a lower backoff value due to its lower CW

Backoff……

Coll Retry #2

Page 59: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 59

PF Differentiation (2)

Page 60: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 60

PF Differentiation (3)

n  PF is greater than 2 for LP stations. n  CW_new = PF * CW_old n  It is sufficient a single collision to

begin the differentiation process. n  Impossible to force LP traffic to zero!

n  After a packet successful transmission, the PF effect is no more present

Page 61: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 61

CWmin Differentiation (1)

n  CWmin(A)<CWmin(B) n  In average, station A has a lower backoff than B

Busy Success A

B Busy AIFS Busy

AIFS Thanks to its lower CWmin, A extracts probablistically a lower backoff value

BK=4

BK=8 BK Freezing

Page 62: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 62

CWmin Differentiation (2)

Page 63: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 63

CWmin Differentiation (3)

n  Very good differentiation performance n  @ low loads peformance is good

n  Collision effects among HPs not significant

n  @ high loads collisions mainly involve HP stations (because of their small CW) n  Degradations regard HP traffic ->

bad! n  LP traffic not affected

n  Collision effects un-altered

Page 64: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 64

AIFS Differentiation (1)

n  AIFS(A)<AIFS(B) n  station A decrements its backoff timer before than station B

Busy Success A

B Busy AIFS(B) Busy

AIFS(A) BK=4

BK Freezing BK=4

Thanks to its lower AIFS, A starts decrementing its backoff value before than B either after busy channel or idle channel conditions

Page 65: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 65

AIFS Differentiation (2)

Page 66: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 66

AIFS Differentiation (3)

n  Very High differentiation performance n  Complementary to CWmin case

n  @ low loads differentiation performance suffers n  Collision are few ->

n  @ high loads collisions mainly involve LP stations, since HP stations access first n  Degradations regard LP traffic ->

good! n  HP traffic not affected

Page 67: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 67

Heterogeneous Sources: Throughput Focus on AIFS and CWmin differentiation, seen to be most effective

CWmin

AIFS

The minimum differentiation effect guarantees HP traffic!!!

Page 68: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 68

Heterogeneous Sources: Delay CWmin

AIFS

1) CWmin more effective to manage delay behaviour than AIFS (see slopes)

2) AIFS differentiation slightly sensitive to load in terms of delay

3) Joint use: delay requirements satisfied with AIFS, throughput managed via CWmin (because of the maxima)

Page 69: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 69

Conclusions

n  Cwmin and AIFS differentiation perform better than PF and CWmax differentiation n  PF and CWmax differentiation operations allowed only by collisions

n  CWmin and AIFS show a complementary behaviour n  CWmin performance degrades @ high loads n  AIFS performance degrades @ low loads

n  Joint use of CWmin and AIFS n  AIFS to meet delay requirements n  CWmin to manage thoughput performance

n  Complex parameter setting n  Behavior hardly predictable

Page 70: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

Scheduling in HCCA: Sample Open and Close-Loop Schedulers

Page 71: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 71

Outline

n  Scheduling: The Rules of The Game

n  Sample (on the standard) Scheduler

n  Equivalent Bandwidth Approach

n  Closed Loop Scheduling: A Control Theoretic Approach

Page 72: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 72

MAC 802.11e: HCCA

AP

STA1

STA2

Poll + Data

NAV

Ack + Data

Ack

Ack + Data

NAV

Poll + Ack + Data

Ack + Data

NAV

CF- Null

TXOP 1 TXOP 2

Ack + Data

early channel release

Page 73: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 73

Resource Scheduling (2)

n  KEY notions are n  Service Interval - SI(j): The maximum amount of time between

successive polling to a station j n  Transmission Opportunities - TXOP(j): The amount of resources

(time) assigned to station j in a single polling

n  Goals of scheduling: n  Find suitable values of SIs and TXOPs n  Fully exploit resources n  Guarantee quality and differentiation of the TSPECs

Page 74: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 74

Reference Implementation (SS)

⎥⎥

⎤⎢⎢

⎡ ×=

i

ii L

SIN ρ

)(min iialviceIntervMaximumSerm =Service Interval

TXOP

SI = max(x) t.c. x<m e BI mod x = 0

⎟⎟⎠

⎞⎜⎜⎝

⎛++

×= O

RMO

RLNT iii

i ,max

RML

i

i

iρ Mean datarate Nominal MSDU size Maximum MSDU size TX rate Overhead (Ack, SIFS,…) O

Page 75: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 75

Feedback Information ... or not?

n  SS Schedules is open-loop: n  Uses only TSPEC info n  Assigns the mean rate: not suited for VBR ... n  ... but you can assign a rate based on an Equivalent Bandwidth

approach

n  802.11e has a field to feedback information about backlog (bytes or frames in queue) n  Use this info for prediction or n  Use this info for closed-loop control?

Page 76: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 76

Open/Closed Loop Scheduling

OPEN LOOP CLOSED LOOP

Page 77: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 77

Equivalent Bandwidth

n  Well known approach n  Conceptually simple, just assign resources such that

n  EB(p) is the assignment that guarantees p frame loss probability

n  ρ is the actual (time-depended) offered traffic

n  But ... requires full stochastic knowledge of the traffic L

pSIpEB

SIP =⎥⎦

⎤⎢⎣

⎡ >)(ρ

Page 78: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 78

Closed-loop Scheduling: Basics

n  Discrete time modeling n  Just throw away time (creates a lot of problems) n  The system evolves in cycles of SIs: 1,2,3...,k

n  Goal: equalize (to zero) all queues n  Max/Min fair approach

n  Only resources above the minimum guarantee are “controlled”

n  Assumption: There is a CAC function ensuring long-term stability n  Can use large loop gains without oscillation risks

Page 79: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 79

Closed-loop Scheduling: Formulae

∑ ∑= =

>K

k

N

iia

QS

rkrK 1 1

)(1

)()()( min krkrkr jjj++=

⎥⎦

⎤⎢⎣

⎡+−+=+ ∑

∑ ==

+TS

TS

N

jjaN

j j

jj krkr

kB

kBkr

1

min

1

)1()1()(

)()1(

CAC based long term stability: the average available resources over a finite time K are larger

than the average assigned resources

Page 80: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 80

Closed-loop Scheduling: Formulae

∑ ∑= =

>K

k

N

iia

QS

rkrK 1 1

)(1

)()()( min krkrkr jjj++=

⎥⎦

⎤⎢⎣

⎡+−+=+ ∑

∑ ==

+TS

TS

N

jjaN

j j

jj krkr

kB

kBkr

1

min

1

)1()1()(

)()1(

Max/Min Fairness rmin are guaranteed

and not subject to control

r+ is strictly non negative

Page 81: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 81

Closed-loop Scheduling: Formulae

∑ ∑= =

>K

k

N

iia

QS

rkrK 1 1

)(1

)()()( min krkrkr jjj++=

⎥⎦

⎤⎢⎣

⎡+−+=+ ∑

∑ ==

+TS

TS

N

jjaN

j j

jj krkr

kB

kBkr

1

min

1

)1()1()(

)()1(

Simple proportional controller splitting excess resources

among all the flows that are backlogged

Page 82: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 82

Details ... the real doom!

n  Highly quantized resource assignment n  A minimum assignment of one maximum size segment is mandatory ... what

if the station transmits at low rate? n  “Fragments” of frames might lead to waste resources

n  Reaction of the controller can be slugghish

TXOP TXOP TXOP

datarate: peaks occurs

peak is sensed

more resources have been allocated

SI SI In the worst case the response time is about 2*SI

Page 83: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 83

Closed-loop Schedulers

n  MMF-A n  Implements the formulae above n  Have quantization and response problems

n  MMF-AR n  Dynamically changes the SI ‘on-demand’ J n  Reassign spare resources at the end of the CFP n  Violates proportional assignment to avoid quantization problems

Page 84: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 84 Results

10-2

1

0 5 10 15 20 25

LOS

S P

RO

BA

BIL

ITY

Number of VBR Streams

SS EB 0.2

EB 0.01 MMF-A

MMF-AR

Traffic VBR-3: both packet size and interarrival time change Delay Bound = ∞ Buffer Size = 50 pck Service Interval = 50 ms

10-1

10-6

10-4

10-5

10-3

Page 85: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 85

0 5 10 15 20 25

SS EB 0.2

EB 0.01 MMF-A

MMF-AR

10-2

1 10-1

10-6

10-4

10-5

10-3

Results

LOS

S P

RO

BA

BIL

ITY

Number of VBR Streams

Traffic VBR-3: both packet size and interarrival time change Delay Bound = 100ms Buffer Size = 50 pck Service Interval = 50 ms

Page 86: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 86

0.04 0.06 0.08 0.1 0.12 0.14 0.16 Delay Bound (s)

SS EB 0.2

EB 0.01 MMF-A

MMF-AR

Sorgenti VBR-3: both packet size and interarrival time change Buff. = 50pck #stream = 8 Service Interval = 50 ms

Results

LOS

S P

RO

BA

BIL

ITY

10-2

10-1

1

10-3

10-4

10-5

10-6

Page 87: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 87

0 5 10 15 20 25

Loss

Rat

io

Number of VBR streams

SS EB'(30%) EB'(70%) EB'(30%) SS EB'(70%) MMF-AR MMF-A

10-2

10-1

1

10-3

10-4

10-5

10-6

Real Video Traces: h.263 codec à EB??? Delay bound = 150ms Service Interval = 100 ms

Results

Page 88: 802.11e – Service Differentiation - DISI, University of Trentodisi.unitn.it/locigno/didattica/NC/14-15/03_802.11e-QoE.pdf · 2016. 1. 22. · 802.11e: HCF – QoS CFPoll Frame !

[email protected] 88

Conclusions

n  Different HCCA scheduling explored

n  HCCA complexity is manageable, performances are better than EDCA, configuration is easier

n  Closed-loop scheduling: n  Viable alternative to open-loop or predictive scheduling n  Complexity much simpler and effective than Equivalent Bandwidth

approaches

n  The BIG problem are details n  Quantization, Normalization, Spare Resource Collection, ...