8.ideal fermi systems

38
8. Ideal Fermi Systems 1. Thermodynamic Behavior of an Ideal Fermi Gas 2. Magnetic Behavior of an Ideal Fermi Gas 3. The Electron Gas in Metals 4. Ultracold Atomic Fermi Gas 5. Statistical Equilibrium of White Dwarf Stars 6. Statistical Model of the Atom

Upload: galia

Post on 19-Mar-2016

72 views

Category:

Documents


0 download

DESCRIPTION

8.Ideal Fermi Systems. Thermodynamic Behavior of an Ideal Fermi Gas Magnetic Behavior of an Ideal Fermi Gas The Electron Gas in Metals Ultracold Atomic Fermi Gas Statistical Equilibrium of White Dwarf Stars Statistical Model of the Atom. 8.1.Thermodynamic Behavior of an Ideal Fermi Gas. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 8.Ideal Fermi Systems

8. Ideal Fermi Systems

1. Thermodynamic Behavior of an Ideal Fermi Gas

2. Magnetic Behavior of an Ideal Fermi Gas

3. The Electron Gas in Metals

4. Ultracold Atomic Fermi Gas

5. Statistical Equilibrium of White Dwarf Stars

6. Statistical Model of the Atom

Page 2: 8.Ideal Fermi Systems

8.1. Thermodynamic Behavior of an Ideal Fermi Gas

ln ln 1F kT kT ze

Z

Ideal Fermi gas results from §6.1-2 : 1

1e

Z

N n

1

1n

e

z e

unrestricted

3

32V d k

k

2 2 2

2 2p km m

3/2

20

22

V mg d

3/2

20

2 ln 12

V mF gkT d ze

3/2 3/2

3/22 0

0

2 2 ln 12 3 1

V m zegkT ze dze

3/2 3/2

2 10

42 13

V mg dz e

( g = spin degeneracy )

Page 3: 8.Ideal Fermi Systems

Fermi Function

1

10

11x

xf z d xz e

Fermi-Dirac FunctionsLet

1

00

1 nx x

n

d x x ze ze

11 1

0 0

1 n n xn

n

z d x x e

11

0 0

1+ 1

nn y

n

z d y y en

1

0 1

nn

n

zn

1

1

nn

n

zf zn

2 3

2 3z zz

1

0

11

xx

xf z d x zeze

0

!n yd y y e n

1f zf z

z

Series diverges for z > 1, but f is finite.

Mathematica

Page 4: 8.Ideal Fermi Systems

F, P, N3/2 3/2

2 10

42 13

V mF g dz e

22mkT

3/2

130

413 x

V xF kT g dxz e

5/23

gF kTV f z

35 / 24

5/23

P g f zkT

3/2

2 10

22 1

V mN g dz e

130

21x

V xg dxz e

3/23

VN g f z

13 / 22

F U TS N PV

1

10

11x

xf z d xz e

5/2

3/2

f zPV N kT

f z F

Page 5: 8.Ideal Fermi Systems

U

,

ln

z V

U

Z,z V

F

3

5/2g V f z

5/2 3

32

kTg V f z

5/2

3/2

32

f zU N kT

f z

5/23

gF kTV f z

3/23

VN g f z

1/23/23

,

302 V N

f zV zg f zT z T

1f zf z

z

3/2

1/2,

32V N

f zz zT T f z

22mkT

,V

V N

UCT

5/2 5/2 1/2 3/22

3/2 1/23/2

3 312 2

f z f z f z f zT zN kf z z T f zf z

5/2

3/2

f zPV N kT

f z

23

PV U

Page 6: 8.Ideal Fermi Systems

CV , A, S

5/2 5/2 1/2 3/22

3/2 1/23/2

3 312 2V

f z f z f z f zT zC N kf z z T f zf z

5/2 3/2

3/2 1/2

15 94 4

V f z f zCN k f z f z

A F N

U AST

A U ST

5/2

3/2

32

f zU N kT

f z

5/2

3/2

f zPV N kT

f z PV N

5/2

3/2

lnf z

A N kT zf z

/ kTz e

5/2

3/2

5 ln2

f zS N k z

f z

3/23

VN g f z

Page 7: 8.Ideal Fermi Systems

Using f

0 1

E g d ae

1

10

11x

xf z d xz e

11

0 0 11 x

xd kT d xz ee

1

11kT f z

a c 2 2

2km

x

z e

111s

sg c kT s f z

3/2

23 / 2 2V mc

3/203/23 / 2N E gc kT f z

5/23

32

Vg kT f z

sa c

E.g., free particles :

1 23 3

P n pu EV

5/23

1g kT f z

3/23

13 / 2

VckT

3/23

Vg f z

5/23

5 / 23 / 2

Vg kT f z

5/2

5/25 / 2E g c kT f z

Page 8: 8.Ideal Fermi Systems

z << 1

5/2

3/2

f zF PV N kT

f z

5/2

3/2

32

f zU N kT

f z

5/2

3/2

lnf z

A N kT zf z

5/2 3/2

3/2 1/2

15 94 4

V f z f zCN k f z f z

5/2

3/2

5 ln2

f zS N k z

f z

F PV N kT

1 lnA N kT z

3 32 2

U N kT PV

5 ln2

S N k z

32

VCN k

1

1

nn

n

zf zn

0f z z

3/23

VN g f z

3

VN g z

3 3N nz

g V g

3

1 ln nN kTg

3

5ln2

gN kn

Page 9: 8.Ideal Fermi Systems

Virial Expansions ( z < 1, or )

5/2

3/2

f zF PV N kT

f z 1

1

nn

n

zf zn

5/2 3/2

3/2 1/2

15 94 4

V f z f zCN k f z f z

13

15/23

1

ll

ll

PV g nf z aN kT n g

3

1

l

ll

nz cg

al = Virial coefficients

3/23

gn f z

is inverted to give

0 1 2 3 41 1 1 = 0, = 1, = , = 9 4 3 , = 36 45 2 40 6 ,

36 2882 2c c c c c

1 2 3 41 1 2 11, , , 18 15 2 16 6 ,

8 1924 2 9 3a a a a

Mathematica

3

1ng

1nF Bn nc c

F Bn na a

Page 10: 8.Ideal Fermi Systems

CV

32

V

n

C TN k T

2 33 3 33 1 0.0883884 0.00660012 0.0003895122V

n n nC Nkg g g

13

15/23

1

ll

ll

PV g nf z aN kT n g

32

U PV 1

1

1

3 5 312 2

ll

ll

l nag

§ 7.1 :

Mathematica

13

1

3 5 32 2

lBV

ll

C laN k v

2ddT T

Page 11: 8.Ideal Fermi Systems

Degenerate Gas ( z >> 1, or )3

1ng

0

0

1101

ne

T 0 3n

g

22

mkT

0 0 FT 0

Fermi energy

0

N d a n

0

F

N d a

xkT

kT

Mathematica

Page 12: 8.Ideal Fermi Systems

E0

p

p k 2

2 32V d pa g p

d

3

2 36 FVN g p

F Fp

1/326

FNp

g V

Fermi momentum

0

F

N d a

2

2m

p 2/32 2 26

2 2F

Fp nm m g

Ground state / zero point energy :

00

F

E d a

22 3

02

FV d pg d pd

22

2 302 2

FpV pg d p pm

5

2 32 10FV pgm

2

310

FpNm

0 3

5 FEN

Page 13: 8.Ideal Fermi Systems

P0

0 35 F

EN

23

PV UIdeal gas : 00

23

EPV

5/3n

25 Fn

2/32 262F

nm g

2/32 25/3

06

5P n

m g

Zero point motion is a purely quantum effect ( vanishes for h = 0 )

due to Pauli’s exclusion principle.

Page 14: 8.Ideal Fermi Systems

n

7/2 15 /8

5/2 3/4

3/2 1/2

1/2 1

z > 1, or3

1ng

T 0 but is low :

1.Virial expansion not valid.

2.Only particles with |F | < O( k T ) active.

response functions ( e.g. CV ) much reduced than their classical counterparts.

Sommerfeld lemma :

1

odd

ln 1 111 2 11 2 ln jj

j

z jf z

j z

1

10

11x

xf z d xz e

25/2

5/2 28 5ln 1

15 8 lnf z z

z

23/2

3/2 24 ln 1

3 8 lnf z z

z

21/2

1/2 22 ln 1

24 lnf z z

z

n

2

26

Asymptotic approx.

Page 15: 8.Ideal Fermi Systems

3/23

gn f z

3/2 2

22

4 ln 123 8 lnmkTn g z

z

22mkT

2/32

02 3

4n

m g

2/32 26

2n

m g

F

2/32/32 2

22 3ln 1

4 8 lnkT z n

m g z

Lowest order :

2/32

218 lnF z

Next order :

2

20

112 lnF z

22

112F

F

kT

Page 16: 8.Ideal Fermi Systems

U, P, CV

5/2

3/2

32

f zU N kT

f z

25/2

2

23/2

2

8 5ln 115 8 ln3

2 4 ln 13 8 ln

zz

N kT

zz

23 ln5 2 ln

N kT zz

22

ln 112F

F

kTkT z

2 22 2 23 1 15 12 2 12

F

F F F

kT kT kTN kTkT

223 515 12F

F

U kTN

222 515 12F

F

kTP n

23

P V U

2

2V

F

C kTN k

Page 17: 8.Ideal Fermi Systems

CV ,

Adapting the Bose gas result ( § 7.1 ) gives

5/2 3/2

3/2 1/2

15 94 4V

f z f zC

f z f z

1

10

11x

xf z d xz e

2

2V

F

C kTN k

Page 18: 8.Ideal Fermi Systems

A, S22

112F

F

kT

222 515 12F

F

kTP n

A F N PV N 2 22 22 51 1

5 12 12F FF F

kT kTN N

223 515 12F

F

kTA N

U AST

2

2 F

S kTN k

223 515 12F

F

U kTN

Page 19: 8.Ideal Fermi Systems

Series Expansion of f (z)

1

0

11

x

x

x z ef z d xze

1 1

1 0

1 n n n x

n

z d x x e

1 1

1 0

1 nn x

n

z d x x en

1

1

nn

n

zf zn

0f z z

12

0

ln 1 1d e kT f z

1z f z f

2

2

ln 11 1

1 6 lnz

f zz

odd0 0

12 1 11 2

j

x j jj x

x dd x d x x je d x

Ref: 1. Pathria, App. E.2. A.Haug, “Theoretical Solid State Physics”, Vol.1, App. A.1.

Page 20: 8.Ideal Fermi Systems

8.2. Magnetic Behavior of an Ideal Fermi Gas

Boltzmannian treatment ( § 3.9 ) : Langevin paramagnetism

Saturation at low T. 1/T for high T

IFG :

1. Pauli paramagnetism ( spin ) :

No saturation at low T ; = (n) is indep of T.

2. Landau diamagnetism ( orbital ) : < 0

= (n) is indep of T at low T. 1/T for high T

Page 21: 8.Ideal Fermi Systems

8.2.A. Pauli Paramagnetism2

*

2m

p μ B = intrinsic magnetic moment* μ S

= gyromagnetic ratio

12

S 2 groups of particles :

2*

2B

m p

p

Highest filled level at T = 0 is F .*

FK B

3/2

2 2

26

FV mN g

3/2

*2 2

26 FV mN B

Net magnetic moment :

* ˆN N M B

* ˆˆ μ Bfor

Highest K.E.s are :

3/2

3/2 3/2* * *2 2

2 ˆ6 F FV m B B

B

Page 22: 8.Ideal Fermi Systems

0

3/2

3/2 3/2* * *2 2

2 ˆ6 F FV m B B

M B

00

1

B

MV B

3/2

* 20 2 2

1 22 F

m

3/2

2 2

26

FV mN g

* 2

032 F

n

3/2

2 2 3/2

1 23 F

m n

Langevin paramag for g = 2, J = ½, & low B or high T ( § 3.9 ) :

*2nkT

( T = 0, low B )

2 *2113

ng J JT k

0 3

2 F

kT

32 F

TT

Page 23: 8.Ideal Fermi Systems

Z ( N, T, B )

E n n n p p p p pp

* ˆˆ μ B2

*

2B

m p

p

2

*

2n n n n B

m

p p p pp

p

2

*

2E n n n N N B

m

p p pp

p

,

,

, E n

n n

Z N T e

p

p p

N E

0,1n p

n N pp

N N N

* 2 22

0

exp exp2 2

NN N B N N N

N n n

e n nm m

p p

p pp p

p p

2N N N N

Let

2

0 , exp2n

Z N T nm

p

pp

pN

*2

0 00

,N

N N B

N

Z N T e Z N Z N N

0 0lnA kT Z

Page 24: 8.Ideal Fermi Systems

*2

0 00

,N

N N B

N

Z N T e Z N Z N N

0 0lnA kT Z

*

0 02*

0

1 lnN B N A N A N N

N

N kT B eN

lnA kT Z

Method of most probable value : maxln lnf f

0 0*2 0N N N N

A N A N NB

N N

*0 02 0B N N N 0

0T

AN

chemical

potentialfor g = 1

Let maximizes N *0 02 B N A N A N N

e

* *0 0

1 2A N kT B B N A N A N NN

Page 25: 8.Ideal Fermi Systems

A ( T, N, B )

* *0 0

1 2A N kT B B N A N A N NN

*0 02A N N B A N A N N

,N T

AMB

*2N N *N N *r N

2 1N N NrN N

*0 02 0B N N N

where 1 12

N r N

*0 0

1 12 1 1 02 2

B r N r N

*0 02 0B N N N

Page 26: 8.Ideal Fermi Systems

( T )

*0 0

1 12 1 1 02 2

B r N r N

B = 0 : 0 01 11 12 2

r N r N r = 0

For r 0 00 0

1/2

1 112 2 2

x

xNrr N Nx

* 0

1/2

2 0x

xNB r

x

* 2

*

0

1/2

2

x

N BM r NxNx

* 2

0

1/2

2

x

nTxNx

valid T & low B

0 0 ,n T

,N T

MB

Page 27: 8.Ideal Fermi Systems

( T ), Low T * 2

0

1/2

2

x

nTxn

x

For T 0 :(g = 1)

2 2/30 2

0 62Fn n

m

2 2/32/320

1/21/2

62 xx

xN d xnx m d x

2 4/32/32 262 3

nm

2 2/323

2F nm

* 2

032 F

n

( g = 2 )

For low T :(g = 1)

220

0 0112F

F

kT

43 F

same as before

220

1/2

4 13 12F

Fx

xN kTx

22

0 112 F

kT

0 / 2F Fn n

Page 28: 8.Ideal Fermi Systems

( T ), High T

T :(g = 1)

3/23 3

V VN g f z g z

30 lnn kT n

* 2

0

1/2

2

x

nTxn

x

0

1/21/2

ln

xx

xN d xkTx d x

2kT * 2n

kT same as

before

For high T :(g = 1)

2

3 3/22V zN g z

32 1 1 2z n 3 3/2 31 2n n

3 3/2 30 ln 1 2n kT n n 3 3/2 3ln 2kT n n

0

1/21/2

ln

xx

xN d xkTx d x

3/2 32 2kT n

5/2 31 2 n

3/23 FTn

T

3/2Fn

Page 29: 8.Ideal Fermi Systems

In Terms of n

* ˆN N M B * * *ˆ n B n B

B

* *

3/2*

20

2 1 1ˆ2 1 1B B

V m de e

B

*3/2 3/23

ˆ V f z f z

B

*Bz e

3/2

*2

0

2 1 1ˆ1 12 1 1x x

V m k T dx xe e

z z

B

*z zB

1/23/2

f zf z

z

*3/2 3/23

1 f z f zB

* 2

1/2 1/23

1 f z f z

* 21/230

2B

f z

0z 31/2

12

f z z n * 2

0B

nk T

(g = 1; n/2)

Page 30: 8.Ideal Fermi Systems

8.2.B. Landau Diamagnetism

Free electron in B circular / helical motion about B with Be Bm c

Cyclotron frequency

Motion B like SHO See M.Alonso, “Quantum Mechanics”, § 4.12.

2 12 2

zB

p jm

0,1,2,j

Continuum of states with 2 21 1 3

2 2 2B x y Bj p p jm

are coalesced into the lower level

# of states in this level are ( degeneracy / multiplicity )

2

2j

B

pj

m2 2x y

B

L Lm

h

B x yeBg L Lhc

1

2 2

1 2j

j

px y

B x yp

L Lg dx dy dp dp d p p

h h

1 , , 02

B y x A

Page 31: 8.Ideal Fermi Systems

Z ( z << 1 ) 1 e

Z ln ln 1 e

Z

2 12 2

zB

p jm

B x yeBg L Lhc

0

ln ln 12

zz B

j

L d p g e

Z

For z << 1 :

0

ln2 z

j

eB V d p ehc

Z

z e

( Boltzmannian)

21

/ 2 2

02B

zj

p mz

j

eB V e d p e ehc

12

22 1

B

B

eB V e emkThc e

1

1ln 2sinh2 B

eB V zhc

Z 1z

22mkT

0

ln 12 z

j

eB V d p ehc

Page 32: 8.Ideal Fermi Systems

N, M ( z << 1 )1

1ln 2sinh2 B

eB V zhc

Z

, ,

ln

T V B

N kT

Z, ,

ln

T V B

zz

ZT T T T

z zz z

1

12sinh2 B

eB Vzhc

lnN Z

12 Bx Let

12

eBmc

eff B 2effemc

2 1

2sinhmkTx VzN

h x

3 sinhVz xN

x

, ,

ln

T z T

FM kTB B

Z

1z for

3 2

1 coshsinh sinheff

Vz x xMx x

effT

xB

1z

Bfor free e

Page 33: 8.Ideal Fermi Systems

3 sinhVz xN

x

3 2

1 coshsinh sinheff

Vz x xMx x

1 cotheffM N xx

effM N L x

1cothL x xx

Langevin function

Mathematica

L(x) 0 Diamagnetism

eff Bx

kT

2effemc

0 0M if

Landau diamagnetism is a quantum effect.

C.f. Bohr-van Leeuween theorem ( Prob. 3.43 ) :

No diamagnetism in classical physics.

Page 34: 8.Ideal Fermi Systems

z, x << 1

eff Bx

kT

3 sinhVz xN

x 1cothL x x

x effM N L x

3

3 45x xL x x <

1 :

2

1sinh 6

x xx

3

VzN

13

effeff

BM N

kT

Curie’s law for diamagnetism

213

effnkT

Net susceptibility = paramagnetism - diamagnetism

2 213B eff

nkT

Page 35: 8.Ideal Fermi Systems

Euler-Maclaurin Formula

( 1) ( 1)1

2 !

ppk kk

k

BB f n f m f n f m O fk

S I I

B1 = −1/2B2 = 1/6

n

j m

f j

S n

m

d x f xI

0kf n k ( 1)1

2 !

ppkk

k

BB f m f m O fk

S I I

Let0

12j

S f j

1/2

1 1 1 12 2 12 2

S dx f x f f O f

0kf k with

1/2

1/2 0 0

dx f x dx f x dx f x

1/2

0 0

1 1 1 12 2 12 2

dx f x dx f x f f O f

Page 36: 8.Ideal Fermi Systems

Z ( x << 1 )

0

ln ln 12 z

j

eB V d p ehc

Z

Weak B , all T with x << 1 :2B eff B

2 12 2

zB

p jm

Euler-Maclaurin formula :

ln 1f e 2

2z

Bpm

Let

1B ef

e

1 1

B

z e

0 0

1 1 02 24j

f j d f f

0f f

01

0

1ln ln 12 24 1

Bz

eB V d p d zehc z e

Z

Page 37: 8.Ideal Fermi Systems

01

0

1ln ln 12 24 1

Bz

eB V d p d zehc z e

Z

2

2z

Bpm

2B eff B

2 22 2

2 2

0 0

ln 1 ln 1z z

eff effp pB xm mB d ze d x ze

is indep of B

2

1/2

101 2

1 22 1

1z

z ypm

m yd p d yz e

z e

2

2zpym

2z

z zp yd y d p d pm m

1/22 m f z

1

10

11x

xf z d xz e

0 1/2ln ln 22 12

eff BeB V m f zhc

Z Z

2

0 1/2, , , 22 12

effeB VF T B F T m kT f zhc

Page 38: 8.Ideal Fermi Systems

2

0 1/2, , , 22 12

effeB VF T B F T m kT f zhc

1/2,

22 6

eff

T z

F eB VM m kT f zB hc

1/20

1 22 6

eff

B

M e V m kT f zV B h c

2effemc

3/2

21/22

1 224 eff

m kT f z

z << 1 : 31/2f z z n

213

eff nkT

3/2 3/22

22

1 2 224 eff

m kT nmkT

z >> 1 : 1/22 lnf z z

3/2

22

1 2 224

Feff

m kTkT

212

eff

F

n

2 2/326

2F nm